Lecture 15: Equity Premium

Stochastic Growth Model

Economics 714, Fall 2014

1 Equity Premium

1.1 Characterization

Define $r^{f}=R-1, \beta=\frac{1}{1+\delta}$, then (net) stock return r_{t+1} satisfies:

$$
1=E_{t}\left[\frac{1}{1+\delta}\left(1+\Delta c_{t+1}\right)^{-\gamma}\left(1+r_{t+1}\right)\right]
$$

Take 2nd order Taylor approximation of right side, unconditional expectations:

$$
E(r)=\delta+\gamma E\left(\Delta c_{t}\right)+\gamma \operatorname{cov}\left(r_{t}, \Delta c_{t}\right)-\frac{1}{2} \gamma(\gamma+1) \sigma^{2}\left(\Delta c_{t}\right)
$$

Which can be expressed as:

$$
\frac{E\left(r_{t}\right)-r^{f}}{\sigma(r)}=\gamma \sigma\left(\Delta c_{t}\right) \operatorname{corr}\left(\Delta c_{t}, r_{t}\right)
$$

Left side known as Sharpe ratio

1.2 Attempted Resolutions

- Change preferences: recursive preferences, robustness, habit persistence
- Change constraints: Limited participation, transaction costs, incomplete markets
- Change shocks: disaster models, long-run risk, learning

2 Stochastic Growth/Real Business Cycle Model

Due to Brock-Mirman (1972), Kydland-Prescott (1982)
Add stochastic TFP to neoclassical/optimal growth model

2.1 Basic Model

Household problem:

$$
\max _{\left\{c_{t}, k_{t}, n_{t}\right\}} E_{0} \sum_{t=0}^{\infty} \beta^{t} u\left(c_{t}, 1-n_{t}\right)
$$

subject to:

$$
c_{t}+k_{t+1}-(1-\delta) k_{t}=w_{t} n_{t}+r_{t} k_{t}
$$

Firm problem:

$$
\max _{K_{t}, N_{t}}\left[F\left(K_{t}, A_{t} N_{t}\right)-r_{t} K_{t}-w_{t} N_{t}\right]
$$

Technology:

$$
\log A_{t+1}=\rho \log A_{t}+\varepsilon_{t+1}
$$

where $0<\rho \leq 1$ and $\varepsilon_{t} \sim N\left(0, \sigma^{2}\right)$.
Feasibility:

$$
C_{t}+K_{t+1}-(1-\delta) K_{t}=F\left(K_{t}, A_{t} N_{t}\right)
$$

2.2 Recursive Competitive Equilibrium

Note firm problem is static, gives standard optimality conditions:

$$
\begin{aligned}
F_{K}(K, A N) & =r \\
A F_{N}(K, A N) & =w
\end{aligned}
$$

Can eliminate N and write these as $w=w(K, A), r=r(K, A)$.
Household: individual capital k, aggregate K. Takes as given pricing functions, law of motion for aggregate K.

Bellman equation:

$$
V(k, K, A)=\max _{c, n, k^{\prime}}\left\{u(c, 1-n)+\beta E\left[V\left(k^{\prime}, K^{\prime}, A\right) \mid k, A, K\right]\right\}
$$

subject to

$$
\begin{aligned}
c+k^{\prime}-(1-\delta) k & =w(K, A) n+r(K, A) k \\
\log A^{\prime} & =\rho \log A+\varepsilon^{\prime} \\
K & =G(K, A)
\end{aligned}
$$

Solution determines household policies $k^{\prime}=g(k, K, A), c=c(k, K, A), n=n(k, K, A)$.
Definition: A recursive competitive equilibrium is a value function $V(k, K, A)$ for the household, aggregate decision rules $C(K, A), N(K, A), K^{\prime}=G(K, A)$ and price functions $r(K, A), w(K, A)$ such that
(i) V solves the household problem, with decision rules g, c, n
(ii) The price functions r and w are consistent with the firm problem
(iii) individual and aggregate behavior are consistent: $g(K, K, A)=G(K, A), c(K, K, A)=$ $C(K, A), n(K, K, A)=N(K, A)$
(iv) Aggregate feasibility is satisfied:

$$
C(K, A)+G(K, A)-(1-\delta) K=F(K, A N(K, A))
$$

2.3 Characterization

$$
V(k, K, A)=\max _{n, k^{\prime}}\left\{u\left(w(K, A) n+r(K, A) k-k^{\prime}+(1-\delta) k, 1-n\right)+\beta E\left[V\left(k^{\prime}, K^{\prime}, A\right) \mid k, A, K\right]\right\}
$$

First order and envelope conditions:

$$
\begin{aligned}
u_{c}(c, 1-n) & =\beta E\left[V_{k}\left(k^{\prime}, K^{\prime}, A\right) \mid k, A, K\right] \\
u_{c}(c, 1-n) w(K, A) & =u_{n}(c, 1-n) \\
V_{k}(k, K, A) & =u_{c}(c, 1-n)[r(K, A)+1-\delta]
\end{aligned}
$$

Combining gives household Euler equation:

$$
u_{c}(c, 1-n)=\beta E\left[u_{c}\left(c^{\prime}, 1-n^{\prime}\right)\left[r\left(K^{\prime}, A^{\prime}\right)+1-\delta\right] \mid k, A, K\right]
$$

Impose equilibrium:

$$
u_{c}(C, 1-N)=\beta E\left[u_{c}\left(C^{\prime}, 1-N^{\prime}\right)\left[F_{K}\left(K^{\prime}, A^{\prime} N^{\prime}\right)+1-\delta\right] \mid k, A, K\right]
$$

Also have intra-temporal optimality condition, in equilibrium:

$$
\frac{u_{n}(C, 1-N)}{u_{c}(C, 1-N)}=A F_{N}(K, A N)
$$

