Lecture 13: Asset Pricing

Economics 714, Fall 2014

1 Asset Pricing

1.1 Pricing General Claims

Say transition function has density f(s, s'):

$$Q(s,s') = \int_{-\infty}^{s'} f(s,u) du$$

Pricing kernel q(s', s): equilibrium price P^A of unit of period t + 1 when $s_{t+1} \in A$ conditional on $s_t = s$ is

$$P^{A}(s) = \int_{s' \in A} q(s, s') ds'$$

Here we have:

$$q(s,s') = \beta \frac{u'(s')}{u'(s)} f(s,s')$$

Price of any contingent claim g(s') one-period ahead:

$$p^{g}(s) = \int q(s, s')g(s')ds'$$

$$= \int \beta \frac{u'(s')}{u'(s)}g(s')f(s, s')ds'$$

$$= E \left[\beta \frac{u'(s')}{u'(s)}g(s')\middle|s\right]$$

Component $m = \beta \frac{u'(s')}{u'(s)}$ is called stochastic discount factor

For multi-period claims, can chain together one-step claims:

$$q^{j}(s, s^{j}) = \int q(s, s')q^{j-1}(s', s^{j})ds'$$

Ownership of tree is claim to entire $\{s_t\}$ so can define price as:

$$p(s) = \beta \int \frac{u'(s')}{u'(s)} s' f(s, s') ds' + \beta^2 \int \frac{u'(s'')}{u'(s)} s'' f^2(s, s'') ds'' + \dots$$

Or in sequence notation:

$$p_t = E_t \left[\sum_{j=1}^{\infty} \beta^j \frac{u'(s_{t+j})}{u'(s_t)} s_{t+j} \right]$$

Infinite horizon equilibrium rules out bubbles.

1.2 Risk Neutrality

With linear utility $u'(c_t)$ constant, so risk free rate:

$$1 = E_t(\beta R) \quad \Rightarrow R = \frac{1}{\beta}$$

So then

$$p_t = E_t \left[\sum_{j=1}^{\infty} \beta^j s_{t+j} \right] = E_t \left[\sum_{j=1}^{\infty} \frac{s_{t+j}}{R^j} \right]$$

1.3 Risk Corrections

Risk free rate:

$$1 = E_t \left[\beta \frac{u'(c_{t+1})}{u'(c_t)} R \right] \quad \Rightarrow R = \frac{1}{E_t \left[\beta \frac{u'(c_{t+1})}{u'(c_t)} \right]}$$

or $R = 1/E_t m_{t+1}$.

For general payoff x_{t+1} ,

$$p_{t} = E_{t}(m_{t+1}x_{t+1})$$

$$= E_{t}m_{t+1}E_{t}x_{t+1} + cov_{t}(m_{t+1}, x_{t+1})$$

$$= \frac{E_{t}x_{t+1}}{R} + cov_{t}(m_{t+1}, x_{t+1})$$

1.4 Power Utility and Risk-Free Rates

Now assume $u(c) = c^{1-\gamma}/(1-\gamma)$

Risk-free rate when c_{t+1} known:

$$R = \frac{1}{E_t \left[\beta \left(\frac{c_{t+1}}{c_t} \right)^{-\gamma} \right]} = \frac{1}{\beta} \left(\frac{c_{t+1}}{c_t} \right)^{\gamma}$$

Now assume c_{t+1}/c_t conditionally lognormal, $\beta = e^{-\delta}$:

$$R = \frac{1}{E_t \left[\beta \left(\frac{c_{t+1}}{c_t}\right)^{-\gamma}\right]}$$

$$= \frac{1}{e^{-\delta - \gamma E_t(\Delta \log c_{t+1}) + \frac{\gamma^2}{2}\sigma_t^2(\Delta \log c_{t+1})}}$$

$$\log R = \delta + \gamma E_t(\Delta \log c_{t+1}) - \frac{\gamma^2}{2}\sigma_t^2(\Delta \log c_{t+1})$$

2 Equity Premium

2.1 Characterization

Define $r^f = R - 1$, $\beta = \frac{1}{1+\delta}$, then (net) stock return r_{t+1} satisfies:

$$1 = E_t \left[\frac{1}{1+\delta} (1 + \Delta c_{t+1})^{-\gamma} (1 + r_{t+1}) \right]$$

Take 2nd order Taylor approximation of right side, unconditional expectations:

$$E(r) = \delta + \gamma E(\Delta c_t) + \gamma cov(r_t, \Delta c_t) - \frac{1}{2}\gamma(\gamma + 1)\sigma^2(\Delta c_t)$$

Which can be expressed as:

$$\frac{E(r_t) - r^f}{\sigma(r)} = \gamma \sigma(\Delta c_t) corr(\Delta c_t, r_t)$$

Left side known as Sharpe ratio

2.2 Attempted Resolutions

- Change preferences: recursive preferences, robustness, habit persistence
- Change constraints: Limited participation, transaction costs, incomplete markets
- Change shocks: disaster models, long-run risk, learning