Lecture 13: Asset Pricing

Economics 714, Fall 2014

1 Asset Pricing

1.1 Pricing General Claims

Say transition function has density f(s, s'):

Q(s,s') = /_: f(s,u)du

Pricing kernel q(s,s): equilibrium price P4 of unit of period ¢ + 1 when s,,; € A

conditional on s; = s is

Here we have:

Price of any contingent claim g(s’) one-period ahead:

P(s) = / o(s. )g(s)ds
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is called stochastic discount factor
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Component m = f3

For multi-period claims, can chain together one-step claims:

§ (s, ) = / a(s, ) (s, )
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Ownership of tree is claim to entire {s;} so can define price as:

p(s) = B/ u(s) s'f(s,s")ds' +ﬂ2/UI(SH)S"fQ(s,s")dS” +...
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Or in sequence notation:

Infinite horizon equilibrium rules out bubbles.

1.2 Risk Neutrality

With linear utility «'(c;) constant, so risk free rate:
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So then
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1.3 Risk Corrections

Risk free rate:
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For general payoff 1,
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1.4 Power Utility and Risk-Free Rates

Now assume u(c) = c¢'77/(1 — )

Risk-free rate when ¢;,; known:
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Now assume ¢, /c; conditionally lognormal, 8 = e~°:
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2 Equity Premium

2.1 Characterization

Definer/ = R—1, 8 = 113, then (net) stock return r;, satisfies:
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Take 2nd order Taylor approximation of right side, unconditional expectations:
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E(r) =04+ ~vE(Ac¢;) + yeov(ry, Acy) — 57(7 +1)o%(Acy)
Which can be expressed as:

= vo(Acy)corr(Acy, i)

Left side known as Sharpe ratio



2.2 Attempted Resolutions

e Change preferences: recursive preferences, robustness, habit persistence
e Change constraints: Limited participation, transaction costs, incomplete markets

e Change shocks: disaster models, long-run risk, learning



