Lecture 11: Consumption-Savings Problem

Under Uncertainty

Economics 714, Fall 2014

1 Consumption-Savings Problem under Uncertainty

1.1 Basic Problem

$$
\begin{aligned}
& \max _{\left\{c_{t}, a_{t+1}\right\}} E_{0} \sum_{t=0}^{\infty} \beta^{t} u\left(c_{t}\right) \\
& \text { s.t. } \quad c_{t}+a_{t+1}=R a_{t}+y_{t}
\end{aligned}
$$

a_{0}, y_{0} given. Slight timing change from previously.
Constraints: $c_{t} \geq 0, \quad a_{t} \geq \underline{\text { a }}$. Debt limit.
Income y stochastic: $y \in Y \subseteq \mathbb{R}_{+}$compact, Borel σ-algebra \mathcal{Y}.
y follows Markov process w/transition function Q on (Y, \mathcal{Y}).
Assume Q has Feller property: for $f: Y \rightarrow \mathbb{R}$ bounded, continuous then:

$$
E\left[f\left(y^{\prime}\right) \mid y\right]=\int f\left(y^{\prime}\right) Q\left(y, d y^{\prime}\right)
$$

is bounded and continuous
State space: assets $a \in A=[\underline{\mathrm{a}}, \infty)$, Borel σ-algebra \mathcal{A}.
Joint state space $(a, y) \in X=A \times Y$ with Borel σ-algebra \mathcal{X}
Feasible correspondence:

$$
\Gamma(x)=\left\{\left(c, a^{\prime}\right): c+a^{\prime} \leq R a+y, \quad c \geq 0, \quad a^{\prime} \geq \underline{\mathrm{a}}\right\}
$$

1.2 Sequence Problem

At each date $c_{t}: Y^{t} \rightarrow \mathbb{R}_{+}$, measurable (w.r.t \mathcal{Y}^{t}).
$a_{t+1}: Y^{t} \rightarrow \mathbb{R}_{+}$, measurable (w.r.t \mathcal{Y}^{t})

$$
\begin{aligned}
v^{*}\left(a_{0}, y_{0}\right) & \left.=\sup _{\left\{c_{t}\left(Y^{t}\right), a_{t+1}\left(Y^{t}\right)\right\}} E_{0} \sum_{t=0}^{\infty} \beta^{t} u\left(c_{t}\right)\right] \\
& =\sup _{\left\{c_{t}\left(Y^{t}\right), a_{t+1}\left(Y^{t}\right)\right\}} \int \sum_{t=0}^{\infty} \beta^{t} u\left(c_{t}\left(Y^{t}\right)\right) Q\left(y_{t}, d y_{t+1}\right) Q\left(y_{t-1}, d y_{t}\right) \cdots Q\left(y_{0}, d y_{1}\right)
\end{aligned}
$$

1.3 Bellman Equation

$$
v(a, y)=\max _{\left(c, a^{\prime}\right) \in \Gamma(a, y)}\left\{u(c)+\beta \int v\left(a^{\prime}, y^{\prime}\right) Q\left(y, d y^{\prime}\right)\right\}
$$

Extensions of the previous results apply, principle of optimality is direct.
Define Bellman operator as before:

$$
T f(a, y)=\max _{\left(c, a^{\prime}\right) \in \Gamma(a, y)}\left\{u(c)+\beta \int f\left(a^{\prime}, y^{\prime}\right) Q\left(y, d y^{\prime}\right)\right\}
$$

Theorem: Under the assumptions here $T: C(X) \rightarrow C(X)$ is a contraction, and hence has a unique fixed point $v \in C(X)$ and for all $v_{0} \in C(X)$:

$$
\left\|T^{n} v_{0}-v\right\| \leq \beta^{n}\left\|v_{0}-v\right\|
$$

Moreover, the optimal policy correspondence:

$$
G(x)=\left\{\left(c, a^{\prime}\right) \in \Gamma(a, y): v(a, y)=u(c)+\beta \int v\left(a^{\prime}, y^{\prime}\right) Q\left(y, d y^{\prime}\right)\right\}
$$

is compact-valued and uhc.

In addition, under our standing assumptions we have the stronger results.
Theorem: (i) $v(a, y)$ is strictly increasing in a
(ii) $v(a, y)$ is strictly concave in a and the optimal policy functions $c(a, y)$ and $a^{\prime}(a, y)$ are continuous
(iii) If $\left(a_{0}, y_{0}\right) \in \operatorname{int}(\mathrm{X})$ and $\left(c\left(a_{0}, y_{0}\right), a^{\prime}\left(a_{0}, y_{0}\right)\right) \in \operatorname{int} \Gamma\left(\mathrm{a}_{0}, \mathrm{y}_{0}\right)$ then v is continuously differentiable (in a) at $\left(a_{0}, y_{0}\right)$ and:

$$
v_{a}\left(a_{0}, y_{0}\right)=R u^{\prime}\left(c\left(a_{0}, y_{0}\right)\right)=R u^{\prime}\left(R a+y-a^{\prime}\left(a_{0}, y_{0}\right)\right)
$$

1.4 Euler Equations

If the constraints don't bind, we can proceed as before:

$$
v(a, y)=\max _{\left(c, a^{\prime}\right) \in \Gamma(a, y)}\left\{u(c)+\beta \int v\left(a^{\prime}, y^{\prime}\right) Q\left(y, d y^{\prime}\right)\right\}
$$

First order condition:

$$
u^{\prime}(c)=\beta \int v_{a}\left(a^{\prime}, y^{\prime}\right) Q\left(y, d y^{\prime}\right)
$$

Envelope condition:

$$
v_{a}(a, y)=R u^{\prime}(c)
$$

So we have the (stochastic) Euler equation:

$$
u^{\prime}(c(a, y))=\beta R \int u^{\prime}\left(c^{\prime}\left(a^{\prime}(a, y), y^{\prime}\right)\right) Q\left(y, d y^{\prime}\right)
$$

Or:

$$
u^{\prime}\left(c_{t}\right)=\beta R E_{t} u^{\prime}\left(c_{t+1}\right)
$$

