Lecture 11: Consumption-Savings Problem

Under Uncertainty

Economics 714, Fall 2014

1 Consumption-Savings Problem under Uncertainty

1.1 Basic Problem

$$\max_{\{c_t, a_{t+1}\}} E_0 \sum_{t=0}^{\infty} \beta^t u(c_t)$$

s.t. $c_t + a_{t+1} = Ra_t + y_t$

 a_0, y_0 given. Slight timing change from previously.

Constraints: $c_t \ge 0$, $a_t \ge \underline{a}$. Debt limit.

Income y stochastic: $y \in Y \subseteq \mathbb{R}_+$ compact, Borel σ -algebra \mathcal{Y} .

y follows Markov process w/transition function Q on (Y, \mathcal{Y}) .

Assume Q has **Feller property:** for $f: Y \to \mathbb{R}$ bounded, continuous then:

$$E[f(y')|y] = \int f(y')Q(y,dy')$$

is bounded and continuous

State space: assets $a \in A = [\underline{a}, \infty)$, Borel σ -algebra \mathcal{A} .

Joint state space $(a, y) \in X = A \times Y$ with Borel σ -algebra \mathcal{X}

Feasible correspondence:

$$\Gamma(x) = \{(c,a'): c+a' \le Ra+y, \ c \ge 0, \ a' \ge \underline{\mathbf{a}}\}$$

1.2 Sequence Problem

At each date $c_t: Y^t \to \mathbb{R}_+$, measurable (w.r.t \mathcal{Y}^t).

 $a_{t+1}: Y^t \to \mathbb{R}_+$, measurable (w.r.t \mathcal{Y}^t)

$$v^{*}(a_{0}, y_{0}) = \sup_{\{c_{t}(Y^{t}), a_{t+1}(Y^{t})\}} E_{0} \sum_{t=0}^{\infty} \beta^{t} u(c_{t})]$$

=
$$\sup_{\{c_{t}(Y^{t}), a_{t+1}(Y^{t})\}} \int \sum_{t=0}^{\infty} \beta^{t} u(c_{t}(Y^{t})) Q(y_{t}, dy_{t+1}) Q(y_{t-1}, dy_{t}) \cdots Q(y_{0}, dy_{1})$$

1.3 Bellman Equation

$$v(a,y) = \max_{(c,a')\in\Gamma(a,y)} \left\{ u(c) + \beta \int v(a',y')Q(y,dy') \right\}$$

Extensions of the previous results apply, principle of optimality is direct.

Define Bellman operator as before:

$$Tf(a,y) = \max_{(c,a')\in\Gamma(a,y)} \left\{ u(c) + \beta \int f(a',y')Q(y,dy') \right\}$$

Theorem: Under the assumptions here $T : C(X) \to C(X)$ is a contraction, and hence has a unique fixed point $v \in C(X)$ and for all $v_0 \in C(X)$:

$$||T^{n}v_{0} - v|| \le \beta^{n} ||v_{0} - v||$$

Moreover, the optimal policy correspondence:

$$G(x) = \{(c, a') \in \Gamma(a, y) : v(a, y) = u(c) + \beta \int v(a', y')Q(y, dy')\}$$

is compact-valued and uhc.

In addition, under our standing assumptions we have the stronger results.

Theorem: (i) v(a, y) is strictly increasing in a

(ii) v(a, y) is strictly concave in a and the optimal policy functions c(a, y) and a'(a, y) are continuous

(iii) If $(a_0, y_0) \in int(X)$ and $(c(a_0, y_0), a'(a_0, y_0)) \in int\Gamma(a_0, y_0)$ then v is continuously differentiable (in a) at (a_0, y_0) and:

$$v_a(a_0, y_0) = Ru'(c(a_0, y_0)) = Ru'(Ra + y - a'(a_0, y_0))$$

1.4 Euler Equations

If the constraints don't bind, we can proceed as before:

$$v(a,y) = \max_{(c,a')\in\Gamma(a,y)} \left\{ u(c) + \beta \int v(a',y')Q(y,dy') \right\}$$

First order condition:

$$u'(c) = \beta \int v_a(a', y')Q(y, dy')$$

Envelope condition:

$$v_a(a,y) = Ru'(c)$$

So we have the (stochastic) Euler equation:

$$u'(c(a,y)) = \beta R \int u'(c'(a'(a,y),y'))Q(y,dy')$$

Or:

$$u'(c_t) = \beta R E_t u'(c_{t+1})$$