Lecture 10: Consumption-Savings Problem

Optimal Growth

Economics 712, Fall 2014

1 Consumption-Savings Problem: Infinite Horizon

1.1 Basic Problem

$$\max_{\{c_t\}} \sum_{t=0}^{\infty} \beta^t u(c_t)$$

subject to:

$$x_{t+1} = R(x_t - c_t + y_t)$$

Can formulate in SLP terms, noting $c_t = x_t + y_t - x_{t+1}/R$.

Conditions easy to verify if u bounded, u' > 0, u'' < 0.

Write choice variable as savings s = x - c + y:

$$V(x) = \max_{s} \left\{ u(x+y-s) + \beta V(Rs) \right\}$$

First-order condition, s = g(x):

$$u'(x + y - q(x)) = \beta RV'(Rq(x))$$

Envelope condition:

$$V'(x) = u'(x + y - g(x))$$

Combine to get (functional) consumption Euler equation:

$$u'(x+y-g(x)) = \beta Ru'(Rg(x)+y-g(g(x)))$$

1.2 A Solvable Example

Set
$$u(c) = \frac{c^{1-\gamma}}{1-\gamma}, y = 0.$$

Guess
$$V(x) = \frac{A}{1-\gamma}x^{1-\gamma}$$

$$Ax^{1-\gamma} = \max_{s} \left\{ \frac{(x-s)^{1-\gamma}}{1-\gamma} + \beta A(Rs)^{1-\gamma} \right\}$$

Can verify that:

$$A = \left(1 - \beta^{\frac{1}{\gamma}} R^{\frac{1-\gamma}{\gamma}}\right)^{-\gamma}$$

$$s = kx = \beta^{\frac{1}{\gamma}} R^{\frac{1-\gamma}{\gamma}}$$

2 Review: Optimal Growth

Planner's problem: Neoclassical, Ramsey-Cass-Koopmans optimal growth model

$$\max_{\{c_t, k_{t+1}\}} \sum_{t=0}^{\infty} \beta^t U(c_t)$$

subject to:

$$c_t + k_{t+1} - (1 - \delta)k_t = F(k_t)$$

Bellman equation:

$$V(k) = \max_{c,k'} \left\{ u(c) + \beta V(k') \right\}$$

subject to

$$c + k' - (1 - \delta)k = F(k)$$

First order and envelope conditions:

$$0 = -U'(f(k) + (1 - \delta)k - k') + \beta V'(k')$$
$$V'(k) = U'((f(k) + (1 - \delta)k - k'))(F'(k) + 1 - \delta)$$

Combining gives the Euler equation:

$$U'(f(k) + (1 - \delta)k - k') = \beta U'((F(k') + (1 - \delta)k' - k''))(F'(k') + 1 - \delta)$$

Or reintroducing c as an (endogenous) variable gives the system:

$$U'(c) = \beta U'(c')(F'(k') + 1 - \delta)$$

$$F(k) = c + k' - (1 - \delta)k$$

Use to study qualitative dynamics