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Optimal Steady State

Look for a steady state of the optimal allocation.

U ′(c∗) = βU ′(c∗)[F ′(k∗) + 1− δ]

Or, defining that β = 1/(1 + θ):

F ′(k∗) = 1
β

+ δ − 1 = δ + θ

c∗ = F(k∗)− δk∗

The “golden rule” maximizes steady state consumption:

max
k

U (F(k)− δk)⇒ F ′(k#) = δ

The optimal steady state is only equal to the golden rule if
θ = 0. And since F ′′(k) < 0 we have:

F ′(k#) = δ < δ + θ = F ′(k∗), ⇒ k# > k∗
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An Example

Now work out a parametric example, using standard
functional forms. Cobb-Douglas production:

y = Akα

For preferences, set:

U (c) = c1−σ − 1
1− σ

For σ > 0. Interpret σ = 1 as U (c) = log c.
These imply the Euler equation:

c−σ
t = βc−σ

t+1[1 + αAkα−1
t+1 − δ] = βc−σ

t+1Rt+1

For these preferences σ gives the curvature and so governs
how the household trades off consumption over time.
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Intertemporal Elasticity of Substitution

Define intertemporal elasticity of substitution IES as:

IES =
d ct+1

ct

dRt+1

Rt+1
ct+1

ct

=
d log

(
ct+1

ct

)
d logRt+1

Then for these preferences we have:

c−σ
t = βc−σ

t+1Rt+1

⇒
(ct+1

ct

)σ

= βRt+1

⇒ ct+1
ct

= β
1
σ R

1
σ
t+1

⇒ log
(ct+1

ct

)
= 1

σ
log β + 1

σ
log(Rt+1)

⇒ IES = 1
σ
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Steady State in the Example

Recall the Euler equation:

c−σ
t = βc−σ

t+1[1 + αAkα−1
t+1 − δ]

Steady state:

F ′(k∗) = Aα(k∗)α−1 = δ + θ

⇒ k∗ =
(
αA
δ + θ

) 1
1−α

Then we get consumption:

c∗ = A(k∗)α − δk∗

= A
(
αA
δ + θ

) α
1−α

− δ
(
αA
δ + θ

) 1
1−α
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Comparative Statics

Steady state capital stock determined by:

F ′(k∗) = δ + θ

Consumption c∗ increasing in k∗ (since below golden rule
level).
If δ ↑, then k∗ ↓ so c∗ ↓ .
If TFP ↑ then k∗ ↑, so c∗ ↑.
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Qualitative Dynamics

We will analyze the joint dynamics of {ct , kt}. In any
period t, kt is given and ct is chosen optimally (as is kt+1).
The key equations of the model are:

U ′(ct) = βU ′(ct+1)[F ′(kt+1) + 1− δ]
kt+1 = (1− δ)kt + F(kt)− ct

We’ll use the first to determine the dynamics of c, the
second the dynamics of k.
In steady state, ∆ct+1 = ct+1 − ct = 0, and

F ′(k∗) = δ + θ

If k < k∗, then F ′(k) > F ′(k∗), so to satisfy Euler equation
we need U ′(ct+1) < U ′(ct) and so ct+1 > ct . Similarly if
k > k∗, ∆c < 0.
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Dynamics of Capital and Phase Diagram

A key equation of the model is:

kt+1 = (1− δ)kt + F(kt)− ct

In steady state, ∆kt+1 = kt+1 − kt = 0, and

c = F(k)− δk

If ct < F(kt)− δkt then it > δkt , so ∆kt+1 > 0. Similarly if
ct > F(kt)− δkt then ∆kt+1 < 0.
Putting together the dynamics of c with the dynamics of k
gives the phase diagram
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The Saddle Path

From the phase diagram we can see the dynamics of
{kt , ct} from any initial (k0, c0).
But given k0 the dynamics from an arbitrary c0 will not
converge to the steady state.
In general either ct or kt will go to zero. These are not part
of an optimal solution.
However given k0 there is a unique value of c0 such that the
economy converges to the steady state. This is the saddle
path.
The optimal solution will be on the saddle path, as c0 is a
function of k0 and will be chosen so that the economy is
stable and converges to the steady state.
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Comparative Dynamics

With the phase diagram, we can determine how an
exogenous change affects ct and kt both over time and in
the long run.
Suppose, for example, that households became less patient,
so θ increases and β falls. What would happen
immediately and in the long run?
Recall the dynamics:

∆c = 0 : F ′(k∗) = δ + θ

this curve shifts to the left, so steady state k∗ would fall
And for capital,

∆k = 0 : c = F(k)− δk

this curve is unaffected.
In the long run, kt and ct will fall. When the change in θ
happens ct will jump up to the new saddle path.
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Phase diagram: An increase in the discount rate (θ).  
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When households become more impatient, they increase
consumption, and save less. In the short run this leads to more
consumption. But in the long run, the lower investment will
lead to a reduction in capital and hence consumption.
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Improvement in Technology

If total factor productivity increases, we already have seen
that in steady state k∗ ↑, so c∗ ↑. But what happens along
the transition?
Recall the dynamics:

∆c = 0 : AF ′(k∗) = δ + θ

this curve shifts to the right
And for capital,

∆k = 0 : c = AF(k)− δk

this curve shifts up
In the long run (k∗, c∗) increase. But the effect in the short
run depends on the slope of the saddle path, which in turn
depends on how willing the household is to substitute over
time.
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Slope of the Saddle Path

If the household is relatively impatient (low β, high θ),
and is unwilling to substitute over time (low IES), then it
will want to smooth consumption over time and value early
periods highly. Then ct will increase and the economy will
slowly move to the steady state. c0 will increase.
If the household is relatively patient (high β, low θ), and
is willing to substitute over time (high IES), then it will
forgo current consumption, invest more, and get to the
steady state more quickly. c0 may fall.
In both cases, kt increases each period until it reaches the
steady state. In the long run ct increases, but in the
short-run it may increase or decrease.
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Phase diagram: An increase in total factor productivity (A), 
with a steep saddle path (high IES, low discount rate) 
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Solving the Model in a Special Case

There is one known case where we can work out an explicit
solution.
Set δ = 1 (full depreciation) use logarithmic utility,
Cobb-Douglas:

U (c) = log c, F(k) = Akα

Specialize the key equilibrium equations:

1
ct

=
βαAkα−1

t+1
ct+1

ct = Akα
t − kt+1
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Guess that the solution is a constant savings rate s:

ct = (1− s)yt

Substitute into conditions:

1
(1− s)Akα

t
=

βαAkα−1
t+1

(1− s)Akα
t+1

= βα

(1− s)kt+1

= βα

(1− s)sAkα
t

So s = βα, and ct = (1− βα)Akα
t .
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Implications

In this special case we have the explicit relationship
between (c, k), the optimal decision rule or the saddle path.
We then have the dynamics of kt :

kt+1 = sAkα
t

The steady state is a special case of what we had earlier
(δ = 1):

k∗ =
(
αA
1 + θ

) 1
1−α

So we can now trace out the dynamics explicitly. For
example, if A increases, ct increases on impact and grows
over time to the new steady state.
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