Lecture 1: Dynamics and the Role of Expectations

Economics 712, Fall 2014

Class focuses on DSGE models: dynamic, stochastic general equilibrium. We will build up to each of these elements.

Start without optimization, just focus on dynamics and add role of expectations.

1 The Muth (1961) Model

Demand:

$$
x_{t}^{d}=\alpha-\beta p_{t}
$$

Supply:

$$
x_{t}^{s}=\delta+\gamma p_{t}^{e}+u_{t}
$$

Equilibrium:

$$
p_{t}=\frac{\alpha-\delta}{\beta}-\frac{\gamma}{\beta} p_{t}^{e}-\frac{1}{\beta} u_{t}
$$

What determines p_{t}^{e} ?

1.1 Adaptive expectations

$$
p_{t}^{e}=p_{t-1}^{e}+\eta\left(p_{t-1}-p_{t-1}^{e}\right)
$$

Solve backward:

$$
p_{t}^{e}=\eta \sum_{j=0}^{\infty}(1-\eta)^{j} p_{t-1-j}
$$

Shocks propagated over time, any forecast error is permanent

1.2 Adaptive learning

Suppose agents believe prices are i.i.d.:

$$
p_{t}=\mu+\varepsilon_{t}
$$

with $E_{t-1} \varepsilon_{t}=0$. Then $p_{t}^{e}=\mu$, which implies:

$$
p_{t}=\frac{\alpha-\delta}{\beta}-\frac{\gamma}{\beta} \mu-\frac{1}{\beta} u_{t}
$$

So there is a temporary equilibrium where beliefs μ are mapped into outcomes consistent with the same from of beliefs (i.i.d. prices) but with different mean $T(\mu)$:

$$
T(\mu)=\frac{\alpha-\delta}{\beta}-\frac{\gamma}{\beta} \mu
$$

At a fixed point of the T beliefs are consistent with outcomes:

$$
\mu^{*}=T\left(\mu^{*}\right)=\frac{\alpha-\delta}{\beta}-\frac{\gamma}{\beta} \mu^{*}=\frac{\alpha-\delta}{\beta+\gamma}
$$

Models of adaptive learning assume that agents have subjective models with unknown parameters, update those parameters with observations. Estimate of μ based on data through $t-1$ is μ_{t}. Update as:

$$
\begin{aligned}
\mu_{t+1} & =\mu_{t}+\eta\left(p_{t}-\mu_{t}\right) \\
& =\mu_{t}+\eta\left(T\left(\mu_{t}\right)-\mu_{t}\right)-\eta \frac{1}{\beta} u_{t}
\end{aligned}
$$

Adjust beliefs toward $T(\mu)$. Learning literature studies when does $\mu_{t} \rightarrow \mu^{*}$.

1.3 Rational expectations

Subjective expectation is mathematical expectation conditioned on all all available information:

$$
p_{t}^{e}=E\left[p_{t} \mid p_{t-1}, p_{t-2}, \ldots\right] \equiv E_{t-1} p_{t}
$$

Implication:

$$
E_{t-1} p_{t}=\frac{\alpha-\delta}{\beta+\gamma}
$$

p_{t} is i.i.d.

2 Dynamics of Linear Difference Equations

2.1 Scalar example: Linear Solow Model

Output $Y_{t}=Y_{0}+A K_{t}$
Consumption: $C_{t}=(1-s) Y_{t}$
Capital accumulation: $K_{t+1}=(1-\delta) K_{t}+Y_{t}-C_{t}=(1-\delta+s A) K_{t}+s Y_{0} \equiv a K_{t}+b$
What happens to K_{t} (and C_{t}, Y_{t}) over time?
Recursive substitution:

$$
K_{t+1}=a K_{t}+b=a^{2} K_{t-1}+a b+b=\ldots=a^{t} K_{0}+\sum_{i=0}^{t} a^{i} b
$$

So if $|a|<1$ we have a steady state:

$$
\lim _{t \rightarrow \infty} K_{t}=\frac{b}{1-a}
$$

Phase diagram: plot K_{t+1} vs. K_{t}.

2.2 Vector example: Dornbusch (1976) exchange rate model

Aggregate demand: $y_{t}=\delta\left(e_{t}+p^{*}-p_{t}\right)-\sigma\left(r_{t}-p_{t+1}^{e}+p_{t}\right)$
Phillips curve: $p_{t+1}-p_{t}=\alpha\left(y_{t}-\bar{y}\right)$
Money demand: $m-p_{t}=\phi \bar{y}-\lambda r_{t}$
Interest parity: $r_{t}=r^{*}+e_{t+1}-e_{t}$

Combine equations, impose perfect foresight $p_{t+1}^{e}=p_{t+1}$. Gives system:

$$
\begin{aligned}
\lambda\left(e_{t+1}-e_{t}\right) & =\phi \bar{y}-\lambda r^{*}+p_{t}-m \\
(1-\alpha \sigma)\left(p_{t+1}-p_{t}\right) & =\alpha\left[\delta\left(e_{t}+p^{*}-p_{t}\right)-\bar{y}+\frac{\sigma}{\lambda}\left(\phi \bar{y}-m+p_{t}\right)\right]
\end{aligned}
$$

Steady state: $e_{t}=\bar{e}, p_{t}=\bar{p}$:

$$
\begin{aligned}
\bar{p} & =\lambda r^{*}+m-\phi y \\
\bar{e} & =\bar{p}-p^{*}+\frac{1}{\delta}\left(\bar{y}+\sigma r^{*}\right)
\end{aligned}
$$

Then re-write dynamics as deviations from steady state:

$$
\begin{aligned}
& e_{t+1}-\bar{e}=e_{t}-\bar{e}+\frac{1}{\lambda}\left(p_{t}-\bar{p}\right) \\
& p_{t+1}-\bar{p}=\frac{\delta \alpha}{1-\alpha \sigma}\left(e_{t}-\bar{e}\right)+\left[1-\frac{\alpha}{1-\alpha \sigma}(\delta+\sigma / \lambda)\left(p_{t}-\bar{p}\right)\right]
\end{aligned}
$$

Define vector $X_{t}=\left[e_{t}-\bar{e}, p_{t}-\bar{p}\right]^{\prime}$, so can write this as a vector difference equation $X_{t+1}=A X_{t}$. What happens to X_{t} over time?

Qualitatively, can construct phase diagram.

$$
\begin{aligned}
\Delta e_{t} & =e_{t+1}-e_{t}=\left(p_{t}-\bar{p}\right) \lambda \\
\Delta p_{t} & =\frac{\alpha}{1-\alpha \sigma}\left[\delta\left(e_{t}-\bar{e}\right)-(\delta+\sigma / \lambda)\left(p_{t}-\bar{p}\right)\right]
\end{aligned}
$$

Analyze regions where $\Delta e_{t}>0, \Delta e_{t}=0, \Delta e_{t}<0$, same for p_{t}.
Given p_{t}, there is a unique value of e_{t} such that the economy is stable. This mapping $e_{t}\left(p_{t}\right)$ defines the saddle path.

3 Forward Looking Model: Cagan Model with Ra-
 tional Expectations

$$
M_{t}^{d}=\exp \left(-\alpha \frac{E_{t} p_{t+1}-p_{t}}{p_{t}}\right)
$$

Take logs, rewrite:

$$
p_{t}=a E_{t} p_{t+1}+c m_{t}
$$

What happens to prices over time? Solve forward if $|a|<1$:

$$
p_{t}=c \sum_{j=0}^{\infty} a^{j} E_{t} m_{t+j}+\lim _{T \rightarrow \infty} a^{T} E_{t} p_{t+T}
$$

Example:

$$
m_{t+1}=\rho m_{t}+w_{t+1}
$$

Then:

$$
p_{t}=\frac{c}{1-a \rho} m_{t}
$$

Lucas critique and cross-equation restrictions

