Problem 1 (Production Functions)

(a) The isoquants for each of the three production functions are shown below:

- \(f(K, L) = K^2 L \)

- \(f(K, L) = K^{\frac{1}{3}} L^{\frac{1}{3}} \)

- \(f(K, L) = 2K + L \)
(b) The marginal productivity of capital, MP_K, tells us by how many units output would increase if capital input were increase by one unit (machine). (Mathematically, MP_K is the partial derivative of the production function; the larger the change in capital the further the approximation gets from actual changes in output.)

The marginal productivity of labor, MP_L, tells us how much additional output we get from increasing labor input by one unit (worker).

(c) Marginal productivity of capital with $L = 1$:

- MP_K when $f(K, L) = K^2L$:

$$MP_K = \frac{\partial f(K, L)}{\partial K} = 2KL \quad (MP_K \text{ is increasing in } K)$$

With $L = 1$, $MP_K = 2K$:

- MP_K when $f(K, L) = K^{\frac{1}{2}}L^{\frac{1}{2}}$:

$$MP_K = \frac{\partial f(K, L)}{\partial K} = \frac{1}{3}K^{-\frac{3}{2}}L^{\frac{3}{2}} \quad (MP_K \text{ is decreasing in } K)$$

With $L = 1$, $MP_K = \frac{1}{3}K^{-\frac{3}{2}}$.
• MP_K when $f(K, L) = 2K + L$:

$$MP_K = \frac{\partial f(K, L)}{\partial K} = 2 \quad (MP_K \text{ is constant in } K)$$

With $\overline{L} = 1$, $MP_K = 2$:

(d) Marginal productivity of labor with $\overline{K} = 2$:

• MP_L when $f(K, L) = K^2L$:

$$MP_L = \frac{\partial f(K, L)}{\partial L} = K^2 \quad (MP_L \text{ is constant in } L)$$

With $\overline{K} = 2$, $MP_L = 4$:
• \(MP_L \) when \(f(K, L) = K^{\frac{1}{3}} L^{\frac{1}{3}} \):

\[
MP_L = \frac{\partial f(K, L)}{\partial L} = \frac{1}{3} K^{\frac{1}{3}} L^{-\frac{2}{3}} \quad (MP_L \text{ is decreasing in } L)
\]

With \(K = 2 \), \(MP_L = \frac{1}{3} 2^{\frac{1}{3}} L^{-\frac{2}{3}} \):

\[
MP_L(2, L) = \frac{1}{3} 2^{\frac{1}{3}} L^{-\frac{2}{3}}
\]

• \(MP_L \) when \(f(K, L) = 2K + L \):

\[
MP_L = \frac{\partial f(K, L)}{\partial L} = 1 \quad (MP_L \text{ is constant in } L)
\]

With \(K = 2 \), \(MP_L = 1 \):

\[
MP_L(2, L) = 1
\]

(e) Returns to scale:

• Constant Returns to Scale (CRS), \(f(\lambda K, \lambda L) = \lambda f(K, L) \): The means that doubling all inputs leads to a doubling of output (or tripling inputs triples outputs, etc.) An example might be pastry making at a bakery, where twice as much of all inputs (\(L \): pastry chefs, \(K \): countertops, ovens, and butter, flour, eggs, etc.) leads to twice as much output (the pastries). Also, the Varian textbook mentions data centers: A thousand times as many data centers (inputs) leads to a thousand times as many webpages served (output).
• Decreasing Returns to Scale (DRS), \(f(\lambda K, \lambda L) < \lambda f(K, L) \): A doubling of inputs results in \emph{less than} double the output. As the Varian text notes, DRS is usually a short-run phenomenon where in fact there is some other input that \emph{is} held fixed (otherwise a firm could at least replicate a process and achieve CRS). For instance, in farming, a doubling of capital equipment and labor does not lead to a doubling of output so in that case we’d say there is DRS, but this is really because one of the inputs—land—might actually be fixed.

• Increasing Returns to Scale (IRS), \(f(\lambda K, \lambda L) > \lambda f(K, L) \): A doubling of inputs results in \emph{more than} a doubling of output. Again, here Varian gives a nice example: An oil pipeline. “If we double the diameter of a pipe, we use twice as much materials, but the cross section of the pipe goes up by a factor of 4. Thus we will likely be able to pump more than twice as much oil through it [up to a certain point].”

(f) Let’s see whether our three production functions exhibit CRS, DRS, or IRS for \(\lambda > 1 \):

• \(f(K, L) = K^2L \):
 \[
 f(\lambda K, \lambda L) = (\lambda K)^2\lambda L = \lambda^3 f(K, L) > \lambda f(K, L) \implies IRS
 \]

• \(f(K, L) = K^{\frac{1}{3}}L^{\frac{1}{3}} \):
 \[
 f(\lambda K, \lambda L) = (\lambda K)^{\frac{1}{3}}(\lambda L)^{\frac{1}{3}} = \lambda^{\frac{1}{3}+\frac{1}{3}}K^{\frac{1}{3}}L^{\frac{1}{3}} = \lambda^{\frac{2}{3}} f(K, L) < \lambda f(K, L) \implies DRS
 \]

• \(f(K, L) = 2K + L \):
 \[
 f(\lambda K, \lambda L) = 2(\lambda K) + \lambda L = \lambda(2K + L) = \lambda f(K, L) \implies CRS
 \]
Problem 2 (Profit Maximization in the Short Run)

(a) The profit of GMC is total revenue \((p \cdot f(K, L))\) minus cost \((w_L L)\):

\[
\pi = p \cdot f(K, L) - w_L \cdot L \quad \text{and} \quad K = 16 \quad \Rightarrow \quad \pi = 8pL^{\frac{1}{2}} - w_L L.
\]

Since capital is fixed, we are in the short run and costs include only the variable costs \(w_L L\).

(b) Total revenue, \(p \cdot f(K, L)\), and labor cost, \(w_L L\), are shown below for \(p = 1\) and \(w_L = 2\):

\[
\begin{align*}
\text{TC} &= w_L L \\
\text{TR} &= p \cdot f(K, L) \\
\pi &= \text{TR} - \text{TC}
\end{align*}
\]

(c) A well-behaved function \(\pi(x)\) is flat at the point at which it attains a local maximum (increasing to the left, flat, then decreasing to the right). Since the derivative is zero when \(\pi(x)\) is flat, finding the \(x\) at which \(\pi'(x) = 0\) tells us where a local maximum is. This is what we call the first-order condition. (We can assume for the profit functions we’ll be working with that there is only one local maximum and that it is the global maximum.) Warning: A function is also flat where it attains a minimum, therefore we should check whether actually our \(x\) is not minimizing the value of the function (this is the second-order condition: \(\pi''(x) > 0\) means it’s a minimum, \(\pi''(x) < 0\) means it’s a maximum). This won’t be an issue in our application to maximization of profit function though.

(d) Setting the derivative of the profit function to zero we have

\[
\frac{\partial \pi}{\partial L} = 0 \quad \Rightarrow \quad p \cdot \frac{\partial f(K, L)}{\partial L} - w_L = 0 \quad \Rightarrow \quad MP_L = \frac{w_L}{p}.
\]

Alternatively, we can see this using the production function \(f(K, L) = 8L^{\frac{1}{2}}\) for \(K = 16\). We then have \(\pi = 8pL^{\frac{1}{2}} - w_L L\), so

\[
\frac{\partial \pi}{\partial L} = \frac{1}{2} 8pL^{-\frac{1}{2}} - w_L.
\]
and setting this equal to zero (our first order condition), we get
\[
\frac{\partial \pi}{\partial L} = 0 \implies \frac{1}{2} 8pL^{-\frac{1}{2}} - w_L = 0 \implies 4L^{-\frac{1}{2}} = \frac{w_L}{p}.
\]
(1)

Since the marginal product of labor is \(MP_L = \frac{\partial f(K,L)}{\partial L} = 4L^{-\frac{1}{2}}\), in equation (1) we in fact found the condition that \(MP_L = \frac{w_L}{p}\).

The intuition is that a firm should hire as long as marginal benefits (additions to output \(MP_L\)) are greater than the marginal costs of doing so (real wage \(\frac{w_L}{p}\)), up to the point where additional benefits and costs are exactly equal (\(MP_L = \frac{w_L}{p}\)). Past this point, a firm shouldn’t hire any more labor since \(MP_L < \frac{w_L}{p}\) (since \(MP_L\) is always decreasing).

(e) To find the optimal level of labor, we can use the condition we found in part (d) in equation (1): \(MP_L = \frac{w_L}{p}\) or \(4L^{-\frac{1}{2}} = \frac{w_L}{p}\). Solving for \(L\) we get the labor demand curve:

\[
L^D = \left(\frac{4p}{w_L} \right)^2
\]

- For \(p = 1, w_L = 8\), we have \(L^* = \left(\frac{4}{8} \right)^2 = \frac{1}{4}\)
- For \(p = 1, w_L = 4\), we have \(L^* = \left(\frac{4}{4} \right)^2 = 1\)
- For \(p = 1, w_L = 2\), we have \(L^* = \left(\frac{4}{2} \right)^2 = 4\)

These points are shown in the graph below:
We know from part (a) what profit is associated with any p, w_L, and L^*: $\pi = 8pL^{\frac{1}{2}} - w_LL$, so we have:

- For $p = 1$, $w_L = 8$, $L^* = \frac{1}{4}$, we have $\pi = 8(1)(\frac{1}{4})^{\frac{1}{2}} - (8)(\frac{1}{4}) = 2$
- For $p = 1$, $w_L = 4$, $L^* = 1$, we have $\pi = 8(1)(1)^{\frac{1}{2}} - (4)(1) = 4$
- For $p = 1$, $w_L = 2$, $L^* = 4$, we have $\pi = 8(1)(4)^{\frac{1}{2}} - (2)(4) = 8$

Problem 3 (Labor Market)

(a) Kate’s (perfectly inelastic) labor supply, $L^S = 12$ is shown below:

(b) We had that labor demand was given by $L^D = \left(\frac{4p}{w_L}\right)^2$. We get the equilibrium wage rate by equating $L^S = L^D$ and solving for $\frac{w_L}{p}$.

$$L^S = L^D \implies 12 = \left(\frac{4p}{w_L}\right)^2 \implies \frac{w_L}{p} = \left(\frac{4}{3}\right)^{\frac{1}{2}} \approx 1.15$$
(c) At a hypothetical wage above what we found in part (b), the hours of labor demanded is less than the supply at that wage of \(L^S = 12 \). This excess supply is unemployment. Since there is willingness to work at lower wages, the wage offered would fall, bringing the excess supply (unemployment) to zero. (Same is true at a point below the equilibrium wage we found: There would be excess demand, so to attract more workers the wages would be bid up to the point where there is no excess demand.)

(d) Now with \(L^S = 12 \), equating \(L^S = L^D \) and solving for \(\frac{w_L}{p} \) we get:

\[
L^S = L^D \quad \Rightarrow \quad 8 = \left(\frac{4p}{w_L} \right)^2 \quad \Rightarrow \quad \frac{w_L}{p} = 2^{\frac{1}{2}} \approx 1.41
\]

(e) At this price floor of \(\frac{w_L}{p} = 2 \), we have that \(L^S = 8 \) (unchanged) but now \(L^D = \left(\frac{4p}{w_L} \right)^2 = (4 \frac{1}{2})^2 = 4 \). The unemployment rate is now \(\frac{L^S - L^D}{L^S} = \frac{8 - 4}{8} = .5 \) or 50% unemployment. (The unemployment rate was previously zero: \(\frac{L^S - L^D}{L^S} = 0 \) since in the market we have \(L^S = L^D = 8 \).
Problem 4 (The Long Run)

(a) To determine the returns to scale, we must compare \(f(\lambda K, \lambda L) \) to \(\lambda f(K, L) \) for any number \(\lambda > 1 \):

\[
f(\lambda K, \lambda L) = (\lambda K)^{\frac{1}{3}}(\lambda L)^{\frac{1}{3}} = \lambda^{\frac{2}{3}} f(K, L) < \lambda f(K, L) \implies DRS
\]

So since \(f(\lambda K, \lambda L) < \lambda f(K, L) \), this function exhibits decreasing returns to scale.

(b) The profit function in terms of \(K \) and \(L \) is given by:

\[
\pi = p \cdot f(K, L) - (w_L \cdot L + w_K \cdot K).
\]

With \(p = 1 \), \(w_K = 2 \), and \(w_L = 1 \),

\[
\pi = f(K, L) - (L + 2K).
\]

(c) First, we’ll find the optimal combination of inputs \(K \) and \(L \). From our profit function above, setting the partial derivatives with respect to \(K \) and \(L \), we get secrets of happiness

\[
MP_K = \frac{w_K}{p} \quad \text{and} \quad MP_L = \frac{w_L}{p}
\]

and substituting in the marginal productivities of capital and labor as well as prices, this is equivalent to

\[
\frac{1}{3}K^{-\frac{2}{3}}L^{\frac{1}{3}} = 2 \quad \text{and} \quad \frac{1}{3}K^{\frac{1}{3}}L^{-\frac{2}{3}} = 1.
\] \hspace{1cm} (2)

Dividing the first equation by the second, we get

\[
\frac{\frac{1}{3}K^{-\frac{2}{3}}L^{\frac{1}{3}}}{\frac{1}{3}K^{\frac{1}{3}}L^{-\frac{2}{3}}} = \frac{2}{1} \implies \frac{L}{K} = 2 \implies L = 2K.
\]
so we will be using K and L such that $L = 2K$.

Plugging $L = 2K$ into the first equation in (2), we have

$$\frac{1}{3} K^{-\frac{2}{3}} (2K)^{\frac{1}{3}} = 2 \implies K = \left(3 \times 2^\frac{2}{3}\right)^{-3} = \frac{1}{108}$$

and so

$$L = 2K \implies L = 2 \times \frac{1}{108} = \frac{1}{54}.$$

Given these two values, the optimal level of output is

$$y = f(K, L) = \left(\frac{1}{108}\right)^{\frac{1}{3}} \left(\frac{1}{54}\right)^{\frac{1}{3}} = \frac{1}{18}.$$

and the profit associated with this level of output and the prices given is

$$\pi = p \cdot f(K, L) - (w_L \cdot L + w_K \cdot K) = 1 \cdot \frac{1}{18} - (2 \cdot \frac{1}{108} + 1 \cdot \frac{1}{54}) = \frac{1}{54}.$$

(d) The condition for cost minimization is

$$TRS = -\frac{w_K}{w_L}$$

Since for the technical rate of substitution TRS we have

$$TRS = -\frac{MP_K}{MP_L} = -\frac{\frac{1}{3} K^{-\frac{2}{3}} L^{\frac{1}{3}}}{\frac{1}{3} K^{\frac{1}{3}} L^{-\frac{2}{3}}} = -\frac{L}{K} = -\frac{1/54}{1/108} = -2$$

and

$$-\frac{w_K}{w_L} = -\frac{2}{1} = -2$$

we indeed are satisfied the cost minimization condition $TRS = -\frac{w_K}{w_L}$.