Econ 301

Intermediate Microeconomics

Prof. Marek Weretka

Solutions to problem set 9
(due Thursday, April 19th, before class)

Problem 1 (Cost curves)

a) Decreasing - the exponent in the cost function is greater than one.
b) Total cost function is

$$
T C(y)=4 y^{2}+4
$$

hence $T C(1)=8, T C(2)=20$ and $T C(4)=68$. 68
c) The average fixed cost as a function of y is given by

$$
A F C(y)=\frac{4}{y}
$$

and hence $A F C(1)=4, A F C(2)=2$ and $A F C(4)=1$. It becomes zero as y gets larger (with large production the constant fixed cost per unit becomes negligible) and it goes to infinity as y approaches zero.

d) The average cost function is linear and is given by y

$$
A V C(y)=4 y
$$

and hence $A V C(1)=4, A V C(2)=8$ and $A V C(4)=16$
e) Average total cost is given by

$$
A T C=A V C+A F C=4 y+\frac{4}{y}
$$

and hence $A T C(1)=8, A T C(2)=10$ and $A V C(4)=17$. On the graph is a vertical sum of the two curves. For $y=1,2$ and 4 For small production, the average variable cost is negligible and hence $A T C$ is dominated by $A F C$. When production is large, then it is $A V C$ that dominates.
f) Function $A T C$

$$
A T C=\frac{4}{y}+4 y
$$

attains minimum for

$$
y^{M E S}=1 \text { and } A T C^{M E S}=8
$$

g) Marginal cost curve is.

e) Let y^{*} be a production level for which $A T C$ and $M C$ cross. We will argue that $y^{*}=y^{M E S}$ and hence the two lines cross where $A T C$ attains minimum. For all $y<y^{*}$ marginal cost is below the average one. Therefore by increasing production we add a unit that is cheaper to produce than the average cost - hence the average goes down. This implies that for all such $y<y^{*} A T C$ is downwar slopping. By similar argument for all $y>y^{*} A T C$ function is increasing. Consequently at $y^{*} A T C$ attains minimum and hence $y^{*}=y^{M E S}$.
f) The functions are

$$
y^{M E S}=\frac{1}{2} \sqrt{F}, A T C^{M E S}=4 \sqrt{F}
$$

(I took a derivative of $A T C$ with respect to y and equalized it to zero, and solved for y but I kept F as a parameter)

Problem 2 (Supply curve of GMC)

a) Condition $p=M C$ gives

$$
y=\frac{1}{8} p
$$

For $y(4)=\frac{1}{2}$ we have negative profit hence $y=0$, for $p=8$, production is $y=1$ and profit is zero and finally for $p=16$ production is $y=2$ and is associated with strictly positive profit.
b) Supply function is given by

$$
y(p)=\left\{\begin{array}{lr}
0 & \text { for } p<8 \\
\frac{1}{8} p & \text { for } p \geq 8
\end{array}\right\}
$$

c) Plot your supply function in the graph, adding the $A T C$ function.

d) Only the "reservation price" at which firms shuts down the production changes $A T C^{M E S}=4 \sqrt{F}=4$

$$
y(p)=\left\{\begin{array}{lr}
0 & \text { for } p<4 \\
\frac{1}{8} p & \text { for } p \geq 4
\end{array}\right\}
$$

hence the new supply function has the same slope.
Problem 3 (Equilibrium with N firms)
a) The aggregate supply with three symmetric firms is

$$
y(p)=\left\{\begin{array}{cl}
0 & \text { for } p<4 \\
3 \frac{1}{8} p & \text { for } p \geq 4
\end{array}\right\}
$$

b) Price is determined from the market clearing condition

$$
S(p)=D(p)
$$

which gives

$$
3 \times \frac{1}{8} p=S(p)=D(p)=8-\frac{1}{8} p
$$

therefore equilibrium price is

$$
p=16
$$

the level of production is

$$
y=2 \text { and } S(16)=8
$$

and the individual profit is

$$
\pi=16 \times 2-16-4=12>0
$$

c) Maximally it will pay $\$ 12$

Problem 4 (Free entry and market structure)

a) The price in equilibrium with entry is equal to $A T C^{M E S}=4 \sqrt{F}$ and the level of individual production is $y^{M E S}=\frac{1}{2} \sqrt{F}$. The number of firms can be determined from the market clearing conditon

$$
\begin{aligned}
S(p) & =D(p) \\
N \times \frac{1}{2} \sqrt{F} & =8-\frac{1}{8} 4 \sqrt{F}
\end{aligned}
$$

hence

$$
N=\frac{16}{\sqrt{F}}-1
$$

therefore

$$
N=\frac{16}{\sqrt{4}}-1=7
$$

b) The numbers of firms are

F	64	16	4	$\frac{1}{4}$	$\frac{1}{16}$
N	1	3	7	31	63

c) Market structuers are

Monopoly $F=64$
Oligopoly $F=16, F=4$
Perfect competition $F=\frac{1}{4}, F=\frac{1}{16}$

