Econ 301

Intermediate Microeconomics

Prof. Marek Weretka
Problem set 8
(due Tuesday March 27 th, before class)

Problem 1 (Cost functions)

Consider the following production functions:

$$
\begin{aligned}
& F(K, L)=K^{2} L^{2} \\
& F(K, L)=K^{\frac{1}{3}} L^{\frac{2}{3}} \\
& F(K, L)=K^{\frac{1}{4}} L^{\frac{1}{4}}
\end{aligned}
$$

a) what are the returns to scale for each function (use formal argument with λ)?

Let $w_{L}=w_{K}=1$
b) Find the cost functions for each of the production functions.
c) Plot the cost function on the same graph with y on the horizontal axis and cost on the vertical one.
d) Find and plot the average and marginal cost functions with y on the horizontal axis and average cost on the vertical one.

Problem 2 (Perfect complements)

Consider the following production functions:

$$
\begin{aligned}
& F(K, L)=\min (K, L) \\
& F(K, L)=[\min (K, L)]^{2} \\
& F(K, L)=\sqrt{\min (K, L)}
\end{aligned}
$$

a) what are the returns to scale for each function (use formal argument with λ)?

Let $w_{L}=w_{K}=1$
b) Find the cost functions for each of the production functions.
c) Plot the cost function on the same graph with y on the horizontal axis and cost on the vertical one.
d) Find and plot the average and marginal cost functions with y on the horizontal axis and average cost on the vertical one.

Problem 3 (Perfect substitutes)

Consider the following production functions:

$$
\begin{aligned}
& F(K, L)=K+0.5 L \\
& F(K, L)=[K+0.5 L]^{2} \\
& F(K, L)=\sqrt{K+0.5 L}
\end{aligned}
$$

a) what are the returns to scale for each function (use formal argument with λ)

Let $w_{L}=w_{K}=1$
b) Find the cost functions for each of the production functions.
c) Plot the cost function on the same graph with y on the horizontal axis and cost on the vertical one.
d) Find and plot the average and marginal cost functions with y on the horizontal axis and average cost on the vertical one.

