Econ 301
Intermediate Microeconomics
Prof. Marek Weretka

Solutions to problem set 4

(due Tuesday, February 16th, before class)

Problem 1

The magic formula for Cobb Douglass demands is

$$
x_{1}=\frac{a}{a+b} \frac{m}{p_{1}}=\frac{4}{5} \frac{m}{p_{1}} \text { and } x_{2}=\frac{b}{a+b} \frac{m}{p_{2}}=\frac{1}{5} \frac{m}{p_{2}}
$$

a)
$\operatorname{START}\left(p_{1}=10, p_{2}=1, m=100\right)$

$$
x_{1}=\frac{4}{5} \frac{m}{p_{1}}=8 \text { and } x_{2}=\frac{1}{5} \frac{m}{p_{2}}=\frac{1}{5} \frac{100}{1}=20
$$

$\operatorname{END}\left(p_{1}=5, p_{2}=1, m=100\right)$

$$
x_{1}=\frac{4}{5} \frac{m}{p_{1}}=\frac{4}{5} \frac{100}{5}=16 \text { and } x_{2}=\frac{1}{5} \frac{m}{p_{1}}=\frac{1}{5} \frac{100}{1}=20
$$

Change in consumption of x_{1}

$$
\Delta x_{1}=16-8=8
$$

b) they are ordinary goods as the demand goes up after price drop (downwarslopping demand)
c) Auxiliary income

$$
m^{\prime}=5 \times 8+1 \times 20=60
$$

and hence the optimal demand with income $m^{\prime}=60$ and new prices is

$$
x_{1}=\frac{4}{5} \frac{m^{\prime}}{p_{1}}=\frac{48}{5}=9 \frac{3}{5}
$$

This implies that substitution effect is

$$
S E=9 \frac{3}{5}-8=1 \frac{3}{5}
$$

d) Income effect is "the rest" of the change

$$
I E=\Delta x_{1}-S E=8-1 \frac{3}{5}=6 \frac{2}{5}
$$

e) Income effect is positive. This is because with Cobb-Douglass preferences goods are normal.
f)

Problem 2

Remark: in the solutions I will use proportion 1 milk to 5 strawberries (we will accept also also 5 strawberries to 1 milk as in PS4)
a) Two secrets of happiness (for perfect complements!) are

$$
\begin{aligned}
x_{1} & =\frac{1}{5} x_{2} \\
p_{1} x_{1}+p_{2} x_{2} & =m
\end{aligned}
$$

hence

$$
x_{1}=\frac{m}{p_{1}+5 p_{2}} \text { and } x_{2}=5 \frac{m}{p_{1}+5 p_{2}}
$$

$\operatorname{START}\left(p_{1}=15, p_{2}=1, m=200\right)$

$$
x_{1}=\frac{200}{15+5 \times 1}=10 \text { and } x_{2}=\frac{5 \times 200}{15+5 \times 1}=50
$$

$\operatorname{END}\left(p_{1}=5, p_{2}=1, m=200\right)$

$$
x_{1}=\frac{200}{5+5 \times 1}=20 \text { and } x_{2}=\frac{5 \times 200}{5+5 \times 1}=100
$$

Change in consumption of x_{1}

$$
\Delta x_{1}=20-10=10
$$

b) Substitution effect is zero $S E=0$. (with perfect complements substitution effect is always zero
c) Income effect is equal to total change $I E=\Delta x_{1}=10$.

Problem 3
a)

$$
M R S=\frac{\frac{\partial u}{\partial x_{1}}}{\frac{\partial u}{\partial x_{2}}}=\frac{5}{x_{1}}
$$

Two secret of happiness are, $M R S=\frac{p_{1}}{p_{2}}$ and $p_{1} x_{1}+p_{2} x_{2}=m$.
b) assuming interior solution we can use two secret of happiness to get the optimal solution directly:

$$
\begin{align*}
\frac{5}{x_{1}} & =P_{1} \tag{1}\\
p_{1} x_{1}+x_{2} & =10 \tag{2}
\end{align*}
$$

So optimal consumption $x_{1}^{*}=\frac{5}{p_{1}}$ and $x_{2}^{*}=5$
c) First when $p_{1}=5$ we have $x_{1}^{*}=1$ and $x_{2}^{*}=5$. When $p_{1}=1$ we have $x_{1}^{\prime \prime *}=5$ and $x_{2}^{\prime \prime *}=5$.

To find the substitution effect we need to find the income level, m^{\prime}, such that the original (when $p_{1}=5$) optimal bundle is just affordable under the new prices.
So we have $m^{\prime}=1 * 1+1 * 5=5$, under this income and the new prices level we can conclude that the optimal consumption $x_{1}^{\prime *}=5$. (since this is affordable when $m^{\prime}=5$ and $p_{1}=1$ so it is indeed our optimal choice).
Now we have all we need to find substitution effect,

$$
S . E=x_{1}^{\prime *}-x_{1}^{*}=5-1=4
$$

d) $I . E=x_{1}^{\prime * *}-x_{1}^{\prime *}=0$ (this is generaly the case with quasilinear utilities that income effect is zer

Problem 4

a) Let x_{1} be the consumption of apples and x_{2} be the consumption of oranges. Then we have budget constraint: $2 x_{1}+2 x_{2} \leq 2 * 20+2 * 20=80$

b) $M R S=-\frac{x_{2}}{x_{1}}$ so at the endowment point we have $M R S=-1$. Utility at the endowment point is given by $u(20,20)=400$. Thus the bundles that are infdifferent and hence give the same value of utility are given by $u\left(x_{1}, x_{2}\right)=400=x_{2} x_{1}$ which implies that $x_{2}=400 / x_{1}$
c) Since we have Cobb-Douglas utility function, $u\left(x_{1}, x_{2}\right)=x_{1} x_{2}$, so the optimal consumptions are:

$$
x_{1}=\frac{1}{2} \frac{m}{p_{1}}, x_{2}=\frac{1}{2} \frac{m}{p_{2}}
$$

To find optimal consumption we just need to know prices and income.
Given $P_{2}=2$,

1. i when $P_{1}=1$ we have $m=20+40=60$ so $x_{1}^{*}=\frac{1}{2} \frac{60}{1}=30$ and $x_{2}^{*}=\frac{1}{2} \frac{60}{2}=15$.
ii when $P_{1}=2$ we have $m=40+40=80$ so $x_{1}^{*}=\frac{1}{2} \frac{80}{2}=20$ and $x_{2}^{*}=\frac{1}{2} \frac{80}{2}=20$.
iii when $P_{1}=3$ we have $m=60+40=100$ so $x_{1}^{*}=\frac{1}{2} \frac{100}{3}=\frac{50}{3}$ and $x_{2}^{*}=\frac{1}{2} \frac{100}{2}=25$.
d) In case (i) Dave is buying apples because net demand of apple $=30-20=10$ (his $|M R S|$ at endowment is greater than price ratio). In (ii) he is neither because $\mathrm{ND}=20-20=0$ (his $|M R S|$ at endowment is equal to price ratio). In (iii) he is selling apples brave $\mathrm{ND}=\frac{50}{3}-20=-\frac{10}{3}$ (his $|M R S|$ at endowment is smaller than price ratio).

Problem 5

The variables in the problem are

$$
x_{1}=R, x_{2}=C, p_{1}=w, p_{2}=p_{c}, m=24 w
$$

a) real wage is
b)

c) Given utility function $a=b=1$ and the magic formula for $R\left(=x_{1}\right)$ is given by

$$
R=\frac{1}{2} \frac{m}{w}=\frac{1}{2} \frac{24 w}{w}=12
$$

and for bananas

$$
C=\frac{1}{2} \frac{24 w}{p_{c}}=\frac{1}{2} \frac{24 \times 100}{5}=240
$$

and the labor supply is

$$
L S=24-R=12
$$

d) with $w=200$ the leisure and labor supply is still $R=12$ and $L S=12$ and consumption of bananas is $C=480$. The labor supply does not change because the substitution effect (higher wage encourages to work more and buy more commodities) is offset by income effect that makes leisure more attractive.

