Econ 301
Intermediate Microeconomics
Prof. Marek Weretka

Solutions to problem set 3

(due Thursday, February 12th, before class)

Problem 1

For Cobb-Douglass utility functions $u\left(x_{1}, x_{2}\right)=x_{1}^{a} x_{2}^{b}$, fraction of income spent on $x_{1}: \frac{a}{a+b}$ and on x_{2} : $\frac{b}{a+b}$. Cash spent on $x_{1}: \frac{a}{a+b} m$ and on $x_{2}: \frac{b}{a+b} m$, Optimal quantities $x_{1}=\frac{a}{a+b} \frac{m}{p_{1}}$ and $x_{2}=\frac{b}{a+b} \frac{m}{p_{2}}$ and $M R S=-\frac{a x_{2}}{b x_{1}}$
a) Given $a=4, b=8, p_{1}=5, p_{2}=10$ and $m=60$ we have: 1$) \frac{b}{a+b}=\frac{8}{12}=\frac{2}{3}=66 \%$ 2) $\frac{2}{3} \times 60 \$=40$ 3) $x_{1}=\frac{1}{3} \frac{60}{5}=44$) the optimal bundle is $x_{1}=4, x_{2}=\frac{2}{3} \frac{60}{10}=4$ and the slope of the indifference curve at this bundle is $M R S=-\frac{4}{8} \frac{4}{4}=-\frac{1}{2}$.
b) Given $a=\frac{1}{3}, b=\frac{1}{3}, p_{1}=4, p_{2}=1$ and $m=12$ we have: 1) $\left.\frac{b}{a+b}=\frac{1}{2}=50 \% 2\right) \frac{1}{2} \times 12 \$=63$) $x_{1}=\frac{1}{2} \frac{12}{4}=1 \frac{1}{2} 4$) the optimal bundle is $x_{1}=\frac{3}{2}, x_{2}=6$ and the slope of the indifference curve at this bundle is $M R S=-\frac{1 / 3}{1 / 3} \frac{6}{3 / 2}=-4$.
c) Given $a=\frac{1}{2}, b=\frac{3}{2}, p_{1}=5, p_{2}=1$ and $m=20$ we have: 1) $\left.\frac{b}{a+b}=\frac{3}{4}=75 \% 2\right) \frac{3}{4} \times 20 \$=153$) $x_{1}=\frac{1}{4} \frac{20}{5}=14$) the optimal bundle is $x_{1}=1, x_{2}=15$ and the slope of the indifference curve at this bundle is $M R S=-\frac{1}{3} \frac{15}{1}=-5$.

Problem 2
a) Marginal rate of substitution is given by

$$
M R S=-\frac{M U_{1}}{M U_{2}}=-\frac{1 / x_{1}}{1 / x_{2}}=-\frac{x_{2}}{x_{1}}
$$

Two secrets of happiness for well-behaved preferences are

$$
p_{1} x_{1}+p_{2} x_{2}=m
$$

and

$$
M R S=-\frac{x_{2}}{x_{1}}=-\frac{p_{1}}{p_{2}}
$$

From the second condition, $x_{2}=\frac{p_{1}}{p_{2}} x_{1}$, which plugged in the budget constraint gives

$$
p_{1} x_{1}+p_{2} \frac{p_{1}}{p_{2}} x_{1}=m
$$

which in turn implies that

$$
2 p_{1} x_{1}=m
$$

and hence

$$
x_{1}=\frac{1}{2} \frac{m}{p_{1}}
$$

and

$$
x_{2}=\frac{p_{1}}{p_{2}} \frac{1}{2} \frac{m}{p_{1}}=\frac{1}{2} \frac{m}{p_{2}}
$$

Note that the two formulas coincide with our magic formulas for $a=b=1$.
b) For $p_{2}=1$ and $m=10$ the optimal consumption of $x_{2}=5$ regardless of p_{1}. Therefore the price offer curve will be constant (flat line) at the level of 5 . Formula for the price offer curve is $x_{2}=5$ and for demand

c) Demand for x_{1} is decreasing in p_{1} and hence this is an ordinary good.
d) Given $p_{1}=p_{2}=1$ the optimal choices (defining Engel curves) are given by $x_{1}=\frac{1}{2} m, x_{2}=\frac{1}{2} m$..From the first condition $m=2 x_{1}$ which plugging in the second condition gives the income offer curve $x_{2}=x_{1}$.

e) Since optimal cholce x_{1} does not depend on p_{2} and x_{2} does not depend on p_{1}, the two goods are neither complements nor substitutes.

Problem 3 Utility $U(x 1, x 2)=\min (2 \times 1, x 2)$
a) Two secrets of happiness for well-behaved preferences are

$$
p_{1} x_{1}+p_{2} x_{2}=m
$$

and optimal proportion condition

$$
x_{2}=2 x_{1}
$$

Plugging the second condition in budget constraint gives

$$
p_{1} x_{1}+2 p_{2} x_{1}=m
$$

which in turn implies that

$$
x_{1}\left(p_{1}+2 p_{2}\right)=m
$$

and hence

$$
x_{1}=\frac{m}{p_{1}+2 p_{2}}
$$

and

$$
x_{2}=\frac{2 m}{p_{1}+2 p_{2}}
$$

b) For $p_{2}=1$ and $m=10$ the optimal choices

$$
x_{1}=\frac{10}{p_{1}+2}
$$

which defines a demand for x_{1} and

$$
x_{2}=\frac{20}{p_{1}+2}
$$

Price offer curve will be located on the optimal proportion line $x_{2}=2 x_{1}$

c) Demand for x_{1} is decreasing in p_{1} and hence this is an ordinary good. 5
d) Given $p_{1}=p_{2}=1$ the optimal choices (defining Engel curves) are given by

$$
x_{1}=\frac{1}{3} m
$$

which defines a demand for x_{1} and

$$
x_{2}=\frac{2}{3} m
$$

From the first condition $m=3 x_{1}$ which plugging in the second condition gives the income offer curve $x_{2}=2 x_{1}$ which coincides with the optimal proportion line.

e) Since optimal choice x_{1} depends negatively on p_{2} and x_{2} is also decreasing in p_{1}, the two goods are gross complements.

Problem 4
a) Given utility function, $|M R S|=2$ and hence the optimal demands are given by

$$
\begin{aligned}
x_{1} & =\frac{m}{p_{1}} \\
x_{2} & =0
\end{aligned}
$$

when $\frac{p_{1}}{p_{2}}<|M R S|=2$ and

$$
\begin{aligned}
& x_{1}=0 \\
& x_{2}=\frac{m}{p_{2}}
\end{aligned}
$$

when $\frac{p_{1}}{p_{2}}>|M R S|=2$. Finally any bundle satisfying

$$
p_{1} x_{1}+p_{2} x_{2}=m
$$

is optimal if $\frac{p_{1}}{p_{2}}=|M R S|=2$
b) Price offer curve: For all $p_{1}>2$ relative price of x_{1} is greater than $|M R S|$ and hence the whole income is invested in $x_{2}=10$. For $p_{1}=2$ any bundle on the budget line is equally good. and finally for $p_{1}<2$. whole income is invested in $x_{1}=10 / p_{1}$ which varies from 5 to 0

c) Demand for x_{1} is not increasing in p_{1} and hence this is an ordinary good.
d) Given $p_{1}=p_{2}=1$ will alms buy $x_{1}=m$ and zero of the other commodity and hence the income offer curve is given by KPTE

and Engel curves are as follows
e) The demand for x_{1} (discontinuously) increases in p_{2}, and hence the two goods are gross substitutes Problem 5
a) Two secrets of happiness are

$$
M R S=-\frac{1}{10-x_{2}}=-\frac{p_{1}}{p_{2}}=-\frac{1}{2}
$$

and

$$
x_{1}+2 x_{2}=10
$$

From the first condition

$$
x_{2}=8
$$

which plugging to the budget constraint gives

$$
x_{1}=10-16=-6
$$

Since consumption has to be non-negative, the optimal consumption is $x_{1}=0$ and $x_{2}=10 / 2=5$. Since one of the commodities is not consumed, this is corner solution
b) using the same conditions with new income $m=20, x_{2}=8$ and $x_{1}=4$ is optimal.

