Problem 1. (50 points)
a) With $p_1 = $2, $p_2 = $10 and $m = $40 the budget set is (two extreme consumption bundles are 20 and 4). Inflation that affects only prices shifts budget line inwards.

b) Tony’s marginal rate of substitution (MRS)

$$MRS = - \frac{MU_1}{MU_2} = - \frac{x_2}{x_1}$$

- The value of MRS at consumption bundle (2,1) is

$$|MRS| = \left| - \frac{1}{2} \right| = \frac{1}{2}$$

- Burrito (x_2) is more valuable than Mountain Dew (x_1)
- Tony’s indifference curve map is. (the slope of her indifferent curve that passes through bundle (2,1) is $-\frac{1}{2}$).

c) Tony’s optimal choice is

- the two geometric properties of the optimal bundle, known as two "secrets of happiness" are:
1. At the optimal bundle, the indifference curve is tangent to a budget set
2. The optimal bundle is located on budget line

d) mathematically the two secrets of happiness, are

$$\begin{cases} MRS = - \frac{p_1}{p_2} \\ p_1x_1 + p_2x_2 = m \end{cases}$$
- the economic intuition behind the two conditions is:
 The individual value of x_1 in terms of x_2 coincides with the market value
 The income of a consumer is exhausted
- the optimal consumption of x_1 and x_2 as a function of p_1, p_2, m can be found as follows
 From the MRS condition
 \[MRS = \frac{x_2}{x_1} = \frac{p_1}{p_2} \]
 hence
 \[x_2 = \frac{p_1}{p_2} x_1 \]
 plugging in budget constraint
 \[p_1 x_1 + p_2 \left(\frac{p_1}{p_2} x_1 \right) = m \]
 Solving for x_1 gives
 \[x_1 = \frac{1}{2} \frac{m}{p_1} \]
 Plugging in
 \[x_2 = \frac{p_1}{p_2} \left(\frac{1}{2} \frac{m}{p_1} \right) = \frac{1}{2} \frac{m}{p_2} \]
 - the fraction of income spent on burritos is
 \[\frac{p_1 x_1}{m} = \frac{1}{2} = 50\% \]
 - and the demand curve for burritos book (given $p_2 = $10, and $m = $40) and Engel curve (given
 $p_1 = $2, and $p_2 = $10)
 Demand curve
 \[x_1 = \frac{1}{2} \frac{m}{p_1} = \frac{1}{2} \frac{40}{p_1} = \frac{20}{p_1} \]
 and hence inverse demand is
 \[p_1 (x_1) = \frac{20}{x_1} \]
 Geometrically
 Engel curve: Since
 \[x_1 = \frac{1}{2} \frac{m}{p_1} \]
 at $p_1 = $2
 \[x_1 = \frac{1}{2} \frac{m}{2} = \frac{1}{4} m \]
 hence
 \[m (x_1) = 4x_1 \]
 Geometrically
- are they Giffen goods? Why? (yes/no answer + one sentence).
No, because the demand curve is downwardsloping on the whole domain.
e) The optimal consumption levels for \((x_1, x_2)\).
- at \(p_1 = $2, p_2 = $10\) and \(m = $40\)
 \[
 x_1 = \frac{1}{2} \frac{m}{p_1} = \frac{1}{2} \frac{40}{2} = 10
 \]
 and
 \[
 x_2 = \frac{1}{2} \frac{m}{p_2} = \frac{1}{2} \frac{40}{10} = 2
 \]
 and after the price of science-fiction book decreased, for \(p_1 = $1, p_2 = $10\) and \(m = $40\)
 \[
 x_1 = \frac{1}{2} \frac{m}{p_1} = 20
 \]
 and
 \[
 x_2 = \frac{1}{2} \frac{m}{p_2} = \frac{1}{2} \frac{40}{10} = 2
 \]
 Hence the total change in consumption of \(x_1\) is
 \[
 \Delta x_1 = 20 - 10 = 10
 \]
 Geometrically
 f) Substitution effect: auxiliary budget
 \[
 m' = 10 \times 1 + 10 \times 2 = 30
 \]
 and hence
 \[
 x_1 = \frac{1}{2} \frac{30}{1} = 15
 \]
 so \(SE\) is equal to
 \[
 SE = 15 - 10 = 5
 \]
 and income effect is
 \[
 IE = 10 - 5 = 5
 \]
Problem 2...
a) Bill’s utility function is
 \[
 U(x_1, x_2) = \min(2x_1, x_2)
 \]
b) Indifference curves in the commodity space \((x_1, x_2)\) are
 \[
 c) Bill’s demand for shoes is
 \[
 x_2 = 2x_1

 6x_1 + 2x_2 = 40
 \]
\[6x_1 + 2(2x_1) = 40 \]

\[x_1 = \frac{40}{10} = 4 \]
\[x_2 = 8 \]

d) geometrically Bills’s optimal choice is

e) when the price of a left shoe goes down to \(p_1 = \$1 \), the new demand is given by the system of equations

\[x_2 = 2x_1 \]
\[x_1 + 2x_2 = 40 \]

and hence demand is

\[x_1 = 8 \]
\[x_2 = 16 \]

The substitution effect is zero (perfect complements) and the income effect is 4.

Problem 3.
a) the two secrets of happiness are

\[\frac{x_2}{100} = -1 \]
\[x_1 + x_2 = 200 \]

and hence \(x_2 = 100 \) and \(x_1 = 100 \). Since both are positive, this is interior solution.

b) the two secrets of happiness are

\[\frac{x_2}{100} = -1 \]
\[x_1 + x_2 = 50 \]

and hence secrets of happiness give \(x_2 = 100 \) and \(x_1 = -50 \). Since consumption must be non-negative the optimal consumption is \(x_1 = 0 \) and \(x_2 = 50 \), which is a cornet solution.

Problem 4.
a) Jacob’s budget set, with \(w = \$10 \) and \(p_c = \$5 \) is

Income is \(m = 10 \times 24 = \$240 \)

b) They are perfect substitutes
c) $|MRS| = 1 < \frac{w}{p_c} = 2$ which implies that Jacob cares less about leisure than consumption, therefore he will spend the whole day at work

$$R = 0, LS = 24 \text{ and } C = 24 \frac{10}{5} = 48$$

d) Bonus Problem. (extra 10 points)
a) Monotone transformation $\ln()$. Take a log of U

$$\ln U() = \ln x_1^3 x_2 = \ln x_1^3 + \ln x_2 = 3 \ln x_1 + \ln x_2 = V()$$

where we used two properties of \ln function.
b) For $U()$, marginal rate of substitution is

$$MRS = -\frac{MU_1}{MU_2} = -\frac{3x_2^2 x_2}{x_1^3} = -\frac{3x_2}{x_1}$$

and for $V()$

$$MRS = -\frac{MU_1}{MU_2} = -\frac{3/ x_1}{1/x_2} = -\frac{3x_2}{x_1}$$

and hence MRS coincides for all (x_1, x_2). It follows that the slopes of indifference curves are the same at any point and hence they must be the same.