- Market/Economics behind growth models
- R&D/Externalities.

More on R&D

- Externalities < Positive Negative
- ≠ Private rewards
 - Society

- True/Average evolution of technology may be ≠ than the one perceived by the agent.

Set up for model with endogenous tech. change

General things

- Product of final good: LY
- Labor

Evolution of technology: A_t (aggregate)
FUNCTION OF LA & PARAMETERS/FUNCTIONS

\(A_t = \text{function of } LA \)

"STANDING ON SHOULDERS OF GIANTS" (POSITIVE EXTERNALITY)

"STEPPING ON TOES" (NEGATIVE EXTERNALITY)

NEED: TRACTABLE: SOLVING THE MODEL IS POSSIBLE + BGP? SIMULATIONS

MARKET FEASIBLE/MICROFOUNDATIONS

AGGREGATE MODEL

1. \(Y_t = k_t \cdot (A_t \cdot L_{yt})^{1-\lambda} \)
2. \(k_t = r_k \cdot Y_t - d \cdot k_t \)
3. \(\hat{k}_t = r_k \cdot Y_t - d \cdot \hat{k}_t \)
4. \(L_y + L_A = L, \hat{L}_t = \gamma \)
5. \(\hat{A}_t = \delta \cdot A_{t-1} \cdot L_{A_t} \)

\[\hat{A}_t = \delta \cdot A_{t-1} \cdot L_{A_t} \]

PARAMETERS

\(0 < \delta < 1 \) (DEPRECIATION)
\(0 < r_k < 1 \) (PHYSICAL INVESTMENT RATE)
\(0 < \gamma < 1 \)
\(\lambda > 0 \)
\(0 < \delta < 1 \)
\[A_t = \frac{S \cdot L A_t}{A_t^{1-\phi}} \]

Idea is:

- + Returns to N&D \((0 < \lambda < 1)\)
 on "stepping on toes"
- \(\phi > 0 \Rightarrow \text{standing of shoulders...}"

But

- \(\phi < 1 \Rightarrow \)
 "fishing" closer to frontier it becomes harder to move forward.

Notation:

\[R_y = \frac{L_y}{L} = \% \text{ of workers in final good production} \]

\[R_R = \frac{L_A}{L} = \% \text{ of workers in red sector.} \]

Since \(L_A + L_y = L \Rightarrow \frac{L_A}{L} + \frac{L_y}{L} = 1\)

\[\Rightarrow R_R + R_y = 1 \]

\[\Rightarrow R_y = (1 - R_R) \]
We will assume \(q_A, q_Y \) constants in the first analysis.

We can still get policy implications.

Summary

1. \(y_t = k_t^{1-q} (A_t^{-1} y_t)^{1-q} = k_t^{1-q} (A_t^{-1} (1-q) y_t) \)
2. \(\hat{R}_t = \frac{\alpha_k}{k_t} \cdot \frac{y_t}{k_t} - d \)
3. \(\hat{A}_t = \frac{1}{A_t^{-1} - \phi} \)
4. \(\hat{A}_t = \frac{\hat{A}_t (1 - \alpha)}{A_t^{-1} - \phi} \)
5. \(y_t = \hat{A}_t = \frac{1}{\hat{A}_t} \)
6. \(\hat{L}_t = \hat{A}_t = \hat{A}_t = \hat{L}_t \)

Next Steps:

- Characterize BGP
- Modified System
- Two Important Diagrams
- Disturbances to BGP
- Approaches
CHARACTERIZE BCP

- DEF.: AT BCP:

R_t, A_t, L_t, C_{At}, C_{L_t}

CONSTANT

USE THIS + EQUATIONS (1) - (9) TO GET

T_t BCP
A_t BCP
T_t BCP

As function of parameters:

R_k, λ
η
S
d
ϕ
Using BGP definition

\[E(3) \Rightarrow \frac{Y_e}{k_t} \text{ constant} \]

\[\Rightarrow \left(\frac{Y_e}{k_t} \right)_{\text{BCP}} = 0 \Rightarrow Y_e = k_t \]

Using BGP definition

\[E(6) \Rightarrow \hat{A}_{\text{BCP}} \text{ constant} \]

\[\Rightarrow \left(\frac{S \hat{A}_t}{A_t} \right)_{\text{BCP}} \text{ constant} \]

Since \(S \) constant

\[\Rightarrow \left(\frac{S \hat{A}_t}{A_t} \right)_{\text{BCP}} = \left(A_t \right)_{\text{BCP}} \text{ constant} \]

Using that algebra:

\[\lambda \left(L_{\text{At}} \right) = (1-\phi) \left(A_t \right)_{\text{BCP}} \]

\[\Rightarrow \hat{A}_{\text{BCP}} = \frac{\lambda \eta}{1-\phi} \]
We need to take/use hat algebra on (1):

\[y_t = k_t^2 + (A_t \cdot L y_t)^{-1} \]

\[\Rightarrow = \alpha k_t + 1 - \alpha [A_t^2 + \frac{1}{\alpha}] \]

\[= \alpha k + (1 - \alpha) [A_t^2 + \frac{1}{\alpha}] \]

At BGP by Eq. (20): \[k_{BCP} = y_{BCP} \]

\[\Rightarrow A^2_{BCP} (1 - \alpha) = (1 - \alpha) [A^2_{BCP} + \frac{1}{\alpha}] \]

Using (21):

\[A^2_{BCP} = \frac{1}{1 - \phi} \]

Result:

\[\hat{A}_{BCP} = A_{BCP} \]

\[\hat{A}_{BCP} = \frac{1}{1 - \phi} \]

What is the modified system?

i.e. Find a system that has a s.s. coinciding with
BCP of Original system

Proposed variables for modified system:

\[
\frac{Y_t}{A_t \cdot L_t} = \frac{K_t}{A_t \cdot L_t} \]

where

\[
Y_t = Y_t \quad L_t = L_t \quad K_t = K_t
\]

Check that at BGP of original the modified has a S.S.S.

\[
\hat{M_t} = \hat{Y_t} - \hat{A_t} - \hat{L_t} = \hat{Y_t} - \hat{A_t} - \hat{L_t}
\]

At BGP:

\[
\begin{align*}
\hat{M_t} &= \hat{A_t} - \hat{A_t} - \hat{L_t} - \hat{A_t} - \hat{L_t} - \hat{A_t} - \hat{L_t} \\
&= 0
\end{align*}
\]

Remarks:

At BGP

\[
\hat{M_t} = \left(\frac{\hat{Y_t}}{\hat{L_t}} \right) = \hat{Y_t} \quad \text{where}\]

\[
\frac{\hat{Y_t}}{\hat{L_t}} = \frac{\hat{A_t}}{\hat{A_t}}
\]

\[\text{rate of tech. change}\]

6) Notice larger \(\gamma \Rightarrow \hat{A_t} \] BCP why? since \(\frac{\hat{Y_t}}{\hat{L_t}} = \frac{\hat{A_t}}{\hat{A_t}} \) constant
MORE PEOPLE \Rightarrow MORE RED WORKERS \Rightarrow TECHNOLOGY

c) ALSO $\phi A \Rightarrow A_{t}^{BCP}$
 "LESS "STEPPING ON TOES"

d) S DOES NOT INFLUENCE A_{t}^{BCP}

e) $\phi \Rightarrow 1 - \phi + A_{t}^{BCP}$

Modified System

$$\tilde{N}_{t} = \frac{Y_{t}}{A_{t}L_{t}}$$

System

$$\tilde{L}_{t} = \frac{k_{t}}{A_{t}L_{t}}$$

Prod. Function

Divide (1) by $A_{t}L_{t}$

$$\frac{Y_{t}}{A_{t}L_{t}} = \frac{k_{t}^{L_{t}} (A_{t}L_{t})^{1 - L_{t}}}{A_{t}L_{t}} = \frac{k_{t}^{L_{t}} (A_{t}L_{t})^{1 - L_{t}}}{A_{t}L_{t}}$$

$$\frac{N_{t}}{L_{t}} = \frac{\tilde{N}_{t}^{L_{t}}}{L_{t}} = \frac{\tilde{N}_{t}^{L_{t}}}{L_{t}}$$

$$\frac{N_{t}}{L_{t}} = \frac{\tilde{N}_{t}^{L_{t}}}{L_{t}} = \frac{\tilde{N}_{t}^{L_{t}}}{L_{t}}$$

$$\tilde{N}_{t}^{L_{t}} = \frac{\tilde{N}_{t}^{L_{t}}}{L_{t}}$$

$$\tilde{N}_{t}^{L_{t}} = \frac{\tilde{N}_{t}^{L_{t}}}{L_{t}}$$
LAW OF MOTION OF \hat{x}_t

\[
\hat{x}_t = \left(\frac{K_t}{A_t L_t} \right) \hat{x}_t - (A_t + \hat{I}_t)
\]

Using (3):

\[
= q_k \left(\frac{y_t}{A_t L_t} \right) \hat{x}_t - d - A_t - \gamma
\]

Using (30):

\[
= q_k \left(\frac{\hat{x}_t}{\hat{x}_t} \right) - \left[d + A_t + \gamma \right]
\]

\[
\hat{x}_t = q_k \left(\frac{x_t}{x_t} \right) - \left[d + A_t + \gamma \right]
\]

EVERYWHERE
\[(22) \quad \hat{A}_t = \delta \frac{L_A}{A_t^{1-\phi}} \]

AT BGP:

\[\hat{A}_{\text{BGP}} = \frac{\lambda}{1-\phi} \]

Summary: Modified

(20) \[\hat{S}_t = \hat{r}_t \times (1-2\eta)^{1-\phi} \]

(21) \[\hat{r}_t = r_t \times (1-2\eta)^{1-\phi} - [d + \hat{A}_{t+1}] \]

(5) \[\hat{A}_t = \delta \frac{L_A}{A_t^{1-\phi}} \]

BGP of modified is a S. S. S.

Why?

- AT BGP, \[\hat{A}_{\text{BGP}} = \frac{\lambda}{1-\phi} \]

(i.e. is a constant)
SUMMARY MODIFIED SYSTEM

(30) \[\hat{\gamma}_t = \lambda (1 - \psi \beta)^{-1} \]

(31) \[\hat{\gamma}_t = \varrho \hat{\gamma}_{t-1} (1 - \psi \beta)^{-1} - [d + \hat{A}_t] \]

(32) \[\hat{A}_t = \frac{S \lambda \alpha}{A_t^{1-\phi}} \]

WHAT IS TRUE AT S.S. OF MODIFIED SYSTEM/BGP OF ORIGINAL?

\[\hat{\gamma}^{BCO} = 0 \]

\[\hat{A}^{BCO} = \frac{\lambda \gamma}{1-\phi} \]

IMPORTANT DIAGRAM:

SEE APPENDIX B FROM WEB HANDOUT FOR PROOF OF \[\hat{\gamma}_t \]