Problem Set 2

Consider the version of the Solow model with labor augmenting technological change. The production function is:

\[Y = K^{\alpha} (AL)^{1-\alpha} \]

where \(A \) is positive, \(\alpha \) is a parameter between zero and one, \(K \) is capital and \(L \) the number of workers or labor force (equal to population).

Assume that labor (or population) grows at a rate \(n \), that \(A \) grows at a rate \(g \), that physical capital depreciates at a rate \(\delta \) (between zero and one) and that the savings rate \(s \) is a constant between zero and one. Physical capital is then accumulated according to:

\[\dot{K} = sY - \delta K \]

and consumption is: \(C = (1-s)Y \).

(1) What are the conditions that need to be satisfied along a Balanced Growth Path (BGP)? Use these conditions and equations (1) and (2) to derive the growth rates of \(Y \) and \(K \) along a BGP.

(2) To solve the model it is convenient to divide (1) by \(AL \), so that we work with variables per effective number of workers: \((Y/AL) \), \((K/AL) \), and similarly.

Derive the per effective unit of labor production function and the law of motion of the capital per effective unit of labor.

BGP in the per effective unit of labor variables:

(3) Derive the growth rate of capital per worker, output per worker and consumption per worker at the BGP of the modified system.

Comparative Statics: decrease in \(L \) (due to a virus)

Assume that the country has been at the BGP for many years and that at time \(t \) the number of workers/population decreases due to a deadly virus. Answer question (6):

(4) Adjustment paths of \(k = K/L \) and \(y = Y/L \). Draw a diagram showing how \(k \), \(y \) and their growth rates move over time (use the horizontal axis for the variable \(t \) and the vertical axis for the relevant variable).

Hint: first look at adjustment path of \(K/AL \), \(Y/AL \) and then derive the paths of \(k \) and \(y \).

Comparative Statics: decreases in the rate of population growth \((n) \)

Assume that the country has been at the BGP for many years and that at time \(t \) the rate of population growth decreases. Answer question (7):

(5) Adjustment paths of \(k = K/L \) and \(y = Y/L \). Draw a diagram showing how \(k \), \(y \) and their growth rates move over time (use the horizontal axis for the variable \(t \) and the vertical axis for the relevant variable).

Hint: first look at adjustment path of \(K/AL \), \(Y/AL \) and then derive the paths of \(k \) and \(y \).