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1 Introduction

As the COVID-19 virus spreads throughout the world, governments are struggling with how

to understand and manage the epidemic. Epidemiology models have been widely used to

predict the course of the epidemic.1 While these models are very useful, they do have an

important shortcoming: they do not allow for the interaction between economic decisions

and rates of infection.

Policy makers certainly appreciate this interaction. For example, in their March 19, 2020

Financial Times op ed Ben Bernanke and Janet Yellen write that

"In the near term, public health objectives necessitate people staying home from

shopping and work, especially if they are sick or at risk. So production and

spending must inevitably decline for a time."

In this paper, we extend the classic SIR model proposed by Kermack and McKendrick

(1927) to study the interaction between economic decisions and epidemic dynamics.2 Our

model makes clear that peopleís decisions to cut back on consumption and work reduce the

severity of the epidemic as measured by total deaths.3 These same decisions exacerbate the

size of the recession caused by the epidemic.

In our model, an epidemic has both aggregate demand and aggregate supply e§ects.

The supply e§ect arises because the epidemic exposes people who are working to the virus.

People react to that risk by reducing their labor supply. The demand e§ect arises because the

epidemic exposes people who are purchasing consumption goods to the virus. People react

to that risk by reducing their consumption. The supply and demand e§ects work together

to generate a large, persistent recession.

The competitive equilibrium is not Pareto optimal because people infected with the virus

do not fully internalize the e§ect of their consumption and work decisions on the spread of

the virus. To be clear, this market failure does not reáect a lack of good intentions or

irrationality on the part of infected people. It simply reáects the fact that each person takes

economy-wide infection rates as given.

1See, for example, Ferguson et al. (2020).
2SIR is an acronym for susceptible, infected, and recovered or removed.
3Our paper is related to an emerging literature that combines economics and epidemiology. See Perrings

et. al (2014) for a recent review. Our contribution is to focus on how employment and consumption decisions
a§ect the equilibrium dynamics of a viral infection.
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A natural question is: what policies should the government pursue to deal with the

infection externality? We focus on containment policies that reduce consumption and hours

worked. By reducing economic interactions among people, these policies exacerbate the

recession but raise welfare by reducing the death toll caused by the epidemic. We Önd that

it is optimal to introduce large-scale containment measures that result in a sharp, sustained

drop in aggregate output. This optimal containment policy saves roughly half a million lives

in the U.S.

To make the intuition for our results as transparent as possible, we use a relatively simple

model. A cost of that simplicity is that we cannot study many important, epidemic-related

policy issues. For example, we do not consider polices aimed at mitigating the economic

hardships su§ered by households and businesses. Such policies include Öscal transfers to

people and loans to keep Örms from going bankrupt. We also do not study policies aimed at

maintaining the liquidity and health of Önancial markets.

Finally, we abstract from nominal rigidities which could play an important role in de-

termining the short-run response of the economy to an epidemic. For example, if prices are

sticky, a given fall in the demand for consumption would generate a larger recession. Other

things equal, a larger recession would mitigate the spread of the infection. We plan to ad-

dress these important issues in future work. But we are conÖdent that the central message

from our current analysis will be robust: there is an inevitable trade-o§ between the severity

of the recession and the health consequences of the epidemic.

Our point of departure is the canonical SIR model proposed by Kermack and McKendrick

(1927). In this model the transition probability between health states are exogenous para-

meters. We modify the model by assuming that purchasing consumption goods and working

brings people in contact with each other. These activities raise the probability that the

infection spreads. We refer to the resulting framework as the SIR-macro model.

We choose parameters so that the Kermack-McKendrick SIR model is consistent with

the scenario outlined by Angela Merkel in her March 11, 2020 speech.4 According to this

scenario, ì60 to 70 percent of the population will be infected as long as this remains the

situation.î The SIR model implies that the share of the initial population infected peaks at

8:4 percent. Applying this scenario to the U.S. implies that roughly 215 million Americans

eventually become infected and 2:2 million people die. When we embed the SIR model in

a simple general equilibrium framework, we Önd that the epidemic causes a relatively mild

4"Merkel Gives Germans a Hard Truth About the Corona Virus," New York Times, March 11, 2020.
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recession. Aggregate consumption falls by roughly 2 percent from peak to trough, with the

latter occurring 29 weeks after the onset of the infection. In the long-run, population and

real GDP decline permanently by 0:65 percent reáecting the death toll from the epidemic.

The impact of economic activity on transition probabilities in the SIR-macro model,

substantially changes the dynamics of the epidemic and its economic impact. Relative to

the SIR model, the SIR-macro model implies a sharper recession and fewer deaths. The

peak to trough decline in aggregate consumption is more than four times as large as in the

standard SIR model (9:1 versus 2 percent). This larger decline in economic activity reduces

the infection peak (5:1 percent versus 8:4 percent) as well as the percentage of the population

that becomes infected (52:8 versus 65 percent). Critically, the total number of U.S. deaths

caused by the epidemic falls from 2:2 to 1:7 million.

How do epidemics end? In both the SIR and SIR-macro models, epidemics end when

a su¢ciently high fraction of the population acquires immunity. Absent treatments or vac-

cines, the only way to acquire immunity is to become infected and recover. Sadly, this

process involves the death of many people who never recover from an infection. The need

to develop ìherd immunityî is a property of epidemics serves as an important backdrop for

our discussion of optimal policy.

Given the negative externalities from consumption and work, the optimal policy in the

SIR-macro model is to curtail economic activity. In all versions of our model, it is optimal

for policymakers to avoid recurrent epidemics. So, absent a vaccine or treatment, they must

allow a su¢ciently high fraction of the population to be become infected and recover. The

key question is: what is the optimal way to reach that fraction?

In the SIR-macro model it is possible to prevent the infection from spreading by adopt-

ing large, permanent containment measures. The problem with this approach is that the

population never reaches the critical level of immunity to avoid a recurrence of the epidemic.

Under these circumstances, infections would recur as soon as containment is relaxed. The

optimal policy in this world is to build up the fraction of the population that is immune, cur-

tailing consumption when externalities are large, that is when the number of infected people

is high. Such a policy involves gradually ramping up containment measures as infections rise

and slowly relaxing them as new infections wane and the population approaches the critical

immunity level.

An important concern in many countries is that the healthcare system will be over-

whelmed by a large number of infected people. To analyze this scenario, we consider a
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version of our model in which the mortality rate is an increasing function of the number of

people infected. We Önd that the competitive equilibrium involves a much larger recession,

as people internalize the higher mortality rates. People cut back more aggressively on con-

sumption and work to reduce the probability of being infected. As a result, fewer people are

infected in the competitive equilibrium but more people die. The optimal policy involves a

much more aggressive response than in the baseline SIR-macro economy. The reason is that

the cost of the externality is much larger since a larger fraction of the infected population

dies.

How does the possibility of an e§ective treatment being discovered change our results?

The qualitative implications are clear: people become more willing to engage in market

activities because the expected cost of being infected is smaller. So, along a path in which

treatment is not actually discovered, the recession induced by the epidemic is less severe.

Sadly, along such a path, the total number of infected people and the death toll rise relative

to the baseline SIR-macro model. That said, the quantitative di§erence of this model and the

baseline SIR-macro model is quite small, both with respect to the competitive equilibrium

and the optimal containment policy.

How does the possibility of a vaccine being discovered change our results? Vaccines

donít cure infected people but they do prevent susceptible people from becoming infected.

In contrast, treatments cure infected people but do not prevent future infections. These

di§erences are not very important for the competitive equilibrium. But they have very

di§erent implications for optimal policy. With vaccines as a possibility, it is optimal to

immediately introduce severe containment measures to minimize deaths. Those containment

measures cause a large recession. But this recession is worth incurring in the hope that the

vaccination arrives before many people get infected.

Our paper is organized as follows. In section 2, we describe both the SIR and the SIR-

macro model. In section 3, we describe the versions of the model that consider medical

preparedness and the possibility of e§ective treatment and vaccines being discovered. In

section 4, we discuss the properties of the competitive equilibrium in di§erent variants of our

model. In section 5, we solve the Ramsey policy problems and analyze their implications for

the containment of the spread of the virus and for economic activity. Section 6 concludes.
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2 The SIR-macro model

In this section, we describe the economy before the start of the epidemic. We then present

the SIR-macro model.

2.1 The pre-infection economy

The economy is populated by a continuum of identical agents with measure one. Prior to

the start of the epidemic, all agents are identical and maximize the objective function:

U =

1X

t=0

#tu(ct; nt).

Here # 2 (0; 1) denotes the discount factor and ct and nt denote consumption and hours

worked, respectively. For simplicity, we assume that momentary utility takes the form

u(ct; nt) = ln ct &
(

2
n2t .

The budget constraint of the representative agent is:

(1 + )ct)ct = wtnt + 0t.

Here, wt denotes the real wage rate, )ct is the tax rate on consumption, and 0t denotes

lump-sum transfers from the government. As discussed below, we think of )ct as a proxy for

containment measures aimed at reducing social interactions.5 For this reason, we refer to )ct
as the containment rate. The Örst-order condition for the representative-agentís problem is:

(1 + )ct)(nt = c
"1
t wt.

There is a continuum of competitive representative Örms of unit measure that produce con-

sumption goods (Ct) using hours worked (Nt) according to the technology:

Ct = ANt.

The Örm chooses hours worked to maximize its time-t proÖts 1t:

1t = ANt & wtNt.

The governmentís budget constraint is given by

)ctct = 0t.

In equilibrium, nt = Nt and ct = Ct.
5See Adda (2016) for microeconomic evidence on the e¢cacy and cost-e§ectiveness of contaiment measures

to slow the transmission of viral diseases.

5



2.2 The outbreak of an epidemic

Epidemiology models generally assume that the probabilities governing the transition be-

tween di§erent states of health are exogenous with respect to economic decisions. We modify

the classic SIR model proposed by Kermack and McKendrick (1927) so that these transition

probabilities depend on peopleís economic decisions. Since purchasing consumption goods

or working brings people into contact with each other, we assume that the probability of

becoming infected depends on these activities.

The population is divided into four groups: susceptible (people who have not yet been

exposed to the disease), infected (people who contracted the disease), recovered (people

who survived the disease and acquired immunity), and deceased (people who died from the

disease). The fractions of people in these four groups are denoted by St, It, Rt and Dt,

respectively. The number of newly infected people is denoted by Tt.

Susceptible people can become infected in three ways. First, they can meet infected

people while purchasing consumption goods. The number of newly infected people that

results from these interactions is given by 4s1(StCSt )
"
ItC

I
t

#
. The terms StCSt and ItC

I
t

represent total consumption expenditures by susceptible and infected people, respectively.

The parameter 4s1 reáects both the amount of time spent shopping and the probability

of becoming infected as a result of that activity. In reality, di§erent types of consumption

involve di§erent amounts of contact with other people. For example, attending a rock concert

is much more contact intensive than going to a grocery store. For simplicity we abstract

from this type of heterogeneity.6

Second, susceptible and infected people can meet at work. The number of newly infected

people that results from interactions at work is given by 4s2(StNS
t )
"
ItN

I
t

#
. The terms StNS

t

and ItN I
t represent total hours worked by susceptible and infected people, respectively. The

parameter 4s2 reáects the probability of becoming infected as a result of work interactions.

We recognize that di§erent jobs require di§erent amounts of contact with people. For exam-

ple, working as a dentist or a waiter is much more contact intensive than writing software.

Again, for simplicity, we abstract from this source of heterogeneity.

Third, susceptible and infected people can meet in ways not directly related to consuming

or working, for example meeting a neighbor or touching a contaminated surface. The number

of random meetings between infected and susceptible people is StIt. These meetings result

6See Faria-e-Castro (2020) for a model where the pandemic is modeled as a large negative shock to the
utility of consumption of contact-intensive services.
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in 4s3StIt newly infected people.

The total number of newly infected people is given by:

Tt = 4s1(StC
S
t )
"
ItC

I
t

#
+ 4s2(StN

S
t )
"
ItN

I
t

#
+ 4s3StIt. (1)

Kermack and McKendrickís (1927) SIR model is a special case of our model in which the

propagation of the disease is unrelated to economic activity (4s1 = 0, 4s2 = 0).

The number of susceptible people at time t + 1 is equal to the number of susceptible

people at time t minus the number of susceptible people that got infected at time t:

St+1 = St & Tt. (2)

The number of infected people at time t + 1 is equal to the number of infected people

at time t plus the number of newly infected (Tt) minus the number infected people that

recovered (4rIt) and the number of infected people that died (4dIt):

It+1 = It + Tt & (4r + 4d) It. (3)

Here, 4r is the rate at which infected people recover from the infection and 4d is the mortality

rate, that is the probability that an infected person dies.

The number of recovered people at time t+ 1 is the number of recovered people at time

t plus the number of infected people who just recovered (4rIt):

Rt+1 = Rt + 4rIt. (4)

Finally, the number of deceased people at time t + 1 is the number of deceased people at

time t plus the number of new deaths (4dIt):

Dt+1 = Dt + 4dIt. (5)

Total population, Popt+1, evolves according to:

Popt+1 = Popt &Dt,

with Pop0 = 1.

We assume that at time zero a fraction " of susceptible people is infected by a virus

through zoonotic exposure, that is the virus is directly transmitted from animals to humans,

I0 = ",
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S0 = 1& ".

All agents are aware of the initial infection and understand the laws of motion governing

population health dynamics.

We now describe the optimization problem of di§erent types of people in the economy.

The variable U jt denotes the time-t lifetime utility of a type-j agent (j = s; i; r). The budget

constraint of a type-j person is

(1 + )ct)c
j
t = wt=

jnjt + 0t, (6)

where cjt and n
j
t denote the consumption and hours worker of agent j, respectively. The

parameter governing labor productivity, =j, is equal to one for susceptible and recovered

people (=s = =r = 1) and less than one for infected people (=i < 1).

The budget constraint (6) embodies the assumption that there is no way for agents to pool

risk associated with the infection. Going to the opposite extreme and assuming complete

markets considerably complicates the analysis without necessarily making the model more

realistic.

Susceptible people The lifetime utility of a susceptible person, U st , is

U st = u(c
s
t ; n

s
t) + #

$
(1& ? t)U st+1 + ? tU

i
t+1

%
. (7)

Here, the variable ? t represents the probability that a susceptible person becomes infected:

? t = 4s1c
s
t

"
ItC

I
t

#
+ 4s2n

s
t

"
ItN

I
t

#
+ 4s3It. (8)

Susceptible people take as given aggregate variables like ItCIt and ItN
I
t . Critically, they

understand that consuming and working less reduces the probability of becoming infected.

The Örst-order conditions for consumption and hours worked are:

u1(c
s
t ; n

s
t)& (1 + )ct)@

s
bt + @+t4s1

"
ItC

I
t

#
= 0,

u2(c
s
t ; n

s
t) + A@

s
bt + @+t4s2

"
ItN

I
t

#
= 0.

Here, @sbt and @+t are the Lagrange multipliers associated with constraints (6) and (8), re-

spectively.

The Örst-order condition for ? t is:

#
"
U it+1 & U

s
t+1

#
& @+t = 0. (9)
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Infected people The lifetime utility of an infected person, U it , is

U it = u(c
i
t; n

i
t) + #

$
(1& 4r & 4d)U it+1 + 4rU

r
t+1 + 4d ' 0

%
. (10)

The Örst-order conditions for consumption and hours worked are given by

u1(c
i
t; n

i
t) = @

i
bt(1 + )ct),

u2(c
i
t; n

i
t) = &=

iA@ibt,

where @ibt is the Lagrange multiplier associated with constraint (6).

Recovered people The lifetime utility of a recovered person, U rt , is

U rt = u(c
r
t ; n

r
t ) + #U

r
t+1. (11)

The Örst-order conditions for consumption and hours worked are:

u1(c
r
t ; n

r
t ) = @

r
bt(1 + )ct)

u2(c
r
t ; n

r
t ) = &A@

r
bt

where @rbt is the Lagrange multiplier associated with constraint (6).

Government budget constraint The government budget constraint is

)ct
"
Stc

s
t + Itc

i
t +Rtc

r
t

#
= 0t (St + It +Rt) .

Equilibrium In equilibrium, each person solves their maximization problem and the gov-

ernment budget constraint is satisÖed. In addition, the goods and labor markets clear:

StC
s
t + ItC

i
t +RtC

r
t = Ct,

StN
s
t + ItN

i
t +RtN

r
t = Nt.

In the appendix we describe our algorithm for computing the equilibrium.

3 Medical preparedness, treatments and vaccines

In this section, we extend the SIR-macro model in three ways. First, we allow for the

possibility that the mortality rate increases as the number of infections rises. Second, we

allow for the probabilistic development of a cure for the disease. Third, we allow for the

probabilistic development of a vaccine that inoculates susceptible people against the virus.
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3.1 The medical preparedness model

In our benchmark model we abstracted from the possibility that the e¢cacy of the healthcare

system will deteriorate if a substantial fraction of the population becomes infected. A simple

way to model this scenario is to assume that the mortality rate depends on the number of

infected people, It:

4dt = 4d + AI
2
t .

This functional form implies that the mortality rate is a convex function of the fraction of

the population that becomes infected. The benchmark SIR-macro corresponds to the special

case of A = 0.

3.2 The treatment model

The benchmark SIR-macro model abstracts from the possibility that an e§ective treatment

against the virus will be developed. Suppose instead that an e§ective treatment is discovered

with probability B each period. Once discovered, treatment is provided to all infected people

in the period of discovery and all subsequent periods transforming them into recovered

people. As a result, the number of new deaths from the disease goes to zero.

The lifetime utility of an infected person before the treatment becomes available is:

U it = u(c
i
t; n

i
t) + (1& B)

$
(1& 4r & 4d) #U it+1 + 4r#U

r
t+1

%
+ #BU rt+1. (12)

This expression reáects the fact that with probability 1 & B a person who is infected at

time t remains so at time t + 1. With probability B this person receives treatment and

becomes recovered. The expression for U it embodies a common assumption in macro and

health economics that the cost of death is the foregone utility of life (see Hall and Jones

(2007) for a discussion).

We now discuss the impact of an e§ective treatment on population dynamics. Before

the treatment is discovered, population dynamics evolve according to equations (1), (2), (3),

(4), and (5). Suppose that the treatment is discovered at the beginning of time t#. Then,

all infected people become recovered. The number of deceased stabilizes once the treatment

arrives:

Dt = Dt! for t ( t#.

Since anyone can be instantly cured, we normalize the number of susceptible and infected

people to zero for t > t#. The number of recovered people is given by
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Rt = 1&Dt.

3.3 The vaccination model

The benchmark SIR-macro model abstracts from the possibility that a vaccine against the

virus will be developed.7 Suppose instead that a vaccine is discovered with probability B per

period. Once discovered, the vaccine is provided to all susceptible people in the period of

discovery and in all subsequent periods.

The lifetime utility of a susceptible person is given by

U st = u(c
s
t ; n

s
t) + (1& B)

$
(1& ? t) #U st+1 + ? t#U

i
t+1

%
+ B#U rt+1. (13)

This expression reáects the fact that with probability 1 & B a person who is susceptible at

time t remains so at time t + 1. With probability B this person is vaccinated and becomes

immune to the disease. So, at time t+1, this personís health situation is identical to that of a

recovered person. The vaccine has no impact on people who were infected or have recovered.

The lifetime utilities of infected and recovered people person are given by (10) and (11),

respectively.

We now discuss the impact of vaccinations on population dynamics. Before the vaccine is

discovered, these dynamics evolve according to equations (1), (2), (3), (4), and (5). Suppose

that the vaccine is discovered at the beginning of time t#. Then, all susceptible people

become recovered. Since no one is susceptible, there are no new infections.

Denote the number of susceptible and recovered people right after a vaccine is introduced

at time t# by S 0t! and R
0
t! . The value of these variables are

S 0t! = 0

R0t! = Rt! + St! :

For t ( t# we have

Rt+1 =

&
R0t + 4rIt
Rt + 4rIt

for t = t#

for t > t#:

The laws of motion for It and Dt are given by (3) and (5).

7There is a sizable literature that analyses of how private inventives to become vaccinated a§ect epidemic
dynamics and optimal public health policy. See, for example, Philipson (2000) and Manski (2016).
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4 Competitive equilibrium

In this section, we discuss the properties of the competitive equilibrium via a series of nu-

merical exercises. In the Örst subsection, we describe our parameter values. In the second

and third subsections, we discuss how the economy responds to an epidemic in the SIR and

SIR-macro models, respectively. In the fourth subsection, we discuss the implications of

medical preparedness. Finally, in the Öfth subsection, we discuss the e§ects of treatments

and vaccines.

4.1 Parameter values

Below, we report our initial choice of parameters. We are conscious that there is considerable

uncertainty about the true values of these parameters. In ongoing work, we are exploring

alternative calibrations. The calculations that follow should be viewed as illustrative and

represent an initial attempt to distinguish Örst-order from second-order forces.

Each time period corresponds to a week. While acknowledging considerable uncertainty

about infection, recovery and mortality rates, we choose 4d so that the mortality rate is

one percent. This value is equal to the estimate for the mortality rate from COVID-19

reported by the World Health Organization on March 16, 2020 for South Korea.8 Estimates

of the mortality rate based on South Korean data are relatively reliable because that country

has the worldís highest per capita test rates for COVID-19 (Pueyo (2020)). Estimates of

mortality rates based on data from other countries are probably biased upwards because the

number of infected people is likely to be underestimated. As in Atkeson (2020), we assume

that it takes on average 18 days to either recover or die from the infection. Since our model

is weekly, we set 4r + 4d = 7=18. A one percent mortality rate for infected people implies

4d = 7' 0:01=18.

We use the standard SIR model to choose values for 4s1, 4s2, and 4s3. Our procedure is

as follows. First, we assume each of the three terms in (1), representing the di§erent ways

in which people can get infected, accounts for 1=3 of the value of T0. This assumption yields

two independent restrictions on the parameters:

4s1C
2

4s1C2 + 4s2N2 + 4s3
=

4s2N
2

4s1C2 + 4s2N2 + 4s3
=
1

3
.

Here, C and N are consumption and hours worked in the pre-infection steady state. In

addition, we assume that in the limit of 65 percent of the population either recovers from
8This estimate is roughly 8 times larger than the average áu death rate in the U.S.
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the infection or dies. This assumption corresponds to the Merkel scenario discussed in the

introduction. With this scenario we have a third restriction that allows us to compute 4s1,

4s2, and 4s3. The resulting values for these parameters are 0:0046, 7:3983, and 0:2055,

respectively.

The initial population is normalized to one. The number of people that are initially

infected, ", is 0:001. We choose A = 39:8 and ( = 36 so that in the pre-epidemic steady

state the representative agent works 1=6 of their time endowment and earn an income of

$58; 000. The latter number is real per capita GDP in 2019. The value of 1=6 is taken from

the Bureau of Labor Statistics 2018 time-use survey. We set # = 0:961=52 so that the value

of a life is 9:3 million 2019 dollars in the pre-epidemic steady state. This value is consistent

with the economic value of life used by U.S. government agencies in their decisions process.9

We understand there is considerable uncertainty in the literature about this value. We Önd

that our conclusions are robust to reasonable perturbations of this value.

We set =i, the parameter that controls the relative productivity of infected people is

0:8. This value is consistent with the notion that symptomatic agents donít work and the

assumption that 80 percent of infected people are asymptomatic.10 In the baseline SIR-macro

model )ct is equal to zero.

In the medical preparedness model, we Öx A to 12:5, which implies a peak mortality rate

of 4 percent. This value coincides with the current WHO estimates of the mortality rate in

China, a country where the number of infections seems to be close to its peak.

In both the treatment and vaccination models we set B = 1=52 which implies that it takes

on average 52 weeks for these medical discoveries to become available.

4.1.1 The modelís basic reproduction number

A widely used statistic used to diagnose the severity of an epidemic is the ìbasic reproduction

number,î R0. This statistic is the total number of infections caused by one infected person

(with measure zero) in his or her lifetime in a population where everybody is susceptible

(St = 1). The higher is the value of R0, the faster is the spread of the virus.

The average rate of infection, which we denote by E, in our model is the ratio of the

number of newly infected people to the total number of infected people. The value of E is

9See U.S. Environmental Protection Agency (2010) and Rogo§ (2014).
10The estimate for the percentage of infected people who are asymptomatic is from the China Center for

Disease Control and Prevention.

13



equal to T0=I0. The expected number of infections caused by a single infected person is

E + (1& 4r & 4d)E + (1& 4r & 4d)2E + ::: =
E

4r + 4d
.

In this expression, (1& 4r & 4d)t is the probability that the infected person reaches period t

without recovering or dying.

The value of R0 in the SIR and benchmark SIR-macro models is 1:58 and 1:48, re-

spectively. These values are lower than current point estimates of R0 for COVID-19, but

consistent with the evidence taking sampling uncertainty into account. For example, Riou

and Althaus (2020) report a point estimate of 2:2 with a 90 percent conÖdence interval of

1:4 to 3:8.

4.2 The SIR model

The black dashed lines in Figure 1 display the equilibrium population dynamics implied by

the SIR model. The share of the initial population that is infected peaks at 8:4 percent

in week 28. Thereafter, this share falls because there are less susceptible people to infect.

Eventually, 65 percent of the population becomes infected. Assuming a U.S. population

of 330 million people, this scenario implies that roughly 215 million Americans eventually

become infected. A mortality rate of one percent (4d = 0:01) implies that the virus kills

roughly 2 million people in the U.S.

Figure 1 shows that the epidemic induces a recession: aggregate consumption falls by

roughly 2 percent from peak to trough. This fall reáects two factors. First and foremost, the

virus causes infected people to be less productive at work (=i = 0:8). The associated negative

income e§ect lowers the consumption of those who are infected. The dynamic behavior of

aggregate consumption mimics the share of infected agents in the overall population. Second,

the death toll caused by the epidemic permanently reduces the size of the work force.

Since production is constant returns to scale, per capita income is the same in the post-

and pre-epidemic steady states. In the post-epidemic steady state, population and real GDP

are both 0:65 percent lower than in the initial steady state.

4.3 The SIR-macro model

In the SIR model economic decisions about consumption and work donít ináuence the dy-

namics of the epidemic. In the SIR-macro model, susceptible households can lower the
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probability of being infected by reducing their consumption and hours worked. The solid

blue lines in Figure 1 show how the epidemic unfolds in this model.

The share of the initial population that is infected peaks at 5:1 percent in period 32. The

peak is substantially smaller and occurs somewhat later than the corresponding peak in the

SIR model. Eventually, 52:8 percent of the population becomes infected. So, for the U.S.,

roughly 174 million people eventually become infected and 1:74 million people die.

Figure 1 shows that the infection is less severe in the SIR-macro model than in the SIR

model. The reason is that in the SIR-macro model susceptible people severely reduce their

consumption and hours worked to lower the probability of being infected. Consistent with

Figure 2, there are no o§setting e§ects arising from the behavior of recovered and infected

people because they behave as in the SIR model.

Consistent with these observations, the recession is much more severe in the SIR-macro

model: the peak to trough fall in aggregate consumption is 9:1 percent, more than 4:5 larger

than in the SIR model.

For similar reasons, the dynamics and magnitude of the drop in hours work is very

di§erent in the two models. In the SIR model, hours worked decline smoothly falling by 0:65

percent in the post-epidemic steady state. This decline entirely reáects the impact of the

death toll on the workforce.

In the SIR-macro model, hours worked follow a U-shaped pattern. The peak decline of

8:1 percent occurs in period 32. Thereafter, aggregate hours rise converging to a new steady

state from below. These dynamics are driven by the labor-supply decisions of susceptible

agents. Interestingly, the long-run decline in hours worked is lower in the SIR-macro model

(0:53 percent) than in the SIR model (0:65 percent). The reason is that fewer people die in

the epidemic so the population falls by less in the SIR-macro model than in the SIR model.

Figure 3 shows the competitive equilibrium and the optimal containment policy in the

SIR-macro model. We return to this Figure in the next section.

4.4 Medical preparedness model

The red dashed-dotted lines in Figure 4 show that the competitive equilibrium with an

endogenous mortality rate involves a much larger recession than in the baseline SIR-macro

model (blue solid lines). The reason is that people internalize the higher mortality rates

associated with an healthcare system that is overburdened with infected people. Since the

costs of becoming infected are much higher, people cut back on consumption and work to
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reduce the probability of becoming infected. The net result is that fewer people are infected

but more people die.

4.5 The treatment and vaccines models

As discussed in the introduction, the possibility of treatment and vaccination have similar

qualitative e§ects on the competitive equilibrium. Compared to the baseline SIR-macro

model people become more willing to engage in market activities. The reason is that the

expected costs associated with being infected are smaller. Because of this change in behavior,

the recession is less severe. In Figures 5 and 6 the blue-solid and red-dashed-dotted lines

virtually coincide. So, in practice the quantitative e§ect of the possibility of treatments or

vaccinations on the competitive equilibrium is quite small.

5 Economic policy

The competitive equilibrium of our model economy is not Pareto optimal. There is a classic

externality associated with the behavior of infected agents. Because agents are atomistic,

they donít take into account the impact of their actions on the infection and death rates of

other agents. In this section, we consider a simple Ramsey problem designed to deal with

this externality.

As with any Ramsey problem, we must take a stand on the policy instruments available.

In reality, there are many ways in which governments can reduce social interactions. Exam-

ples of containment measures include shelter-in-place laws and shutting down of restaurants

and bars. Analogous to Farhi and Werningís (2012) treatment of capital controls, we model

these measures as a tax on consumption, the proceeds of which are rebated lump sum to all

agents. We refer to this tax as the containment rate.

We compute the optimal sequence of 250 containment rates f)ctg
249
t=0 that maximize social

welfare,U0; deÖned as a weighted average of the lifetime utility of the di§erent agents:

U0 = s0U
s
0 + i0U

i
0 + r0U

r
0 .

Given the sequence of containment rates, we solve for the competitive equilibrium and

evaluate the social welfare function. We iterate on this sequence until we Önd the optimum.

Figure 3 displays our results. First, it is optimal to escalate containment measures

gradually over time. The optimal containment rate rises from 2:9 percent in period zero
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to a peak value of 44 percent in period 37. The rise in containment rates roughly parallels

the dynamics of the infection rate itself. The basic intuition is as follows. Containment

measures internalize the externality caused by the behavior of infected people. So, as the

number of infected people rises it is optimal to intensify containment measures. For example,

at time zero very few people are infected, so the externality is relatively unimportant. A high

containment rate at time zero would have a high social cost relative to the beneÖt. As the

infection rises, the externality becomes important and the optimal containment rate rises.

The optimal containment policy greatly reduces the peak level of infections from 5:1 to

2:6 percent reducing the death toll from 0:53 to 0:36 percent of the initial population. For

a country like the U.S., this reduction represents roughly half a million lives saved. This

beneÖcial outcome is associated with a much more severe recession. The peak-to-trough

fall in aggregate consumption more than doubles, going from about 9:1 percent without

containment measures to about 21 percent with containment measures. The mechanism

underlying this result is straightforward: higher containment rates make consumption more

costly, so people cut back on the amount they consume and work.

Why not choose initial containment rates that are su¢ciently high to induce an immedi-

ate, persistent decline in the number of infected? Absent vaccines, the only way to prevent a

recurrence of the epidemic is for enough of the population to acquire immunity by becoming

infected and recovering. The optimal way to reach this critical level of immunity is gradually

increase containment measures as infections rise and slowly relaxing them as new infections

wane.

5.1 Medical preparedness model

Comparing Figures 3 and 4 we see that the optimal containment policy is more aggressive

in the medical preparedness model than in the SIR-macro model. The peak containment

rate is a bit higher in the medical preparedness model (48 versus 44 percent) and occurs

substantially earlier (at week 26 versus week 37). In addition, the containment rate comes

down much more slowly in the medical preparedness model. These di§erences reáect that,

other things equal, the social cost of the externality is much larger. Not only do agents not

internalize the cost of consumption and work on infection rates, they also donít internalize

the aggregate increase in mortality rates.

The optimal containment policy greatly reduces the peak level of infections from 3:0

without containment to 1:3 percent with containment. The death toll falls from 1:2 to 0:5
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percent of the initial population. For a country like the U.S., this reduction represents

roughly 2:3 million lives saved.

5.2 The treatment and vaccines models

Comparing Figures 3 and 5 we see that the optimal containment policy in the treatment and

SIR-macro models are very similar. In the treatment model, along a path were no treatment

is discovered, the optimal containment policy reduces the peak level of infections from 5:1 to

2:6 percent reducing the death toll from 0:53 to 0:37 percent of the initial population. This

reduction represents roughly 0:6 million lives saved in the U.S.

The black-dashed lines in Figure 6 show that optimal policy is very di§erent in the

SIR-macro model and the vaccination model. With vaccines as a possibility, it is optimal

to immediately introduce severe containment measures to minimize the number of deaths.

Those containment measures cause a very large, persistent recession: consumption falls by

about 14 percent for roughly 50 weeks. But this recession is worth incurring in the hope

that the vaccination arrives before many people get infected.

It is optimal to reduce and delay the peak of the infections in anticipation of a vaccine

being discovered. Figure 6 displays the behavior of the vaccines model under optimal con-

tainment policy on a path where a vaccine does not arrive. Compared to the competitive

equilibrium (solid blue lines), the peak of the infection rate drops from 5:1 to 2:5 percent of

the initial population. Moreover, the infection peak occurs in period 51 rather than in period

32. Absent a vaccination arriving, the optimal policy reduces the death toll as a percent of

the initial population from 0:53 percent to 0:45 percent. For the U.S. this reduction amounts

to about a quarter-of-a-million lives.

Above we discussed why it is not optimal to introduce immediate containment measures

in the baseline SIR-macro and treatment models. But why is optimal policy so di§erent in

the vaccination model? The basic reason is that unlike treatment, a vaccine does not cure

infected people. The expected arrival of a vaccine also reduces the importance of building

up the fraction of the population that is immune to a level that prevents the recurrence of

an epidemic.

18



6 Conclusion

We extend the canonical epidemiology model to study the interaction between economic

decisions and epidemics. In our model, the epidemic generates both supply and demand

e§ects on economic activity. These e§ects work in tandem to generate a large, persistent

recession.

We abstract from many important real-world complications to highlight the basic eco-

nomic forces at work during an epidemic. The central message of our analysis should be

robust to allowing for those complications: there is an inevitable trade-o§ between the

severity of the short-run recession caused by the epidemic and the health consequences of

that epidemic. Dealing with this trade-o§ is a key challenge confronting policy makers.

Finally, we note that our model abstracts from various forces that might a§ect the long-

run performance of the economy. These forces include bankruptcy costs, hysteresis e§ects

from unemployment, and the destruction of supply-side chains. It is important to embody

these forces in macroeconomic models of epidemics and study their positive and normative

implications.
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Appendix A Computing the Equilibrium

For a given sequence of containment rates, f)ctg
H"1
t=0 for some large horizon, H, guess se-

quences for fnst ; nit; nrtg
H"1
t=0 In practice, we solve the model for H = 250 weeks. Compute the
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sequence of the remaining unknown variables in each of the following equilibrium equations:

(nrt = A@
r
bt,

(crt )
"1 = (1 + )ct)@

r
bt,

urt = ln c
r
t &

(

2
(nrt )

2 .

Iterate backwards from the post-epidemic steady-state values of U rt :

U rt = u(c
r
t ; n

r
t ) + #U

r
t+1.

Calculate the sequence for remaining unknowns in the following equations:

(1 + )ct)c
r
t = An

r
t + 0t (@rbt),

(nit = =A@
i
bt,

"
cit
#"1

= @ibt,

uit = ln c
i
t &

(

2

"
nit
#2
,

(1 + )ct)c
s
t = An

s
t + 0t (@sbt),

ust = ln c
s
t &

(

2
(nst)

2 .

Given initial values for Pop0, S0, I0, R0 and D0, iterate forward using the following six

equations for t = 0; ::; H & 1:

Tt = 4s1(Stc
s
t)
"
Itc

i
t

#
+ 4s2(Stn

s
t)
"
Itn

i
t

#
+ 4s3StIt,

Popt+1 = Popt &Dt,

St+1 = St & Tt,

It+1 = It + Tt & (4r + 4d) It,

Rt+1 = Rt + 4rIt,

Dt+1 = Dt + 4dIt.

Iterate backwards from the post-epidemic steady-state values of U st and U
i
t :

U it = u(c
i
t; n

i
t) + #

$
(1& 4r & 4d)U it+1 + 4rU

r
t+1

%
,
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? t =
Tt
St
,

U st = u(c
s
t ; n

s
t) + #

$
(1& ? t)U st+1 + ? tU

i
t+1

%
.

Calculate the sequence of the remaining unknowns in the following equations:

#
"
U it+1 & U

s
t+1

#
& @+t = 0,

(cst)
"1 & @sbt(1 + )ct) + @+t4s1

"
ItC

I
t

#
= 0.

Finally, use a gradient-based method to adjust the guesses fnst ; nit; nrtg
H"1
t=0 so that the fol-

lowing three equations hold with arbitrary precision:

(1 + )ct)c
i
t = =An

i
t + 0t (@ibt),

)ct
"
Stc

s
t + Itc

i
t +Rtc

r
t

#
= 0t (St + It +Rt) ,

&(nst + A@
s
bt + @+t4s2

"
Itn

I
t

#
= 0.
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Figure 1: SIR-Macro Model vs. SIR Model
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Figure 2: Consumption and Hours by Type in SIR-Macro Model
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Figure 3: Baseline vs. Optimal Containment Policy
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Figure 4: Medical Preparedness
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Figure 5: SIR-Macro Model With Treatments
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Figure 6: SIR-Macro Model With Vaccines
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