More on IS-LM and Crowding Out (rev. 3/2)

Suppose the IS curve is given by:

\[
Y = \left(\frac{1}{1 - c(1 - t) + m} \right) \left[\bar{A} + \frac{\text{EXP}}{\bar{M}} - \frac{\text{IMP}}{\bar{M}} + (n + v)q - b \right] \quad \text{let} \quad \bar{\alpha} \equiv \left(\frac{1}{1 - c(1 - t) + m} \right) \quad \text{<IS>}
\]

and the LM curve by:

\[
i = -\left(\frac{1}{h} \left(\frac{\bar{M}}{P} - \mu \right) \right) + \left(\frac{k}{h} \right) Y \quad \text{<LM>} \quad \text{[This is the LM curve in Problem Set 2, Problem #2]}
\]

Graphically:
To obtain equilibrium income substitute the LM curve into the IS:

\[Y = \alpha \left[A + EXP - IMP + (n + v)q - b\left(\frac{1}{h}\right)\left(\frac{M}{P} - \mu\right) + \frac{k}{h}Y \right] \]

Bring the multiplier and the \(Y \) term to the left hand side.

\[Y\left(1 - c(1 - t) + m + \frac{bk}{h}\right) = A + EXP - IMP + (n + v)q + \left(\frac{b}{h}\right)\left(\frac{M}{P}\right) - \left(\frac{b}{h}\right)\mu \]

Divide both sides by the term in parentheses to obtain equilibrium income:

\[Y_0 = \hat{\alpha} \left[A + EXP - IMP + (n + v)q + \left(\frac{b}{h}\right)\left(\frac{M}{P}\right) - \left(\frac{b}{h}\right)\mu \right] \]

where \(\hat{\alpha} = \frac{1}{1 - c(1 - t) + m + \frac{bk}{h}} \)

Note that this is smaller than the Keynesian multiplier \(\bar{\alpha} \)

\[\hat{\alpha} \leq \bar{\alpha} = \frac{1}{1 - c(1 - t) + m} \]

This means that for a given increase in government spending \(\Delta GO \) the increase in income is smaller. To see this, take the total differential,

\[\Delta Y = \hat{\alpha} \left[\Delta A + \Delta EXP - \Delta IMP + (n + v)\Delta q + \left(\frac{b}{h}\right)\Delta \left(\frac{M}{P}\right) - \left(\frac{b}{h}\right)\Delta \mu \right] \]

and set \(\Delta A = \Delta GO \), while everything else stays constant. Then:

\[\Delta Y = \hat{\alpha}\Delta GO \Rightarrow \frac{\Delta Y}{\Delta GO} = \hat{\alpha} \]

To see what happens why this is the case, i.e., that expansionary fiscal policy is less effective in an IS-LM world than in a Keynesian Cross world, consider an increase in government spending on goods and services, \(\Delta A = \Delta GO \) (all other autonomous spending is held constant).
In the Keynesian Cross world, Y would have risen to Y'_0. In the IS-LM world, income only rises to Y_1. That’s because as income rises, money demand rises even as the money supply is held fixed. Incipient excess money demand has to be eliminated, and at a higher income level, that can only be accomplished by a higher interest rate, which affects negatively investment. The difference between Y_1 and Y'_0 is the amount of income “crowded out” due to “crowding out” of investment arising from higher transactions demand for money.

Notice that the larger the b (which implies a flatter IS curve), the more crowding out there is. Similarly, the multiplier $\hat{\alpha}$ is smaller the larger b is. That’s because a large b, holding all else constant, means that for any given interest rate increase, more investment is crowded out, resulting in a larger decline in income relative to Y'_0.

Further notice that the larger h is, the flatter the LM curve, and the less crowding out there is. Similarly, the larger h is, the larger the multiplier $\hat{\alpha}$. That’s because when h is large, as income and money demand rise, only a small increase in interest rates is necessary to re-equilibrate the money market, and hence only a small decline in investment occurs.