Economics 442
Macroeconomic Policy (Spring 2012)
2/16/2015

Instructor: Prof. Menzie Chinn
UW Madison
7-4 The Effects of a Monetary Expansion

Going Behind the Scenes

Figure 7 - 8

The Dynamic Effects of a Monetary Expansion on Output and the Interest Rate

The increase in nominal money initially shifts the LM curve down, decreasing the interest rate and increasing output. Over time, the price level increases, shifting the LM curve back up until output is back at the natural level of output.
7-4 The Effects of a Monetary Expansion

The Neutrality of Money

– In the short run, a monetary expansion leads to an increase in output, a decrease in the interest rate, and an increase in the price level.

– In the medium run, the increase in nominal money is reflected entirely in a proportional increase in the price level. The increase in nominal money has no effect on output or on the interest rate.

• The neutrality of money in the medium run does not mean that monetary policy cannot or should not be used to affect output.
5-5 How Does the IS-LM Model Fit the Facts?

Figure 5 - 9

The Empirical Effects of an Increase in the Federal Funds Rate

In the short run, an increase in the federal funds rate leads to a decrease in output and to an increase in unemployment, but it has little effect on the price level.
How Long Lasting Are the Real Effects of Money?

Figure 1
The Effects of an Expansion in Nominal Money in the Taylor Model

Macroecnometric models are larger-scale versions of the aggregate supply and aggregate demand model in this chapter. They are used to answer questions such as how long the real effects of money last.
7-5 A Decrease in the Budget Deficit

The Dynamic Effects of a Decrease in the Budget Deficit

A decrease in the budget deficit leads initially to a decrease in output. Over time, however, output returns to the natural level of output.

Note: This assumes no portfolio crowding out/in effects.
7-5 A Decrease in the Budget Deficit

Deficit Reduction, Output, and the Interest Rate

Since the price level declines in response to the decrease in output, the real money stock increases. This causes a shift of the LM curve to LM'. Both output and the interest rate are lower than before the fiscal contraction.
7-5 A Decrease in the Budget Deficit

Deficit Reduction, Output, and the Interest Rate

A deficit reduction leads in the short run to a decrease in output and to a decrease in the interest rate. In the medium run, output returns to its natural level, while the interest rate declines further.

Figure 7 - 10

The Dynamic Effects of a Decrease in the Budget Deficit on Output and the Interest Rate
The composition of output is different than it was before deficit reduction. Consider if deficit reduction is due to decrease in G:

\[IS \text{ relation: } Y_n = C(Y_n - T) + I(Y_n, i) + G \]

Income and taxes remain unchanged, thus, consumption is the same as before.

Government spending is lower than before; therefore, investment must be higher than before deficit reduction—higher by an amount exactly equal to the decrease in G.

7-5 A Decrease in the Budget Deficit

Deficit Reduction, Output, and the Interest Rate
7-6 Changes in the Price of Oil

Each of the two large price increases of the 1970s was associated with a sharp recession and a large increase in inflation—a combination macroeconomists call **stagflation**, to capture the combination of **stagnation** and **inflation** that characterized these episodes.
7-6 Changes in the Price of Oil

Effects on the Natural Rate of Unemployment

An increase in the price of oil leads to a lower real wage and a higher natural rate of unemployment. [Note this is a slightly different treatment from in the textbook.]

\[P = W (1 + \mu) \]

\[P = (1 + \mu) W^a P_E^{(1-a)} \]

\[\frac{W}{P} = \frac{1}{(1 + \mu)} \left(\frac{W}{P_E} \right)^{1-a} \]

Figure 7 - 12

The Effects of an Increase in the Price of Oil on the Natural Rate of Unemployment

An increase in the price of oil leads to a lower real wage and a higher natural rate of unemployment. [Note this is a slightly different treatment from in the textbook.]
7-6 Changes in the Price of Oil

The Dynamics of Adjustment

\[P = (1 + \mu) W^a P_E^{(1-a)} \]

\[P = (1 + \mu)[P_e F(u, z)]^a P_E^{(1-a)} \]

• An increase in the price of energy results in an increase in the price level, at any level of output, \(Y \). The aggregate supply curve shifts up.
• In addition, \(Y_n \) falls and \(u_n \) rises.
7-6 Changes in the Price of Oil

The Dynamics of Adjustment

After the increase in the price of oil, the new AS curve goes through point B, where output equals the new lower natural level of output, Y'_n, and the price level equals P^e.

The economy moves along the AD curve, from A to A'. Output decreases from Y_n to Y'.
7-6 Changes in the Price of Oil

The Dynamics of Adjustment

An increase in the price of oil leads, in the short run, to a decrease in output and an increase in the price level. Over time, output decreases further, and the price level increases further.
7-6 Changes in the Price of Oil

Effects on the Natural Rate of Unemployment

Oil Price Increases and Inflation in the United States Since 1970

The oil price increases of the 1970s were associated with large increases in inflation. But this has not been the case for the recent oil price increases.
7-6 Changes in the Price of Oil
Effects on the Natural Rate of Unemployment

Figure 7 - 15

Oil Price Increases and Unemployment in the United States Since 1970

The oil price increases of the 1970s were associated with large increases in unemployment. But this has not been the case for the recent oil price increases.
Focus: Oil Price Increases: Why Were the 2000s so Different from the 1970s?

Figure 1 The Effects of a 100% Permanent Increase in the Price of Oil on the CPI and on GDP. The effects of an increase in the price of oil on output and the price level are smaller than they used to be.
7-7 Conclusions

The Short Run Versus the Medium Run

<table>
<thead>
<tr>
<th></th>
<th>Short Run</th>
<th>Medium Run</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Output Level</td>
<td>Interest Rate</td>
</tr>
<tr>
<td>Monetary expansion</td>
<td>Increase</td>
<td>Decrease (small)</td>
</tr>
<tr>
<td>Deficit reduction</td>
<td>Decrease</td>
<td>Decrease (small)</td>
</tr>
<tr>
<td>Increase in oil price</td>
<td>Decrease</td>
<td>Increase</td>
</tr>
</tbody>
</table>
7-7 Conclusions

Shocks and Propagation Mechanisms

Output fluctuations (sometimes called business cycles) are movements in output around its trend.

The economy is constantly hit by shocks to aggregate supply, or to aggregate demand, or to both.

Each shock has dynamic effects on output and its components. These dynamic effects are called the propagation mechanism of the shock.
9-2 The Use and Limits of Policy

Figure 9-7 Money Demand, Money Supply, and the Liquidity Trap

Read pp. 992-999
9-2 The Use and Limits of Policy

Figure 9-8 The Derivation of the LM Curve in the Presence of a Liquidity Trap
9-2 The Use and Limits of Policy

Figure 9-9 The IS–LM Model and the Liquidity Trap

Diagram showing the IS and LM curves, with the IS curve intersecting the LM curve at point A, which represents the equilibrium output. The LM curve shifts to LM', then to LM'', indicating different monetary policy scenarios. The output Y corresponds to the horizontal axis, and the nominal interest rate i is on the vertical axis. Point B represents the liquidity trap, where the LM curve is vertical at Yn.
9-3 The Slow Recovery

Figure 9-10 The Liquidity Trap and Adjustment Failure
Figure 8-1 Inflation versus Unemployment in the United States, 1900–1960

8-1 Inflation, Expected Inflation, and Unemployment

\[P = P^e (1 + m)(1 - \alpha u + z) \] \hspace{1cm} (8.1)

\[\pi = \pi^e + (m + z) - \alpha u \] \hspace{1cm} (8.2)

\[\pi_t = \pi_t^e + (m + z) - \alpha u_t \] \hspace{1cm} (8.3)
8-2 The Phillips Curve

\[\pi_t = (m + z) - \alpha u_t \] (8.4)
The Phillips Curve

Figure 8-2 Inflation versus Unemployment in the United States, 1948–1969

Source: Series UNRATE, CPIAUSCL, Federal Reserve Economic Data (FRED) http://research.stlouisfed.org/fred2/
8-2 The Phillips Curve

Figure 8-3 Inflation versus Unemployment in the United States, 1970–2010

Source: See Figure 8-2.
8-2 The Phillips Curve

Figure 8-4 U.S. Inflation, since 1914

http://research.stlouisfed.org/fred2/
8-2 The Phillips Curve

\[\pi_t^e = \theta \pi_{t-1} \quad (8.5) \]

\[\pi_t - \pi_{t-1} = (m + z) - \alpha u_t \quad (8.6) \]

\[\pi_t - \pi_{t-1} = 3.3\% - 0.55 u_t \quad (8.7) \]
8-2 The Phillips Curve

Figure 8-5 Change in Inflation versus Unemployment in the United States, 1970–2010

\[\pi_t - \pi_{t-1} = 3.3\% - 0.55 u_t \]

Source: Series CPIUNSLCL, UNRATE: Federal Reserve Economic Data (FRED) http://research.stlouisfed.org/fred2/
8-2 The Phillips Curve

\[u_n = \frac{m + z}{\alpha} \] (8.8)

\[\pi_t - \pi_t^e = -\alpha(u_t - u_n) \] (8.9)

\[\pi_t - \pi_{t-1} = -\alpha(u_t - u_n) \] (8.10)