Economics 435 The Financial System (10/4/21)

Instructor: Prof. Menzie Chinn UW Madison

Fall 2021

Future Value and Present Value

- If the present value is $\$ 100$ and the interest rate is 5%, then the future value one year from now is:

$$
\$ 100+\$ 100(0.05)=\$ 105
$$

- This also shows that the higher the interest rate, the higher the future value.
- In general:

$$
\mathrm{FV}=\mathrm{PV}+\mathrm{PV}(i)=\mathrm{PV}(1+i)
$$

- And:

$$
P V=\frac{F V}{(1+i)}
$$

Future Value and Compound Interest

- What if you leave your $\$ 100$ in the bank for two years at 5% yearly interest rate?
- The future value is:

$$
\begin{gathered}
\$ 100+\$ 100(0.05)+\$ 100(0.05)+\$ 5(0.05)=\$ 110.25 \\
\$ 100(1.05)(1.05)=\$ 100(1.05)^{2}
\end{gathered}
$$

- In general

$$
\begin{aligned}
\mathrm{FV}_{\mathrm{n}} & =\mathrm{PV}(1+i)^{n} \\
P V & =\frac{F V}{(1+i)^{n}}
\end{aligned}
$$

Complications

- What if payments, X_{t}, occur all the way along until the end?
- What if the interest rate, i_{t}, is not constant?

$$
P V_{t}=\left[\frac{X_{t+1}}{\left(1+i_{t}\right)}+\frac{X_{t+2}}{\left(1+i_{t}\right) \times\left(1+i_{t+1}\right)}+\ldots \ldots+\frac{X_{t+n}}{\left(1+i_{t}\right) \times\left(1+i_{t+1}\right) \ldots\left(1+i_{t+n-1}\right)}\right]
$$

- But at time t , one doesn't know $\mathrm{t}+\mathrm{n}$ information ... so:

$$
P V_{t}=\left[\boldsymbol{E}_{t} \frac{\mathrm{X}_{\mathrm{t}+1}}{\left(1+\mathrm{i}_{\mathrm{t}}\right)}+\boldsymbol{\varepsilon}_{t} \frac{X_{t+2}}{\left(1+i_{t}\right) \times\left(1+i_{t+1}\right)}+\ldots \ldots+\boldsymbol{E}_{t} \frac{X_{t+n}}{\left(1+i_{t}\right) \times\left(1+i_{t+1}\right) \ldots\left(1+i_{t+n-1}\right)}\right]
$$

Bond Basics

- The most common type of bond is a coupon bond.
- Issuer is required to make annual payments, called coupon payments.
- The annual interest the borrower pays $\left(\mathrm{i}_{\mathrm{c}}\right)$, is the coupon rate.
- The date on which the payments stop and the loan is repaid (n), is the maturity date or term to maturity.
- The final payment is the principal, face value, or par value of the bond.

Bond Prices

1. Zero-coupon or discount bond

- Promise a single payment on a future date
- Example: Treasury bill

2. Fixed-payment loan

- Sequence of fixed payments
- Example: Mortgage or car loan

3. Coupon bond

- periodic interest payments + principal repayment at maturity
- Example: U.S. Treasury Bonds and most corporate bonds

4. Consol

- periodic interest payments forever, principal never repaid
- Example: U.K. government has some outstanding

Zero-Coupon Bonds

- U.S. Treasury bills (T-bills) are the most straightforward type of bond.
- Each T-bill represents a promise by the U.S. government to pay $\$ 100$ on a fixed future date.
- No coupon payments - zero-coupon bonds
- Also called pure discount bonds (or discount bonds) since the price is less than face value they sell at a discount.
- Price of $\$ 100$ face value zero-coupon bond

$$
=\frac{\$ 100}{(1+i)^{n}}
$$

Zero-Coupon Bonds

Assume $i=5 \%$
Price of a One-Year Treasury Bill

$$
=\frac{100}{(1+0.05)}=\$ 95.24
$$

Price of a Six-Month Treasury Bill

$$
=\frac{100}{(1+0.05)^{1 / 2}}=\$ 97.59
$$

Zero-Coupon Bonds

- For a zero-coupon bond, the relationship between the price and the interest rate is the same as we saw on present value calculations.
- When the price moves, the interest rate moves with it, in the opposite direction.
- We can compute the interest rate from the price using the present value formula.
The price of a one-year T-bill is $\$ 95$.

$$
i=(\$ 100 / \$ 95)-1=0.0526=5.26 \%
$$

Fixed-Payment Loans

- Home mortgages and car loans are fixed-payment loans.
- They promise a fixed number of equal payments at regular intervals.
- Amortized loans - the borrower pays off part of the principal along with the interest for the life of the loan.
- Value of a Fixed Payment Loan =

$$
\frac{\text { FixedPayment }}{(1+i)}+\frac{\text { FixedPayment }}{(1+i)^{2}}+\cdots+\frac{\text { FixedPayment }}{(1+i)^{n}}
$$

- The sum of the present value of the payments.

Coupon Bonds

- The issuer of a coupon bond promises to make a series of periodic interest payments (coupon payments), plus a principal payment at maturity.
Price of Coupon Bond =

$$
\begin{aligned}
P_{C B}= & {\left[\frac{\text { CouponPayment }}{(1+i)^{1}}+\frac{\text { CouponPayment }}{(1+i)^{2}}+\ldots . .+\frac{\text { CouponPayment }}{(1+i)^{n}}\right] } \\
& +\frac{\text { FaceValue }}{(1+i)^{n}}
\end{aligned}
$$

Consols

- Consols or perpetuities, are like coupon bonds whose payments last forever.
- The borrower pays only interest, never repaying the principal.
- The U.S. government sold consols once in 1900, but the Treasury has bought them all back.
- The price of a consol is the present value of all future interest payments.

$$
\mathrm{P}_{\text {Consol }}=\frac{\text { Yearly Coupon Payment }}{\mathrm{i}}
$$

Bond Yields

- We know how to calculate bond prices given an interest rate.
- We also need to be able to go in the other direction.
- Calculate the return to an investment, implicit in the bond's price.
- We will combine information about the promised payments with the price to obtain the yield:
- A measure of the cost of borrowing and the reward for lending.
- We will use the terms yield and interest rate interchangeably.

Yield to Maturity

- The most useful measure of the return on holding a bond is called the yield to maturity:
- The yield bondholders receive if they hold the bond to its maturity when the final principal payment is made.

$$
\text { Price of } 1 \mathrm{yr} 5 \% \text { Coupon Bond }=\frac{\$ 5}{(1+i)}+\frac{\$ 100}{(1+i)}
$$

- The value of i that solves the equation is the yield to maturity.

Current Yield

Example:
1 year, 5% coupon bond selling for $\$ 99$

$$
\text { Current Yield }=\frac{5}{99}=0.0505, \text { or } 5.05 \%
$$

Yield to maturity for this bond is 6.06 percent found as the solution to:

$$
\frac{\$ 5}{(1+i)}+\frac{\$ 100}{(1+i)}=\$ 99
$$

Holding Period Returns

- The one-year holding period return is the sum of the yearly coupon payment divided by the price paid for the bond and the change in the price divided by the price paid.
$=\frac{\text { Yearly Coupon Payment }}{\text { Price Paid }}+\frac{\text { Change in Price of the Bond }}{\text { Price of the Bond }}$
$=$ Current Yield + Capital Gain (as a \%)

Data on "Treasury Notes and Bonds"

http://online.wsj.com/mdc/public/page/2_3020-treasury.html

Data on "Treasury Notes and Bonds"

http://online.wsj.com/mdc/public/page/2_3020-treasury.html

WSJ MARKETS Maraie Chime											
Heme Werla	US Perities	Ecesomy	Business	Tech	markets	Opinion	Books S Arts	ts Real Estate	Les S Work	Ws. Magazine	sports Q
2/15/2048			3.000			19.2400		1192600	10480		2.026
5/15/2048			3.125			122.1700		1221900	10540		2003
8/15/2048			3.000			1200020		120.0220	17280		2007
11/15/2048			3375			1280960		1281160	10660		2.012
2/15/2049			3.000			1201320		1201520	10580		2.022
5/15/2049			2875			117.2740		117.2980	10600		2005
8/15/2049			2250			1041460		1041660	10260		2036
11/15/2049			2375			107.0820		1071020	10320		2.032
2/15/2050			2000			99.0100		99.0300	17060		2042
5/15/2050			1250			821700		82.1900	0.9860		2058
8/15/2050			1375			85.0420		85.0620	0.9960		2058
11/15/2050			1625			90.1900		90.2100	10060		2.053
2/15/2051			1875			\%60500		96.0700	10200		2047
5/15/2051			2375			107.1840		107.2040	1.0520		2.030
8/15/2051			2000			99.0320		99.0520	17160		2038

[^0]
Data on Treasury Bills

https://www.wsj.com/market-data/bonds/treasuries
WSJ MARKETS
Home Werld US. Peilics Economy Business Tech Markets Opinion Books sArts Real Estate Lfe SWork WSJ.Magazine Sports Q

Confusingly,
Treasury
Bills (issued w/maturity 1 yr or less) are
"discount bonds" in our nomenclature

Data on Treasurys

https://www.treasury.gov/resource-center/data-chart-center/interestrates/Pages/TextView.aspx?data=yield

Daily Treasury Yield Curve Rates B Get ugdibes to this conbent.												
Xent These data are aso avalabie in XUE formac by clioing on the XML ioon. QThe scherna for the 诲 is avalable in XSO format by clowng on the XSD icon.												
To access in Select tye Daly Tre	it rate cha Interesf Yeid C	in the ate er Rases	$\text { acy } \mathrm{xM}$	60	te cone	onding	D wcher	clock h				
Select Time Peried												
Date	1 Mo	2 Mo	3 Mo	6 Mo	1 Hr	2 H	3 Tr	5 Yr	7 Yr	10 Yr	20 Yr	30 Yr
01/0421	0.09	0.09	0.09	0.09	0.10	0.11	0.16	0.85	0.64	0.93	1.25	1.68
050521	0.00	0.09	0.09	0.09	0.10	0.13	0.17	0.38	0.60	0.06	1.47	5.70
01/0821	0.00	0.00	0.00	0.00	0.11	0.14	0.20	0.43	0.74	1.04	-1.60	1.81
040721	0.00	0.00	0.00	0.09	0.11	0.14	0.22	0.48	0.88	1.08	1.64	L.85
020921	0.08	0.08	Oces	0.09	Q. 10	0.14	0.24	0.49	Q. 51	1.13	1.87	1.87
04/71/81	0.09	0.08	0.08	0.10	0.10	0.14	0.22	0.90	0.84	1,15	1.68	1.88
01/12/21	0.09	0.08	0.09	0.09	0.11	0.14	0.23	0.50	083	1.15	1.68	1.88
00/13/21	0.09	0.00	0.09	0.10	0.12	0.14	0.22	0.43	0.80	1.19	1.63	4.82
01/1421	0.09	0.00	0.09	0.09	0.10	0.16	0.23	0.4)	0.82	1.15	1.63	1.88
fivenat	noth	nom	nfo	A in	n th	\% 13	nsin	กat	nta	111	1 ma	56\%

Secondary Market, Constant Maturity

Real and Nominal Interest Rates

- The nominal interest rate you agree on (i) must be based on expected inflation (π^{e}) over the term of the loan plus the real interest rate you agree on (r).

$$
i=r+\pi^{e}
$$

- This is called the Fisher Equation.
- The higher expected inflation, the higher the nominal interest rate.

Data on Treasury Inflation Protected Securities (TIPS)

 http://online.wsj.com/mdc/public/page/2_3020-tips.html

Nominal vs. Real

Constant Maturity vs. On the Run vs. Off the Run

Alternative Approach to Bond Prices

- There are other bonds besides government bonds
- In the IS-LM approach incorporating portfolio demand for government bonds, other nongovernment bond supply/demand factors
- A more general approach lumps all bonds together

Factors That Shift Bond Supply

Figure 6.2 A Shift in the Supply of Bonds

Quantity of Bonds

Factors That Shift Bond Demand

Figure 6.3
A Shift in the Demand for Bonds

Quantity of Bonds

[^0]: Source Tullett Prebon

