Problem Set 3 Solutions

Economics 310 - Professor Menzie Chinn
 Fall 2003
 University of Wisconsin-Madison

$5.8 \quad$ a. For this problem, $c=0$ and $d=1$.

$$
\left.\begin{array}{l}
f(x)= \begin{cases}\frac{1}{d-c}=\frac{1}{1-0} & (0 \leq x \leq 1) \\
0 & \text { otherwise }\end{cases} \\
\mu=\frac{c+d}{2}=\frac{0+1}{2}=.5
\end{array}\right\} \begin{aligned}
& \sigma^{2}=\frac{(d-c)^{2}}{12}=\frac{(1-0)^{2}}{12}=\frac{1}{12}=.0833
\end{aligned}
$$

b. $\quad P(.2<x<.4)=(.4-.2)(1)=.2$
c. $\quad P(x>.995)=(1-.995)(1)=.005$. Since the probability of observing a trajectory greater than .995 is so small, we would not expect to see a trajectory exceeding .995 .
$5.14 \quad$ a. $\quad P(-1 \leq z \leq 1)=A_{1}+A_{2}$

$$
\begin{aligned}
& =.3413+.3413 \\
& =.6826
\end{aligned}
$$

b. $\quad P(-2 \leq z \leq 2)=A_{1}+A_{2}$

$$
\begin{aligned}
& =A_{1}+A_{2} \\
& =.4772+.4772 \\
& =.9544
\end{aligned}
$$

c. $\quad P(-2.16<z \leq 0.55)=A_{1}+A_{2}$

$$
\begin{aligned}
& =A_{1}+A_{2} \\
& =.4846+.2088 \\
& =.6934
\end{aligned}
$$

d. $\quad P(-.42<z<1.96)$

$$
\begin{aligned}
& =P(-.42 \leq z \leq 0)+P(0 \leq z \leq 1.96) \\
& =A_{1}+A_{2} \\
& =.1628+.4750 \\
& =.6378
\end{aligned}
$$

e. $\quad P(z \geq-2.33)=P(-2.33 \leq z \leq 0)+P(z \geq 0)$

$$
\begin{aligned}
& =A_{1}+A_{2} \\
& =.4901+.5000 \\
& =.9901
\end{aligned}
$$

f. $\quad P(z<2.33)=P(z \leq 0)+P(0 \leq z \leq 2.33)$

$$
\begin{aligned}
& =A_{1}+A_{2} \\
& =.5000+.4901 \\
& =.9901
\end{aligned}
$$

5.24 The random variable x has a normal distribution with $\mu=50$ and $\sigma=3$.
a. $\quad P\left(x \leq x_{0}\right)=.8413$

So, $A_{1}+A_{2}=.8413$
Since $A_{1}=.5, A_{2}=.8413-.5=.3413$.
Look up the area .3413 in the body of Table IV,
 Appendix B; $z_{0}=1.0$.

To find x_{0}, substitute all the values into the z-score formula:

$$
\begin{aligned}
z & =\frac{x-\mu}{\sigma} \\
1.0 & =\frac{x_{0}-50}{3} \\
x_{0} & =50+3(1.0)=53
\end{aligned}
$$

b. $\quad P\left(x>x_{0}\right)=.025$

So, $A=.5000-.025=.4750$
Look up the area . 4750 in the body of Table IV,
Appendix B; $z_{0}=1.96$.

To find x_{0}, substitute all the values into the z-score formula:

$$
\begin{aligned}
z & =\frac{x-\mu}{\sigma} \\
1.96 & =\frac{x_{0}-50}{3} \\
x_{0} & =50+3(1.96)=55.88
\end{aligned}
$$

c. $\quad P\left(x>x_{0}\right)=.95$

So, $A_{1}+A_{2}=.95$. Since $A_{2}=.5, A_{1}=.95-.5$ $=.4500$. Look up the area .4500 in the body of Table IV, Appendix B; (since it is exactly between two values, average the z-scores). $z_{0} \approx-1.645$.

To find x_{0}, substitute into the z-score formula:

$$
\begin{aligned}
z & =\frac{x-\mu}{\sigma} \\
-1.645 & =\frac{x_{0}-50}{3} \\
x_{0} & =50-3(1.645)=45.065
\end{aligned}
$$

d. $\quad P\left(41 \leq x<x_{0}\right)=.8630$
$z=\frac{x-\mu}{\sigma}=\frac{41-50}{3}=-3$
$A_{1}=P(41 \leq x \leq \mu)=P(-3 \leq z \leq 0)$
$=P(0 \leq z \leq 3)$
$=.4987$

$A_{1}+A_{2}=.8630$, since $A_{1}=.4987, A_{2}=.8630-.4987=.3643$. Look up .3643 in the body of Table IV, Appendix B; $z_{0}=1.1$.

To find x_{0}, substitute into the z-score formula:

$$
\begin{aligned}
z & =\frac{x-\mu}{\sigma} \\
1.1 & =\frac{x_{0}-50}{3} \\
x_{0} & =50+3(1.1)=53.3
\end{aligned}
$$

e. $\quad P\left(x<x_{0}\right)=.10$

So $A=.5000-.10=.4000$
Look up area .4000 in the body of Table IV, Appendix B; $z_{0}=1.28$. Since z_{0} is to the left of $0, z_{0}=-1.28$.

To find x_{0}, substitute all the values into the z-score formula:

$$
\begin{aligned}
& z=\frac{x-\mu}{\sigma} \\
& -1.28=\frac{x_{0}-50}{3} \\
& x_{0}=50-1.28(3)=46.16
\end{aligned}
$$

f. $\quad P\left(x>x_{0}\right)=.01$

So $A=.5000-.01=.4900$
Look up area .4900 in the body of Table IV, Appendix B; $z_{0}=2.33$.
To find x_{0}, substitute all the values into the z-score formula:

$$
\begin{aligned}
& z=\frac{x-\mu}{\sigma} \\
& 2.33=\frac{x_{0}-50}{3} \\
& x_{0}=50+2.33(3)=56.99
\end{aligned}
$$

Let $x=$ wage rates. Then x is normally distributed with $\mu=14$ and $\sigma=1.25$.
a. $\begin{aligned} & \quad P(x>15.30)=P\left(z>\frac{15.30-14}{1.25}\right)=P(z>1.04) \\ &=.5-.3508=.1492\end{aligned}$

> (Using Table IV, Appendix B)
b. $\begin{aligned} P(x>15.30) & =P\left(z>\frac{15.30-14}{1.25}\right. \\ = & 5-3508=1492\end{aligned}=P(z>1.04)$
$=.5-.3508=.1492$
(Using Table IV, Appendix B)
c. $\quad P(x \geq \eta)=P(x \leq \eta)=.5$

Therefore, $\eta=\mu=14$
(Recall from Section 2.5 that in a symmetric distribution, the mean equals the median.)
5.36 Let $x=$ monthly rate of return to stock ABC and $y=$ monthly rate of return to stock XYZ . The random variable x is normally distributed with $\mu=.05$ and $\sigma=.03$ and y is normally distributed with $\mu=.07$ and $\sigma=.05$. You have $\$ 100$ invested in each stock.
a. The average monthly rate of return for ABC stock is $\mu=.05$.

The average monthly rate of return for XYZ stock is $\mu=.07$.
Therefore, stock XYZ has the higher average monthly rate of return.
b. $\quad E(x)=.05$ for each $\$ 1$.

Since we have $\$ 100$ invested in stock ABC , the monthly rate of return would be $100(.05)=\$ 5$.
Therefore, the expected value of the investment in stock ABC at the end of 1 month is $100+5=\$ 105$.
$E(y)=.07$ for each $\$ 1$.
Since we have $\$ 100$ invested in stock XYZ, the monthly rate of return would be $100(.07)=\$ 7$.

Therefore, the expected value of the investment in stock XYZ at the end of 1 month is $100+7=\$ 107$.
c. We need to find the probability of incurring a loss for each stock and compare them.
P (incurring a loss on stock ABC) $\quad P$ (incurring a loss on stock XYZ)
$=P$ (monthly rate of return is $\quad=P$ (monthly rate of return is
negative on stock $A B C$) negative on stock $X Y Z$)
$=P(x<0)$
$=P(y<0)$

$$
\begin{aligned}
P(x<0) & =P\left(z<\frac{0-.05}{.03}\right) \\
& =P(z<-1.67) \\
& =.5000-.4525 \\
& =.0475 \text { (Table IV, Appendix B) }
\end{aligned}
$$

$$
\begin{aligned}
P(y<0) & =P\left(z<\frac{0-.07}{.05}\right) \\
& =P(z<-1.4) \\
& =.5000-.4192 \\
& =.0818 \text { (Table IV, Appendix B) }
\end{aligned}
$$

Since the probability of incurring a loss is smaller for stock $A B C$, stock $A B C$ would have a greater protection against occurring a loss next month.
5.44 a. If the data are normal, then $\mathrm{IQR} / s \approx 1.3$. For this data, $\mathrm{IQR}=Q_{U}-Q_{\mathrm{L}}=51.25-45=$ 6.25. $\mathrm{IQR} / s=6.25 / 6.015=1.04$. Since this value is fairly close to 1.3 , the data are approximately normal.
b. From Exercise 2.38d, the relative frequency histogram looks fairly mound-shaped. This indicates that the data are approximately normal.

Problem 1.X: $\quad D Y=\log \left(G D P_{t}\right)-\log \left(G D P_{t-1}\right) ; D Y \sim N\left(.0074, .008593^{2}\right) ; X \sim N(0,1)$.
a. We want to find the probability that $\log \left(\mathrm{GDP}_{\mathrm{t}}\right)-\log \left(\mathrm{GDP}_{\mathrm{t}-1}\right)$ is less than 0 , which is equivalent to the probability that $\mathrm{DY}<0$.

$$
\begin{aligned}
\mathrm{P}[\mathrm{DY}<0] & =\mathrm{P}[(\mathrm{DY}-.0074) / .008593<(0-.0074) / .008593] \\
& =\mathrm{P}[\mathrm{X}<-.86] \\
& =.1949
\end{aligned}
$$

b. The quarterly growth rate corresponding to an annual 6% rate is 1.5%. Hence, we want to find the probability that $\log \left(\mathrm{GDP}_{\mathrm{t}}\right)-\log \left(\mathrm{GDP}_{\mathrm{t}-1}\right)$ is greater than 1.5%, which is equivalent to the probability that $\mathrm{DY}>0.015$.

$$
\begin{aligned}
\mathrm{P}[\mathrm{DY}>.015]=\mathrm{P}[& (\mathrm{DY}-.0074) / .008593>(.015-.0074) / .008593] \\
& =\mathrm{P}[\mathrm{X}>.88] \\
& =.1894
\end{aligned}
$$

Note: If you used the exact formula for converting the exact formula for growth rates into logs, you would follow the following steps:
The quarterly growth rate is 1.5%. We want to find the probability that ($\mathrm{GDP}_{\mathrm{t}}-\mathrm{GDP}_{\mathrm{t}-1}$)/ $\mathrm{GDP}_{\mathrm{t}-1}$ is greater than 1.5%, which is equivalent to the probability that DY $>\log 1.015$.

$$
\begin{aligned}
\mathrm{P}[\mathrm{DY}>\log 1.015] & =\mathrm{P}[(\mathrm{DY}-.0074) / .008593>(\log 1.015-.0074) / .008593] \\
& =\mathrm{P}[\mathrm{X}>.87] \\
& =.1922
\end{aligned}
$$

a. For $n=100$ and $p=.01$:

$$
\begin{aligned}
& \mu \pm 3 \sigma \Rightarrow n p \pm 3 \sqrt{n p q} \Rightarrow 100(.01) \pm 3 \sqrt{100(.01)(.99)} \\
& \Rightarrow 1 \pm 3(.995) \Rightarrow 1 \pm 2.985 \Rightarrow(-1.985,3.985)
\end{aligned}
$$

Since the interval does not lie in the range 0 to 100 , we cannot use the normal approximation to approximate the probabilities.
b. For $\boldsymbol{n}=100$ and $p=.5$:

$$
\begin{aligned}
& \mu \pm 3 \sigma \Rightarrow n p \pm 3 \sqrt{n p q} \Rightarrow 100(.5) \pm 3 \sqrt{100(.5)(.5)} \\
& \Rightarrow 50 \pm 3(5) \Rightarrow 50 \pm 15 \Rightarrow(35,65)
\end{aligned}
$$

Since the interval lies in the range 0 to 100 , we can use the normal approximation to approximate the probabilities.
c. For $n=100$ and $p=.9$:

```
\(\mu \pm 3 \sigma \Rightarrow n p \pm 3 \sqrt{n p q} \Rightarrow 100(.9) \pm 3 \sqrt{100(.9)(.1)}\)
\(\Rightarrow 90 \pm 3(3) \Rightarrow 90 \pm 9 \Rightarrow(81,99)\)
```

Since the interval lies in the range 0 to 100, we can use the normal approximation to approximate the probabilities.
5.72 Let $x=$ the shelf-life of bread. The mean of an exponential distribution is $\mu=1 / \lambda$. We know that $\mu=2$; therefore, $\lambda=.5$.

We want to find:

$$
P(x>3)=e^{-.5(3)}=e^{-1.5}=.223130 \text { (using Table V in Appendix B) }
$$

6.4 $\quad E(x)=\mu=\sum x p(x)=1(.2)+2(.3)+3(.2)+4(.2)+5(.1)$

$$
=.2+.6+.6+.8+.5=2.7
$$

$$
\begin{aligned}
E(\bar{x})=\sum \bar{x} p(\bar{x})= & 1.0(.04)+1.5(.12)+2.0(.17)+2.5(.20)+3.0(.20)+3.5(.14)+4.0(.08) \\
& +4.5(.04)+5.0(.01) \\
= & .04+.18+.34+.50+.60+.49+.32+.18+.05=2.7
\end{aligned}
$$

6.8. a. $\quad \mu=\sum x p(x)=0\left[\frac{1}{3}\right]+1\left[\frac{1}{3}\right]+4\left(\frac{1}{3}\right]=\frac{5}{3}=1.667$

$$
\begin{aligned}
\sigma^{2}=\sum(x-\mu)^{2} p(x) & =\left[0-\frac{5}{3}\right]^{2}\left[\frac{1}{3}\right]+\left(1-\frac{5}{3}\right]^{2}\left[\frac{1}{3}\right]+\left(4-\frac{5}{3}\right]^{2}\left[\frac{1}{3}\right] \\
& =\frac{78}{27}=2.889
\end{aligned}
$$

b.

Sample	$\overline{\bar{x}}$	Probability
0, 0	0	$1 / 9$
0,1	0.5	1/9
0, 4	2	1/9
1, 0	0.5	1/9
1, 1	1	1/9
1, 4	2.5	1/9
4, 0	2	1/9
4, 1	2.5	1/9
4, 4	4	1/9
\bar{x}	Probability	
0	$1 / 9$	
0.5	2/9	
1	1/9	
2	2/9	
2.5	2/9	
4	1/9	

c. $E(\bar{x})=\sum \bar{x} p(\bar{x})=0\left(\frac{1}{9}\right)+0.5\left(\frac{2}{9}\right]+1\left[\frac{1}{9}\right]+2\left[\frac{2}{9}\right]+2.5\left(\frac{2}{9}\right]+4\left(\frac{1}{9}\right)$

$$
=\frac{15}{9}=\frac{5}{3}=1.667
$$

Since $E(\bar{x})=\mu, \bar{x}$ is an unbiased estimator for μ.
d.

Sample	s^{2}	Probability
0,0	0	1/9
0,1	0.5	1/9
0,4	8	1/9
1,0	0.5	1/9
1,1	0	1/9
1,4	4.5	1/9
4, 0	8	1/9
4, 1	4.5	1/9
4, 4	0	1/9
5^{2}	Probability	
0	3/9	
0.5	2/9	
4.5	2/9	
8	2/9	

e. $\quad E\left(s^{2}\right)=\sum s^{2} p\left(s^{2}\right)=0\left[\frac{3}{9}\right]+0\left[\frac{2}{9}\right]+4.5\left[\frac{2}{9}\right]+8\left[\frac{2}{9}\right]=\frac{26}{9}=2.889$

Since $E\left(s^{2}\right)=\sigma^{2}, s^{2}$ is an unbiased estimator for σ^{2}.

$$
\text { (1) } \quad \text { (.) }
$$

6.16 a. $\mu_{\bar{x}}=\mu=10, \sigma_{\bar{x}}=\sigma / \sqrt{n}=3 / \sqrt{25}=0.6$
b. $\quad \mu_{\bar{x}}=\mu=100, \sigma_{\bar{x}}=\sigma / \sqrt{n}=25 / \sqrt{25}=5$
c. $\mu_{\bar{x}}=\mu=20, \sigma_{\bar{x}}=\sigma / \sqrt{n}=40 / \sqrt{25}=8$
d. $\quad \mu_{\bar{x}}=\mu=10, \sigma_{\bar{x}}=\sigma / \sqrt{n}=100 / \sqrt{25}=20$
6.20 In Exercise 6.19, it was determined that the mean and standard deviation of the sampling distribution of the sample mean are 20 and 2 respectively. Using Table IV, Appendix B:
a. $\quad P(\bar{x}<16)=P\left(z<\frac{16-20}{2}\right)=P(z<-2)=.5-.4772=.0228$
b. $\quad P(\bar{x}>23)=P\left[z>\frac{23-20}{2}\right]=P(z>1.50)=.5-.4332=.0668$
c. $\quad P(\bar{x}>25)=P\left(z>\frac{25-20}{2}\right)=P(z>2.5)=.5-.4938=.0062$
d. $P(16<\bar{x}<22)=P\left(\frac{16-20}{2}<z<\frac{22-20}{2}\right)=P(-2<z<1)$

$$
=.4772+.3413=.8185
$$

e. $\quad P(\bar{x}<14)=P\left\{z<\frac{14-20}{2}\right\}=P(z<-3)=.5-.4987=.0013$
6.24 a. By the Central Limit Theorem, the sampling distribution of \bar{x} is approximately normal with

$$
\mu_{\bar{x}}=\mu=213 \text { and } \sigma_{\bar{x}}=\sigma / \sqrt{n}=15 / \sqrt{49}=2.143
$$

b. $\quad P(\bar{x}>213)=P\left[z>\frac{213-213}{2.143}\right]=P(z>0)=.5$
$P(\bar{x}>217)=P\left[z>\frac{217-213}{2.143}\right]=P(z>1.87)=.5-.4693=.0307$
$\begin{aligned} P(209<\bar{x}<217) & =P\left[\frac{209-213}{2.143}<z<\frac{217-213}{2.143}\right]=P(-1.87<z<1.87) \\ & =.4693+.4693=.9386\end{aligned}$
6.30 a. By the Central Limit Theorem, the sampling distribution of \bar{x} is approximately normal with $\mu_{\bar{x}}=\mu$ and $\sigma_{\bar{x}}=\sigma / \sqrt{n}=\sigma / \sqrt{100}$.
b. The mean of the \bar{x} distribution is equal to the mean of the distribution of the fleet or the fleet mean score.
c. $\mu_{\bar{x}}=\mu=30$ and $\sigma_{\bar{x}}=\sigma / \sqrt{100}=60 / \sqrt{100}=6$.
$P(\bar{x} \geq 45)=P\left[z \geq \frac{45-30}{6}\right]=P(z \geq 2.5)=.5-.4938=.0062$
(using Table IV, Appendix B)
d. The sample mean of 45 tends to refute the claim. If the true fleet mean was as high as 30 , observing a sample mean of 45 or higher would be extremely unlikely (probability $=.0062$). Thus, we would infer that the true mean is actually not 30 but something higher. Thus, we would refute the company's claim that the mean "couldn't possibly be as large as 30 ."

