Problem Set 3 Solutions

Economics 310 – Professor Menzie Chinn Fall 2003 University of Wisconsin-Madison

- 5.8 a. For this problem, c = 0 and d = 1. $f(x) = \begin{cases} \frac{1}{d - c} = \frac{1}{1 - 0} & (0 \le x \le 1) \\ 0 & \text{otherwise} \end{cases}$ $\mu = \frac{c + d}{2} = \frac{0 + 1}{2} = .5$ $\sigma^2 = \frac{(d - c)^2}{12} = \frac{(1 - 0)^2}{12} = \frac{1}{12} = .0833$ b. P(.2 < x < .4) = (.4 - .2)(1) = .2
 - c. P(x > .995) = (1 .995)(1) = .005. Since the probability of observing a trajectory greater than .995 is so small, we would not expect to see a trajectory exceeding .995.

5.14 a. $P(-1 \le z \le 1) = A_1 + A_2$ = .3413 + .3413 = .6826

5.24 The random variable x has a normal distribution with $\mu = 50$ and $\sigma = 3$.

a. $P(x \le x_0) = .8413$ So, $A_1 + A_2 = .8413$ Since $A_1 = 5$, $A_2 = .8413 - .5$

Since $A_1 = .5$, $A_2 = .8413 - .5 = .3413$. Look up the area .3413 in the body of Table IV, Appendix B; $z_0 = 1.0$.

To find x_0 , substitute all the values into the z-score formula:

$$z = \frac{x - \mu}{\sigma}$$

1.0 = $\frac{x_0 - 50}{3}$
 $x_0 = 50 + 3(1.0) = 53$

b.
$$P(x > x_0) = .025$$

So, $A = .5000 - .025 = .4750$

Look up the area .4750 in the body of Table IV, Appendix B; $z_0 = 1.96$.

To find x_0 , substitute all the values into the z-score formula:

$$z = \frac{x - \mu}{\sigma}$$

1.96 = $\frac{x_0 - 50}{3}$
 $x_0 = 50 + 3(1.96) = 55.88$

c.
$$P(x > x_0) = .95$$

So, $A_1 + A_2 = .95$. Since $A_2 = .5$, $A_1 = .95 - .5$ = .4500. Look up the area .4500 in the body of Table IV, Appendix B; (since it is exactly between two values, average the z-scores). $z_0 \approx -1.645$.

To find x_0 , substitute into the z-score formula:

$$z = \frac{x - \mu}{\sigma}$$

1.645 = $\frac{x_0 - 50}{3}$
 $x_0 = 50 - 3(1.645) = 45.065$

d.
$$P(41 \le x < x_0) = .8630$$

$$z = \frac{x - \mu}{\sigma} = \frac{41 - 50}{3} = -3$$

$$A_1 = P(41 \le x \le \mu) = P(-3 \le z \le 0)$$

$$= P(0 \le z \le 3)$$

$$= .4987$$

 $A_1 + A_2 = .8630$, since $A_1 = .4987$, $A_2 = .8630 - .4987 = .3643$. Look up .3643 in the body of Table IV, Appendix B; $z_0 = 1.1$.

To find x_0 , substitute into the z-score formula:

$$z = \frac{x - \mu}{\sigma}$$

1.1 = $\frac{x_0 - 50}{3}$
 $x_0 = 50 + 3(1.1) = 53.3$

e. $P(x < x_0) = .10$

So A = .5000 - .10 = .4000

Look up area .4000 in the body of Table IV, Appendix B; $z_0 = 1.28$. Since z_0 is to the left of 0, $z_0 = -1.28$.

To find x_0 , substitute all the values into the z-score formula:

$$z = \frac{x - \mu}{\sigma}$$

-1.28 = $\frac{x_0 - 50}{3}$
 $x_0 = 50 - 1.28(3) = 46.16$

f. $P(x > x_0) = .01$

So A = .5000 - .01 = .4900

Look up area .4900 in the body of Table IV, Appendix B; $z_0 = 2.33$.

To find x_0 , substitute all the values into the z-score formula:

$$z = \frac{x - \mu}{\sigma}$$

2.33 = $\frac{x_0 - 50}{3}$
 $x_0 = 50 + 2.33(3) = 56.99$

5.30 Let x = wage rates. Then x is normally distributed with $\mu = 14$ and $\sigma = 1.25$.

a. $P(x > 15.30) = P\left\{z > \frac{15.30 - 14}{1.25}\right\} = P(z > 1.04)$ = .5 - .3508 = .1492 (Using Table IV, Appendix B)

b.
$$P(x > 15.30) = P\left[z > \frac{15.30 - 14}{1.25}\right] = P(z > 1.04)$$

= .5 - .3508 = .1492
(Using Table IV, Appendix B)

c. $P(x \ge \eta) = P(x \le \eta) = .5$ Therefore, $\eta = \mu = 14$

(Recall from Section 2.5 that in a symmetric distribution, the mean equals the median.)

- 5.36 Let x = monthly rate of return to stock ABC and y = monthly rate of return to stock XYZ. The random variable x is normally distributed with $\mu = .05$ and $\sigma = .03$ and y is normally distributed with $\mu = .07$ and $\sigma = .05$. You have \$100 invested in each stock.
 - a. The average monthly rate of return for ABC stock is $\mu = .05$. The average monthly rate of return for XYZ stock is $\mu = .07$. Therefore, stock XYZ has the higher average monthly rate of return.
 - b. E(x) = .05 for each \$1.

Since we have \$100 invested in stock ABC, the monthly rate of return would be 100(.05) = \$5.

Therefore, the expected value of the investment in stock ABC at the end of 1 month is 100 + 5 = \$105.

E(y) = .07 for each \$1.

Since we have \$100 invested in stock XYZ, the monthly rate of return would be 100(.07) = \$7.

Therefore, the expected value of the investment in stock XYZ at the end of 1 month is 100 + 7 = \$107.

c. We need to find the probability of incurring a loss for each stock and compare them.

Since the probability of incurring a loss is smaller for stock ABC, stock ABC would have a greater protection against occurring a loss next month.

- 5.44 a. If the data are normal, then IQR/s \approx 1.3. For this data, IQR = $Q_U Q_L = 51.25 45 = 6.25$. IQR/s = 6.25/6.015 = 1.04. Since this value is fairly close to 1.3, the data are approximately normal.
 - b. From Exercise 2.38d, the relative frequency histogram looks fairly mound-shaped. This indicates that the data are approximately normal.

Problem 1.X: $DY = log(GDP_t) - log(GDP_{t-1}); DY \sim N(.0074, .008593^2); X \sim N(0, 1).$

a. We want to find the probability that $log(GDP_t)-log(GDP_{t-1})$ is less than 0, which is equivalent to the probability that DY<0.

P[DY<0] = P[(DY-.0074)/.008593 < (0-.0074)/.008593]= P[X<-.86] =.1949

b. The quarterly growth rate corresponding to an annual 6% rate is 1.5%. Hence, we want to find the probability that $log(GDP_t)-log(GDP_{t-1})$ is greater than 1.5%, which is equivalent to the probability that DY > 0.015.

P[DY>.015] = P[(DY-.0074)/.008593 > (.015-.0074)/.008593]= P[X>.88] = .1894 Note: If you used the exact formula for converting the exact formula for gro

Note: If you used the exact formula for converting the exact formula for growth rates into logs, you would follow the following steps:

The quarterly growth rate is 1.5%. We want to find the probability that $(GDP_t - GDP_{t-1})/GDP_{t-1}$ is greater than 1.5%, which is equivalent to the probability that DY>log 1.015. P[DY>log1.015] = P[(DY-.0074)/.008593 > (log1.015-.0074)/.008593]

= P[X > .87]= .1922

5.52 a. For n = 100 and p = .01:

 $\mu \pm 3\sigma \Rightarrow np \pm 3\sqrt{npq} \Rightarrow 100(.01) \pm 3\sqrt{100(.01)(.99)} \\ \Rightarrow 1 \pm 3(.995) \Rightarrow 1 \pm 2.985 \Rightarrow (-1.985, 3.985)$

Since the interval does not lie in the range 0 to 100, we cannot use the normal approximation to approximate the probabilities.

b. For
$$n = 100$$
 and $p = .5$:

 $\mu \pm 3\sigma \Rightarrow np \pm 3\sqrt{npq} \Rightarrow 100(.5) \pm 3\sqrt{100(.5)(.5)}$ $\Rightarrow 50 \pm 3(5) \Rightarrow 50 \pm 15 \Rightarrow (35, 65)$

Since the interval lies in the range 0 to 100, we can use the normal approximation to approximate the probabilities.

c. For
$$n = 100$$
 and $p = .9$:

 $\mu \pm 3\sigma \Rightarrow np \pm 3\sqrt{npq} \Rightarrow 100(.9) \pm 3\sqrt{100(.9)(.1)}$ $\Rightarrow 90 \pm 3(3) \Rightarrow 90 \pm 9 \Rightarrow (81, 99)$

Since the interval lies in the range 0 to 100, we can use the normal approximation to approximate the probabilities.

5.72 Let x = the shelf-life of bread. The mean of an exponential distribution is $\mu = 1/\lambda$. We know that $\mu = 2$; therefore, $\lambda = .5$.

We want to find:

$$P(x > 3) = e^{-.5(3)} = e^{-1.5} = .223130$$
 (using Table V in Appendix B)

6.4 $E(x) = \mu = \sum xp(x) = 1(.2) + 2(.3) + 3(.2) + 4(.2) + 5(.1)$ = .2 + .6 + .6 + .8 + .5 = 2.7 $E(\overline{x}) = \sum \overline{x}p(\overline{x}) = 1.0(.04) + 1.5(.12) + 2.0(.17) + 2.5(.20) + 3.0(.20) + 3.5(.14) + 4.0(.08)$ + 4.5(.04) + 5.0(.01)

$$= .04 + .18 + .34 + .50 + .60 + .49 + .32 + .18 + .05 = 2.7$$

6.8. a.
$$\mu = \sum xp(x) = 0 \left[\frac{1}{3}\right] + 1 \left[\frac{1}{3}\right] + 4 \left[\frac{1}{3}\right] = \frac{5}{3} = 1.667$$

 $\sigma^2 = \sum (x - \mu)^2 p(x) = \left[0 - \frac{5}{3}\right]^2 \left[\frac{1}{3}\right] + \left[1 - \frac{5}{3}\right]^2 \left[\frac{1}{3}\right] + \left[4 - \frac{5}{3}\right]^2 \left[\frac{1}{3}\right]$
 $= \frac{78}{27} = 2.889$

	Sample	\overline{x}	Probability	
	0, 0	0	1/9	
	0, 1	0.5	1/9	
	0, 4	2	1/9	
	1, 0	0.5	1/9	
	1, 1	1	1/9	
	1, 4	2.5	1/9	
,	4, 0	2	1/9	
	4, 1	2.5	1/9	
	4, 4	4	1/9	

x	Probability
0	1/9
0.5	2/9
1	1/9
2	2/9
2.5	2/9
4	1/9

c.
$$E(\overline{x}) = \sum \overline{x}p(\overline{x}) = 0\left[\frac{1}{9}\right] + 0.5\left[\frac{2}{9}\right] + 1\left[\frac{1}{9}\right] + 2\left[\frac{2}{9}\right] + 2.5\left[\frac{2}{9}\right] + 4\left[\frac{1}{9}\right]$$

$$= \frac{15}{9} = \frac{5}{3} = 1.667$$

Since $E(\overline{x}) = \mu$, \overline{x} is an unbiased estimator for μ .

e s "	Probability	
0	1/9	
0.5	1/9	
8	1/9	
0.5	1/9	
0	1/9	
4.5	1/9	
8	1/9	
4.5	1/9	
0	1/9	_
Probabi	lity	
3/9		
2/9		
2/9		
2/9		
	0 0.5 8 0.5 0 4.5 8 4.5 0 Probabi 3/9 2/9 2/9 2/9	0 1/9 0.5 1/9 8 1/9 0.5 1/9 0.5 1/9 0 1/9 4.5 1/9 8 1/9 4.5 1/9 0 1/9 4.5 1/9 0 1/9 Probability 3/9 2/9 2/9 2/9 2/9

e.
$$E(s^2) = \sum s^2 p(s^2) = 0 \left(\frac{3}{9}\right) + 0 \left(\frac{2}{9}\right) + 4.5 \left(\frac{2}{9}\right) + 8 \left(\frac{2}{9}\right) = \frac{26}{9} = 2.889$$

Since $E(s^2) = \sigma^2$, s^2 is an unbiased estimator for σ^2 .

f+) f+) f+)

6.16 a.
$$\mu_{\overline{x}} = \mu = 10, \ \sigma_{\overline{x}} = \sigma/\sqrt{n} = 3/\sqrt{25} = 0.6$$

b. $\mu_{\overline{x}} = \mu = 100, \ \sigma_{\overline{x}} = \sigma/\sqrt{n} = 25/\sqrt{25} = 5$
c. $\mu_{\overline{x}} = \mu = 20, \ \sigma_{\overline{x}} = \sigma/\sqrt{n} = 40/\sqrt{25} = 8$
d. $\mu_{\overline{x}} = \mu = 10, \ \sigma_{\overline{x}} = \sigma/\sqrt{n} = 100/\sqrt{25} = 20$

- 6.20 In Exercise 6.19, it was determined that the mean and standard deviation of the sampling distribution of the sample mean are 20 and 2 respectively. Using Table IV, Appendix B:
 - a. $P(\overline{x} < 16) = P\left[z < \frac{16 20}{2}\right] = P(z < -2) = .5 .4772 = .0228$
 - b. $P(\overline{x} > 23) = P\left[z > \frac{23 20}{2}\right] = P(z > 1.50) = .5 .4332 = .0668$
 - c. $P(\overline{x} > 25) = P\left[z > \frac{25 20}{2}\right] = P(z > 2.5) = .5 .4938 = .0062$

d.
$$P(16 < \overline{x} < 22) = P\left(\frac{16 - 20}{2} < z < \frac{22 - 20}{2}\right) = P(-2 < z < 1)$$

= .4772 + .3413 = .8185

e.
$$P(\overline{x} < 14) = P\left[z < \frac{14 - 20}{2}\right] = P(z < -3) = .5 - .4987 = .0013$$

6.24 a. By the Central Limit Theorem, the sampling distribution of \overline{x} is approximately normal with

$$\mu_{\overline{x}} = \mu = 213 \text{ and } \sigma_{\overline{x}} = \sigma/\sqrt{n} = 15/\sqrt{49} = 2.143$$

b. $P(\overline{x} > 213) = P\left\{z > \frac{213 - 213}{2.143}\right\} = P(z > 0) = .5$
 $P(\overline{x} > 217) = P\left\{z > \frac{217 - 213}{2.143}\right\} = P(z > 1.87) = .5 - .4693 = .0307$
 $P(209 < \overline{x} < 217) = P\left\{\frac{209 - 213}{2.143} < z < \frac{217 - 213}{2.143}\right\} = P(-1.87 < z < 1.87)$
 $= .4693 + .4693 = .9386$

- 6.30 a. By the Central Limit Theorem, the sampling distribution of \overline{x} is approximately normal with $\mu_{\overline{x}} = \mu$ and $\sigma_{\overline{x}} = \sigma/\sqrt{n} = \sigma/\sqrt{100}$.
 - b. The mean of the \overline{x} distribution is equal to the mean of the distribution of the fleet or the fleet mean score.
 - c. $\mu_{\overline{x}} = \mu = 30 \text{ and } \sigma_{\overline{x}} = \sigma/\sqrt{100} = 60/\sqrt{100} = 6.$ $P(\overline{x} \ge 45) = P\left[z \ge \frac{45 - 30}{6}\right] = P(z \ge 2.5) = .5 - .4938 = .0062$ (using Table IV, Appendix B)
 - d. The sample mean of 45 tends to refute the claim. If the true fleet mean was as high as 30, observing a sample mean of 45 or higher would be extremely unlikely (probability = .0062). Thus, we would infer that the true mean is actually not 30 but something higher. Thus, we would refute the company's claim that the mean "couldn't possibly be as large as 30."