Economics 310
Menzie D. Chinn
Spring 2004
Social Sciencs 7418
University of Wisconsin-Madison

Problem Set 2 Answers (corrected Z.3.b, 3/1)

Define the following events:
A: \{male worker\}
B: \{female worker\}
C: \{service worker\}
$D:\{$ managerial/professional worker $\}$
E: \{operator/fabricator/laborer\}
F: \{technical/sales/administrative worker\}
a. $\quad P(A \cap C)=.05$
b. $\quad P(D)=P(A \cap D)+P(B \cap D)=.16+.16=.32$
c. $\quad P[(B \cap D) \cup(B \cap E)]=.16+.03=.19$
d. $\quad P\left(F^{\mathrm{c}}\right)=1-P(F)=1-[P(A \cap F)+P(B \cap F)]=1-(.10+.18)=1-.28=.72$

The 36 possible outcomes obtained when tossing two dice are listed below:
$(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)$
$(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)$
$(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)$
$(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)$
$(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)$
$(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)$
$A:\{(1,2),(1,4),(1,6),(2,1),(2,3),(2,5),(3,2),(3,4),(3,6),(4,1),(4,3)$, $(4,5),(5,2),(5,4),(5,6),(6,1),(6,3),(6,5)\}$
$B:\{(3,6),(4,5),(5,4),(5,6),(6,3),(6,5),(6,6)\}$
$A \cap B:\{(3,6),(4,5),(5,4),(5,6),(6,3),(6,5)\}$
If A and B are independent, then $P(A) P(B)=P(A \cap B)$.
$P(A)=\frac{18}{36}=\frac{1}{2} \quad P(B)=\frac{7}{36} \quad P(A \cap B)=\frac{6}{36}=\frac{1}{6}$
$P(A) P(B)=\frac{1}{2} \cdot \frac{7}{36}=\frac{7}{72} \neq \frac{1}{6}=P(A \cap B)$. Thus, A and B are not independent.
3.40
a. The frequency table would be:

	Auto	Trad	Ener	Insu	Tele	Elec	Appl	Fins	Ret	Totals
Germany	2			1		1			1	5
Japan	1	6			1	1	2			11
Netherlands			1					1		2
France				1						1
United Kingdom			1							1
Totals	3	6	2	2	1	2	2	1	1	20

b. Define the following events:

G: \{Country is Germany\}
$J:\{$ Country is Japan\}
$N:\{$ Country is Netherlands\}
F : $\{$ Country is France $\}$
$U:\{C$ Country is United Kingdom\}
$A U:\{B u s i n e s s$ is automobiles\}
T : \{Business is trading \}
$E N:\{B u s i n e s s$ is energy\}
$T E$: \{Business is telecommunications\}
I: \{Business is insurance\}
$E L$: \{Business is electronics\}
$A P$: \{Business is appliances\}
$F N$: \{Business is financial services\}
R : \{Business is retailing\}
$P(J)=11 / 20=.55$
c. $\quad P(A U)=3 / 20=.15$
d. $\quad P(I \cup E L)=(2+2) / 20=4 / 20=.20$
e. $\quad P(J \cap A U)=1 / 20=.05$
f. $\quad P(G \cup E L)=6 / 20=.30$
g. $\quad P(A U \mid J)=\frac{P(A U \cap J)}{P(J)}=\frac{1 / 20}{11 / 20}=1 / 11=.091$
h. $\quad P(J \mid A U)=\frac{P(A U \cap J)}{P(A U)}=\frac{1 / 20}{3 / 20}=1 / 3=.333$
i. If J and $A U$ are independent events, then $P(J \mid A U)=P(J)$

From part h, $P(J \mid A U)=.333$ and from part $\mathrm{b}, P(J)=.55$
Since these probabilities are not equal, J and $A U$ are not independent.
3.46 Define the following events:

A: \{Patient receives PMI sheet\}
B : \{Patient was hospitalized\}
$P(A)=.20, P(A \cap B)=.12$

$$
P(B \mid A)=\frac{P(A \cap B)}{P(A)}=\frac{.12}{.20}=.60
$$

3.78 a. We will define the following events:

A: \{The first activation device works properly; i.e., activates the sprinkler when it should $\}$
B: \quad The second activation device works properly\}
From the statement of the problem, we know

$$
P(A)=.91 \text { and } P(B)=.87
$$

Furthermore, since the activation devices work independently, we conclude that

$$
P(A \cap B)=P(A) \dot{P}(B)=(.91)(.87)=.7917
$$

Now, if a fire starts near a sprinkler head, the sprinkler will be activated if either the first activation device or the second activation device, or both, operates properly. Thus,

$$
\begin{aligned}
P(\text { Sprinkler head will be activated })=P(A \cup B) & =P(A)+P(B)-P(A \cap B) \\
& =.91+.87-.7917=.9883
\end{aligned}
$$

b. The event that the sprinkler head will not be activated is the complement of the event that the sprinkler will be activated. Thus,
$P($ Sprinkler head will not be activated $)=1-P($ Sprinkler head will be activated $)$

$$
=1-.9883=.0117
$$

c. From part a, $P(A \cap B)=P(A) P(B)=.7917$
d. In terms of the events we have defined, we wish to determine

$$
P\left(A \cap B^{C}\right)=P(A) P\left(B^{C}\right)(\text { by independence })=.91(1-.87)=.91(.13)=.1183
$$

Problem Z. 1

Let A1 denote the event that the policyholder will have an accident within a year of purchase; and let A denote the event that the policyholder is accident-prone.
Acomplement is the complement of the event A .
a) Hence the desired probability, $\mathrm{P}(\mathrm{A} 1)$, is given by
$\mathrm{P}(\mathrm{A} 1)=\mathrm{P}(\mathrm{A} 1 \mid \mathrm{A}) \mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{A} 1 \mid$ Acomplement $) \mathrm{P}($ Acomplement $)=(.4)^{*}(.3)+(.2)^{*}(.7)=.26$
b) The desired probability is $\mathrm{P}(\mathrm{A} \mid \mathrm{A} 1)$, which is given by
$\mathrm{P}(\mathrm{A} \mid \mathrm{A} 1)=\mathrm{P}(\mathrm{A}, \mathrm{A} 1) / \mathrm{P}(\mathrm{A} 1)=\mathrm{P}(\mathrm{A}) * \mathrm{P}(\mathrm{A} 1 \mid \mathrm{A}) / \mathrm{P}(\mathrm{Al})=(.3) *(.4) /(.26)=6 / 13$
4.18 a. Yes. For all values of $x, 0 \leq p(x) \leq 1$ and $\sum p(x)=.01+.02+.03+.05+.08+.09$ $+.11+.13+.12+.10+.08+.06+.05+.03+.02+.01+.01=1.00$.
b. $\quad P(x=16)=.06$
c. $\quad P(x \leq 10)=p(5)+p(6)+p(7)+p(8)+p(9)+p(10)$

$$
=.01+.02+.03+.05+.08+.09=.28
$$

d. $\quad P(5 \leq x \leq 15)=p(5)+p(6)+p(7)+p(8)+p(9)+p(10)+p(11)+p(12)+p(13)$

$$
\begin{aligned}
& +p(14)+p(15) \\
= & .01+.02+.03+.05+.08+.09+.11+.13+.12+.10+.08 \\
= & .82
\end{aligned}
$$

$4.68 \quad$ a. $\quad \mu=\sum x p(x)=10(.2)+12(.3)+18(.1)+20(.4)=15.4$

$$
\begin{aligned}
\sigma^{2} & =\sum(x-\mu)^{2} p(x) \\
& =(10-15.4)^{2}(.2)+(12-15.4)^{2}(.3)+(18-15.4)^{2}(.1)+(20-15.4)^{2}(.4)=18.44 \\
\sigma & =\sqrt{18.44} \approx 4.294
\end{aligned}
$$

b. $\quad P(x<15)=p(10)+p(12)=.2+.3=.5$
c. $\quad \mu \pm 2 \sigma=15.4 \pm 2(4.294) \Rightarrow(6.812,23.988)$
d. $\quad P(6.812<x<23.988)=.2+.3+.1+.4=1.0$
4.82
a. For company A,

$$
\begin{aligned}
E(x)=\sum_{\text {All } x} x p(x) & =2(.05)+3(.15)+4(.20)+5(.35)+.6(.25) \\
& =.10+.45+.80+1.75+1.50=4.60
\end{aligned}
$$

For company B,

$$
\begin{aligned}
E(x)=\sum_{\text {All } x} x p(x) & =2(.15)+3(.30)+4(.30)+5(.20)+6(.05) \\
& =.30+.90+1.20+1.00+.30=3.70
\end{aligned}
$$

b. The expected profit equals the expected value of x times the profit for each job.

For company A, $4.6(\$ 10,000)=\$ 46,000$
For company B, $3.7(\$ 15,000)=\$ 55,500$
c. For company A,

$$
\begin{gathered}
\begin{aligned}
\sigma^{2}=\sum_{\text {All } x}(x-\mu)^{2} p(x)= & (2-4.6)^{2} .05+(3-4.6)^{2} .15+(4-4.6)^{2} .20 \\
& +(5-4.6)^{2} .35+(6-4.6)^{2} .25
\end{aligned} \\
=.338+.384+.072+.056+.49=1.34 \\
\sigma=\sqrt{\sigma^{2}}=\sqrt{1.34}=1.16
\end{gathered}
$$

For company B,

$$
\begin{gathered}
\begin{aligned}
\sigma^{2}=\sum_{\text {All } x}(x-\mu)^{2} p(x)= & (2-3.7)^{2} .15+(3-3.7)^{2} .30+(4-3.7)^{2} .30 \\
& +(5-3.7)^{2} .20+(6-3.7)^{2} .05
\end{aligned} \\
=.4335+.147+.027+.338+.2645=1.21
\end{gathered}
$$

d. For company A, the graph of $p(x)$ is given here.

For company A,

$$
\begin{aligned}
& \mu \pm 2 \sigma \Rightarrow 4.6 \pm 2(1.16) \Rightarrow 4.6 \pm 2.32 \Rightarrow(2.28,6.92) \\
& P(2.28<x<6.92)=p(3)+p(4)+p(5)+p(6)=.15+.20+.35+.25=.95
\end{aligned}
$$

For company B , the graph of $p(x)$ is given here.

For company B,

$\mu \pm 2 \sigma \Rightarrow 3.70 \pm 2(1.10) \Rightarrow 3.67 \pm 2.2 \Rightarrow(1.5,5.9)$
$P(1.5<x<5.9)=p(2)+p(3)+p(4)+p(5)=.15+.30+.30+.20=.95$

Problem Z. 2

The probability distribution for $n=5$ and $p=.5$ is shown in the following tables (see Exercise 4.4), along witn the partial sums, $\sum_{x=0}^{a} p(x)$.

x	$p(x)$	a	$\sum_{x=0}^{a} p(x)$
0	.03125	0	$p(0)=.03125$
1	.15625		1
$p(0)+p(1)=.18750$			
2	.31250	2	$p(0)+p(1)+p(2)=.50000$
3	.31250	3	$p(0)+p(1)+p(2)+p(3)=.8125$
4	.15625	4	$p(0)+p(1)+p(2)+p(3)+p(4)=.96875$
5	.03125	5	$p(0)+p(1)+p(2)+p(3)+p(4)+p(5)=1$

Problem Z. 3

Use Table 1, Appendix II.
a $\quad \mathrm{P}[x<12]=\mathrm{P}[x \leq 11]=.748$
b $P[x \leq 6]=.610$
c $\quad \mathrm{P}[x>4]=1-\mathrm{P}[x \leq 4]=1-.633=.367$
d $\mathrm{P}[x \geq 6]=1-\mathrm{P}[x . \leq 5]=1-.034=.966$
e $\mathrm{P}[3<x<7]=\mathrm{P}[x \leq 6]-\mathrm{P}[x \leq 3]=.828-.172=.656$
Correction to Z.3.b: $\mathrm{P}[\mathrm{x}<=6]=0.095$
[answer given was for $p=0.40$, not $p=0.60$]
4.46 Define x as the number of physically healthy patients that seek medical assistance. The random variable x is a binomial random variable (the patients are independently chosen with two possible outcomes).
a. When $n=15$ and $p=.1$,

$$
\begin{aligned}
P(x \geq 5) & =1-P(x \leq 4) \\
& =1-.987 \text { (Table II, Appendix B) } \\
& =.013
\end{aligned}
$$

b. When $n=15$ and $p=.4$,

$$
\begin{aligned}
P(x \geq 5) & =1-P(x \leq 4) \\
& =1-.217 \text { (Table II, Appendix B) } \\
& =.783
\end{aligned}
$$

c. We did find 5 of 15 patients seeking medical assistance when they were physically healthy. In part a, we found the probability of finding 5 or more was only .013 when $p=.10$. Since this did occur, p is probably larger than .10 .
4.56 a. To graph the Poisson probability distribution with $\lambda=5$, we need to calculate $p(x)$ for $x=0$ to 15. Using Table III, Appendix B,

$$
\begin{aligned}
& p(0)=.007 \\
& p(1)=P(x \leq 1)-P(x \leq 0)=.040-.007=.033 \\
& p(2)=P(x \leq 2)-P(x \leq 1)=.125-.040=.085 \\
& p(3)=P(x \leq 3)-P(x \leq 2)=.265-.125=.140 \\
& p(4)=P(x \leq 4)-P(x \leq 3)=.440-.265=.175 \\
& p(5)=P(x \leq 5)-P(x \leq 4)=.616-.440=.176 \\
& p(6)=P(x \leq 6)-P(x \leq 5)=.762-.616=.146 \\
& p(7)=P(x \leq 7)-P(x \leq 6)=.867-.762=.105 \\
& p(8)=P(x \leq 8)-P(x \leq 7)=.932-.867=.065 \\
& p(9)=P(x \leq 9)-P(x \leq 8)=.968-.932=.036 \\
& p(10)=P(x \leq 10)-P(x \leq 9)=.986-.968=.018 \\
& p(11)=P(x \leq 11)-P(x \leq 10)=.995-.986=.009 \\
& p(12)=P(x \leq 12)-P(x \leq 11)=.998-.995=.003 \\
& p(13)=P(x \leq 13)-P(x \leq 12)=.999-.998=.001 \\
& p(14)=P(x \leq 14)-P(x \leq 13)=1.000-.999=.001 \\
& p(15)=P(x \leq 15)-P(x \leq 14)=1.000-1.000=.000
\end{aligned}
$$

The graph is shown at right:

b. $\quad \mu=\lambda=5$
$\sigma=\sqrt{\lambda}=\sqrt{5}=2.2361$
$\mu \pm 2 \sigma \Rightarrow 5 \pm 2(2.2361) \Rightarrow 5 \pm 4.4722 \Rightarrow(.5278,9.4722)$
c. $\quad P(.5278<x<9.4722)=P(1 \leq x \leq 9)=P(x \leq 9)-P(x=0)$ $=.968-.007=.961$
d. First, we need to find the mean number of customers per hour. If the mean number of customers per 10 minutes is 6.2 , then the mean number of customers per hour is
$6.2(6)=37.2=\lambda$.
$\mu=\lambda=37.2$ and $\sigma=\sqrt{\lambda}=\sqrt{37.2}=6.099$
$\mu \pm 3 \sigma \Rightarrow 37.2 \pm 3(6.099) \Rightarrow 37.2 \pm 18.297 \Rightarrow(18,903,55.498)$
Using Chebyshev's Rule, we know at least $8 / 9$ or 88.9% of the observations will fall within 3 standard deviations of the mean. The number 75 is way beyond the 3 standard deviation limit. Thus, it would be very unlikely that more than 75 customers entered the store per hour on Saturdays.
a. Using Table III and $\lambda=6.2, P(x=2)=P(x \leq 2)-P(x \leq 1)=.054-.015=.039$
$P(x=6)=P(x \leq 6)-P(x \leq 5)=.574-.414=.160$
$P(x=10)=P(x \leq 10)-P(x \leq 9)=.949-.902=.047$
b. The plot of the distribution is:

c. $\quad \mu=\lambda=6.2, \sigma=\sqrt{\lambda}=\sqrt{6.2}=2.490$
$\mu \pm \sigma \Rightarrow 6.2 \pm 2.49 \Rightarrow(3.71,8.69)$
$\mu \pm 2 \sigma \Rightarrow 6.2 \pm 2(2.49) \Rightarrow 6.2 \pm 4.98 \Rightarrow(1.22,11.18)$
$\mu \pm 3 \sigma \Rightarrow 6.2 \pm 3(2.49) \Rightarrow 6.2 \pm 7.47 \Rightarrow(-1.27,13.67)$
See the plot in part \mathbf{b}.
d. First, we need to find the mean number of customers per hour. If the mean number of customers per 10 minutes is 6.2 , then the mean number of customers per hour is $6.2(6)=37.2=\lambda$.
$\mu=\lambda=37.2$ and $\sigma=\sqrt{\lambda}=\sqrt{37.2}=6.099$
$\mu \pm 3 \sigma \Rightarrow 37.2 \pm 3(6.099) \Rightarrow 37.2 \pm 18.297 \Rightarrow(18,903,55.498)$
Using Chebyshev's Rule, we know at least $8 / 9$ or 88.9% of the observations will fall within 3 standard deviations of the mean. The number 75 is way beyond the 3 standard deviation limit. Thus, it would be very unlikely that more than 75 customers entered the store per hour on Saturdays.
5.10 a. If x is uniformly distributed over the interval $\$ 10,000$ to $\$ 15,000$, then $d=\$ 15,000$ and $c=\$ 10,000$.
$E(x)=\frac{c+d}{2}=\frac{\$ 10,000+\$ 15,000}{2}=\$ 12,500$
The average monthly reimbursements to the employees is $\$ 12,500$.
b. $f(x)=\left\{\frac{1}{d-c}=\frac{1}{\begin{array}{l}\$ 15,000-\$ 10,000 \\ \text { otherwise }\end{array}}=\frac{1}{\$ 5,000}=.0002 \quad(\$ 10,000 \leq x \leq \$ 15,000)\right.$
$P(x>\$ 12,000)=(\$ 15,000-\$ 12,000) .0002=.6$
c. $\quad P(x>a)=.20 \Rightarrow(\$ 15,000-a) .0002=.20$
$\Rightarrow 3-.0002 a=.2$
$\Rightarrow .0002 a=2.8$
$\Rightarrow a=\$ 14,000$
5.16 a. $P(z=1)=0$, since a single point does not have an area.
b. $\quad P(z \leq 1)=P(z \leq 0)+P(0<z \leq 1)$
$=A_{1}+A_{2}$
$=5+3413$
$=.5+.3413$
$=.8413$
(Table IV, Appendix B)

c. $\quad P(z<1)=P(z \leq 1)=.8413$ (Refer to part b.)
d. $\quad P(z>1)=1-P(z \leq 1)=1-.8413=.1587$ (Refer to part b.)
5.78 x is normal random variable with $\mu=40, \sigma^{2}=36$, and $\sigma=6$.
a. $\quad P\left(x \geq x_{0}\right)=.10$

So, $A=.5000-.1000=.4000$.

$$
z_{0}=1.28 \quad \text { (See part a.) }
$$

To find x_{0}, substitute the values into the z-score formula:

$$
z_{0}=\frac{x_{0}-\mu}{\sigma} \Rightarrow 1.28=\frac{x_{0}-40}{6} \Rightarrow x_{0}=1.28(6)+40=47.68
$$

b. $\quad P\left(\mu \leq x \leq x_{0}\right)=.40$

Look up the area . 4000 in the body of Table IV, Appendix B; (take the closest value) $z_{0}=1.28$.

To find x_{0}, substitute the values into the z-score formula:

$$
z_{0}=\frac{x_{0}-\mu}{\sigma} \Rightarrow 1.28=\frac{x_{0}-40}{6} \Rightarrow x_{0}=40+6(1.28)=47.68
$$

c. $\quad P\left(x<x_{0}\right)=.05$

So, $A=.5000-.0500=.4500$.
Look up the area . 4500 in the body of Table IV, Appendix $B ; z_{0}=-1.645$. (. 45 is halfway between
 .4495 and . 4505 ; therefore, we average the z-scores

$$
\frac{1.64+1.65}{2}=1.645
$$

z_{0} is negative since the graph shows z_{0} is on the left side of 0.
To find x_{0}, substitute the values into the z-score formula:

$$
z_{0}=\frac{x_{0}-\mu}{\sigma} \Rightarrow-1.645=\frac{x_{0}-40}{6} \Rightarrow x_{0}=-1.645(6)+40=30.13
$$

d. $\quad P\left(x>x_{0}\right)=.40$

So, $A=.5000-.4000=.1000$.
Look up the area .1000 in the body of Table IV, Appendix B; (take the closest value) $z_{0}=.25$.

To find x_{0}, substitute the values into the z-score formula:

$$
z_{0}=\frac{x_{0}-\mu}{\sigma} \Rightarrow .25=\frac{x_{0}-40}{6} \Rightarrow x_{0}=40+6(.25)=41.5
$$

e. $\quad P\left(x_{0} \leq x<\mu\right)=.45$

Look up the area . 4500 in the body of Table IV, Appendix B; $z_{0}=-1.645$. (. 45 is halfway between .4495 and .4505 ; therefore, we average the z-scores

$$
\frac{1.64+1.65}{2}=1.645
$$

z_{0} is negative since the graph shows z_{0} is on the left side of 0 .
To find x_{0}, substitute the values into the z-score formula:

$$
z_{0}=\frac{x_{0}-\mu}{\sigma} \Rightarrow-1.645=\frac{x_{0}-40}{6} \Rightarrow x_{0}=40-6(1.645)=30.13
$$

5.32 a. Using Table IV, Appendix B, and $\mu=75$ and $\sigma=7.5$,

$$
P(x>80)=P\left[z>\frac{80-75}{7.5}\right]=P(z>.67)=.5-.2486=.2514
$$

Thus, $\mathbf{2 5 . 1 4 \%}$ of the scores exceeded 80 .
b. $\quad P\left(x \leq x_{0}\right)=.98$. Find x_{0}.
$P\left(x \leq x_{0}\right)=P\left(z \leq \frac{x_{0}-75}{7.5}\right)=P\left(z \leq z_{0}\right)=.98$
$A_{1}=.98-.5=.4800$
Looking up area .4800 in Table IV, $z_{0}=2.05$.
$z_{0}=\frac{x_{0}-75}{7.5} \Rightarrow 2.05=\frac{x_{0}-75}{7.5} \Rightarrow x_{0}=90.375$

Z. 4

a. Calculate z :
$z=\frac{0.03-\mu}{\sigma}=\frac{0.030-0.018}{0.022} \approx 0.5454 \approx 0.55$

So the probability that $\mathrm{z}>0.55$ is $\mathbf{0 . 2 9 1 2}$.
b. The probability that payroll employment growth is greater than 3% at annual rate for each of the next four quarters is given by:
$=P(x>0.03) \times P(x>0.03) \times P(x>0.03) \times P(x>0.03)$
$=P(x>0.03)^{4}$
$=(0.2912)^{4}=0.0072$
or less than one percent.
Note, this answer assumes independence of trials (i.e., in this context, employment growth one quarter is independent of employment growth in another quarter; this is not true in general, so the true probability is likely to be greater than this).

