Menzie D. Chinn Social Sciences 7418

Problem Set 2

Due *in lecture* on Monday, October 18th - Wednesday, October 20th. Be sure to put your name on your problem set. Put "boxes" around your answers to the algebraic questions.

- 1. Suppose the economy is described by the following equations (so we are looking at a closed economy):
- # Real Sector

$$Y = AD$$
 Equilibrium condition

 $AD \equiv C + I + G$ Definition of aggregate demand

 $C = a_0 + bY_d$ Consumption function

 $Y_d \equiv Y - T + F$ Defin of disposable income

 $T = TA_0 + tY$ Tax function

 $F = -fY$ Government transfers spending

 $I = e_0 - dR$ Investment function

 $G = GO_0$ Government purchases spending

Asset Sector

$$(M^d/P) = (M^s/P)$$
 Equilibrium condition
 $(M/P)^d = \mu_0 + kY - hR$ Real money demand
 $(M/P)^s = (M_0/P_0)$ Real money supply (with price level fixed)

- 1.1 Solve for the IS curve (*Y* as a function of *R*).
- 1.2 Solve for the LM curve (*R* as a function of *Y*). What is the channel by which monetary influences affect the real goods sector in this model?
- 1.3 Solve for the equilibrium values of *Y*.
- 1.4 Graph the IS and LM curves on one diagram. Clearly indicate the intercepts and the slopes.
- 1.5 What are the exogenous and endogenous variables?
- 1.6 What is the government spending multiplier? What is the monetary policy multiplier?
- 2. Suppose the equations in the model above assume the following values:

$$a_0 = 800$$
; $b = 0.8$ $TA_0 = 200$; $t = 0.10$ $f = .05$; $GO_0 = 800$ $e_0 = 2000$; $d = 10$ $k = 1$; $h = 100$; $\mu_0 = 200$ $M_0 = 10000$; $P_0 = 1$

- 2.1 Calculate the equilibrium values of Y, R, and I (call them Y_0 , R_0 , and I_0 , respectively).
- 2.2 Assume G increases to 1000, and is completely bond financed (no money printed). Calculate the new level of income, Y_I , and hence calculate the numerical value of the government spending multiplier, $\Delta Y/\Delta G$ (OR calculate $\Delta Y/\Delta G$ and then find Y_I).
- 2.3 Calculate how much *investment* has been crowded out by the increase in G. Explain the crowding out *briefly* using words and a graph.
- 2.4 Suppose the G remains at 800, but M/P_0 increases to 10200. Calculate the new equilibrium Y and R (call them Y_2 and R_2).
- 2.5 Calculate the monetary policy multiplier, $\Delta Y/\Delta (M/P)$.

- 3. Suppose that G is increased to 1000, and M/P_0 is also increased to 10200 (so that the fiscal policy is money-financed).
- 3.1 What is the new equilibrium Y and R (call them Y_3 and R_3)?
- 3.2 What is the new level of investment (call it I_3)? Relative to what occurs in question 2.3, why has a different amount of investment been crowded out?
- 4. Using the algebraic model provided in question 1, draw the IS-LM diagrams for the following situations:
- 4.1 Money demand is insensitive to income.
- 4.2 Investment is insensitive to the interest rate.
- 4.3 The marginal tax rate is low.
- 4.4 Money demand is sensitive to the interest rate.
- 5. Given the following economy:

$$Y = AD \equiv C + I + G$$
 $M^s/P = M^d/P$
 $C = a + bY_d$ $M^s/P = M_0/P_0$
 $Y_d \equiv Y - T$ $M^d/P = kY - hR + j(\$Wealth/P_0)$
 $T = TA_0$ $\$Wealth \equiv M + B$
 $I = e_0 - dR$
 $G = GO_0$ $BuD \equiv G - T$; the price level is fixed

- 5.1 Algebraically, derive the equilibrium income.
- 5.2 Show graphically what happens if the government runs a budget deficit, starting from initial budget balance.
- 5.3. Show in an IS/LM diagram what happens if the interest sensitivity of money demand is infinity.

/e302ps2_f10.doc -007 30.9.2010 rev due date 13.10.2010