Economics 302 Intermediate Macroeconomic Theory and Policy (Spring 2010)

> Lecture 19-21 March 24-April 7, 2010

Outline: Investment

- Fluctuations in investment spending
- How firms make investment decisions
- The investment function
- Taxes and investment
- Residential investment
- Inventory investment

Figure 11.1: Fixed Investment and GDP

Investment

- In the economy as a whole, the volume of investment observed is the joint outcome of three factors:
 - investment demand, decisions made by businesses about the amount of investment to undertake;
 - saving supply, decisions made by consumers about the amount to save;
 - investment supply, decisions made by producers of investment goods about how much to supply.
- This chapter focuses on investment demand.

INVESTMENT ANALYSIS

- Investment is the flow of newly produced capital goods.
- Declines in business fixed investment are closely timed with declines in the overall economy.
- Declines in housing investment lead the declines in the overall economy.

11.2 HOW FIRMS MAKE INVESTMENT DECISIONS

- From a firm's perspective two decisions can be distinguished:
 - 1. How many factories and machines do they want?

What is the firm's desired **capital stock?**

2. The second question is How fast do they build the factories and when do they order the machines that they want?

What is the *flow of investment?*

The Firm's Problem

- How much capital will the firm choose to rent?
 - Answer: the amount that equates the marginal benefit to the marginal cost.
 - The marginal benefit is the amount of dollars saved by using fewer of the other factors of production when more capital is employed.
 - The marginal cost of capital is the rental cost charged by the renting firm.

FIGURE 11.3 The Production Function and the Marginal Benefit Macroeconomics, 6th Edition of Capital Macroeconomics W. W. Norton & Company

FIGURE 11.4 The Marginal Benefit of Capital Schedule

Macroeconomics, 6th Edition Copyright © 2005 W. W. Norton & Company

The Rental Price of Capital

- How would the market set the rental price of capital?
- Total rental costs are:

$\mathsf{R}^{\kappa} = (R + d) P^{\kappa}$

- R^{κ} is the rental price of a machine for a year
- R is the real interest rate.
- d is the rate of depreciation.
- P^{κ} is the price for purchasing a new machine
- The equation states:
 - The cost of renting out one machine for one year
 - = (The rate of interest + The rate of depreciation) X
 The price of a new machine

Numerical Example

- If the price of a word processor is \$1,000, the interest rate R = 0.05, and the depreciation rate d = 0.15, then the rental price is \$200 per year.
- If the renter does not have a monopoly in the rental market, the market rental price exactly equals the cost of renting.

FIGURE 11.5 Choosing the Capital Stock

Macroeconomics, 6th Edition Copyright © 2005 W. W. Norton & Company

FIGURE 11.6 Effect of Higher Output

Macroeconomics, 6th Edition Copyright © 2005 W. W. Norton & Company

DEMAND FOR CAPITAL AND THE RENTAL PRICE

- The demand for capital declines if the rental price of capital rises. The rental price rises if the price of new equipment or the interest rate rises.
- The demand for capital rises if planned output rises.
- The demand for capital rises if the wage rises.

The Rental Price and the Decision to Buy New Capital Goods

- The firm uses capital up to the point where the marginal benefit of capital equals the rental price of capital.
- An investment theory based on the equality of marginal benefit and rental price seems a reasonable approximation by which to deal with the aggregate economy

Expected Changes in the Future Price of Capital

- What happens if the relative price of capital goods is expected to change?
 - The forward-looking aspects of the firm's investment decision now become important.

•
$$R^{\kappa} = (R + d) P^{\kappa} - \Delta P^{\kappa}$$

 That is, the old formula in the total rental costs equation less the expected change in the price of capital equipment.

Numerical Example

• For example, if the price is expected to fall from $P^{K} = \$1,000$ to $P^{K}_{+1} = \$950$ next year, the rental price would increase by \$50.

Expected Changes in the Future Price of Capital

$$R^{K} = (R + d) P^{K} - \Delta P^{K}$$

• The same thing can be written more compactly as:

$$R^{K} = (R - \pi^{K} + d) P^{K}$$

Where \(\pi^K\) is the expected percentage change in the relative price of capital equipment:

 $\Box \pi^{\mathsf{K}} = \Delta P^{\mathsf{K}} / P^{\mathsf{K}}$

11.3 THE INVESTMENT FUNCTION

 The firm's investment demand function tells how much capital equipment the firm will purchase given its planned level of output and the rental price of capital.

Desired Capital Stock (K*)

- By adjusting the amount of capital, the marginal benefit can be brought into equality with the rental price.
- The result of this process is the firm's **desired capital stock**, which we call *K**.

Desired Capital Stock (K*)

- An example of an algebraic formula describing the desired capital stock is: $K^* = 0.5(W/R^K)Y$
 - W is the wage rate
 - Y is the firm's level of output
 - R^{κ} is the rental price of capital
 - The formula says that the desired capital stock equals 0.5 times the ratio of the wage to the rental price of capital, times the level of output.

Actual Capital Stock (K)

- If there is no depreciation, then the level of investment increases the capital stock by the amount of the investment
 - Investment equals the change in the capital stock:

$\mathbf{I} = \mathbf{K} - \mathbf{K}_{-1}$

 If the firm wants its capital stock K to equal the desired capital stock K*, then its investment demand I during the year is:

$$\mathbf{I} = \mathbf{K}^* - \mathbf{K}_{-1}$$

Investment Function

• The investment function for the example formula for the desired capital stock *K** can be written out as:

 $I = 0.5(W/R^{K})Y - K_{-1}$

- Investment depends positively on the wage rate, negatively on the rental price of capital, and positively on output.
- The effect of output on investment is called the accelerator.

Investment Function

• If
$$v = 0.5(W/R^{K})$$
, then:

K = vY and $K_{-1} = vY_{-1}$

 $\mathbf{I} = \mathbf{v}\mathbf{Y} - \mathbf{v}\mathbf{Y}_{-1} = \mathbf{v}\Delta\mathbf{Y}$

 In words, the *level* of investment I depends on the *change* in output delta Y.

Lags in the Investment Process

- For many projects, there is a lag of several years between the firm's realization that new capital is needed and the completion of the capital installation.
- Suppose that firms change their capital stock by a fraction s of the difference between the desired capital stock and the capital stock at the end of the last year:

 $I = S(K^* - K_{-1})$

11.4 TAXES AND INVESTMENT

- Taxation of capital tends to discourage investment by reducing the earnings the firm receives from its investment.
- This effect of taxation can readily be incorporated into the rental price formula.

Permanent Tax Changes

- We can modify our rental price deviation to account for taxes by equating the after-tax rental income to the after-tax costs of renting.
- $(1-u)R^{K} = (R+d)(1-z)P^{K}$ (11.10)
- Dividing by 1 u gives

$$R^{K} = \frac{(R+d)(1-z)P^{K}}{1-u}$$
(11.11)

11.5 RESIDENTIAL INVESTMENT

 The economic theory of residential investment can be approached in much the same way as the theory of business investment.

•
$$R^{H} = (R - \pi^{H} + d^{H}) P^{H}$$

Where $\pi^{H} = \Delta P^{H} / P^{H}$, d^{H} very small

$$\bullet I = K^* - K_{-1}$$

HOUSING INVESTMENT

- Housing investment is negatively related to the interest rate.
- Housing investment is positively related to real GDP.
- Housing is the component of investment most sensitive to monetary policy through interest rates.
 - Because housing depreciates so slowly, its rental price is dominated by interest cost.

Macroeconomics, 6th Edition Copyright © 2005 W. W. Norton & Company

11.6 INVENTORY INVESTMENT

- Inventories are stocks of goods in the process of production and also finished goods waiting to be sold.
- What benefits do inventories provide the firm?
 - inventories are an intrinsic part of the physical production process (pipeline function).
 - maintain a **buffer stock** to accommodate unexpected changes in demand.

FIGURE 11.8 Inventory Investment and the Change in GDP

Macroeconomics, 6th Edition Copyright © 2005 W. W. Norton & Company