Algebra for the Growth Accounting Formula

Suppose that each time period A, N, K grow by $\Delta A / A, \Delta N / N, \Delta K, K$. Further assume:
$Y=F(N, K, A)=A f(N, K)$
Take the total differential with respect to time t, set $\Delta t=1$, and manipulating yields:
$\Delta Y / Y=\Delta A / A+\frac{\Delta f(N, K)}{f(N, K)}$
The last term in (5.6) is a differential with respect to the two arguments of the function, N and K. The differential of $f($.) with respect to N is the marginal productivity of labor; the differential of $f\left(\right.$.) with respect to K is the marginal productivity of capital. Let these be denoted by M_{N} and M_{K} respectively, and substitute these expressions into (5.6):

$$
\begin{equation*}
\frac{\Delta f(N, K)}{f(N, K)}=M_{N} \frac{\Delta N}{Y}+M_{K} \frac{\Delta K}{Y} \tag{5.7}
\end{equation*}
$$

(When there are constant returns to scale due to the assumption of a Cobb-Douglas production function.) Substituting (5.7) into (5.6) yields:

$$
\begin{equation*}
\Delta Y / Y=\Delta A / A+M_{N} \frac{\Delta N}{Y}+M_{K} \frac{\Delta K}{Y} \tag{5.8}
\end{equation*}
$$

Suppose (as we assumed in Chapter 11 under perfect competition), that firms hire factors of production up to the point where the marginal product of a factor equals the real factor price (e.g., capital is hired up to the point where rental cost of capital equals the marginal product of capital), viz.

$$
\begin{equation*}
M_{N}=\frac{W}{P}, M_{K}=\frac{R^{K}}{P} \tag{5.9}
\end{equation*}
$$

Substituting into (5.8) yields:
$\Delta Y / Y=\Delta A / A+\left(\frac{W}{P}\right) \frac{\Delta N}{Y}+\left(\frac{R^{K}}{P}\right) \frac{\Delta K}{Y}$
Which can be rewritten as:
$\Delta Y / Y=\Delta A / A+\left(\frac{W N}{P Y}\right) \frac{\Delta N}{N}+\left(\frac{R^{K} K}{P Y}\right) \frac{\Delta K}{K}$

Note that $(W N / P Y)$ is the labor share of income, and $\left(R^{K} K / P Y\right)$ is the capital share of output. These are measurable; in the United States, the former is 0.7 , and the latter is 0.3 , on average.

Substituting these values into (5.11) leads to equation (5.1) in the text, (5.12) in the appendix.

$$
\begin{equation*}
\Delta Y / Y=\Delta A / A+0.7\left[\frac{\Delta N}{N}\right]+0.3\left[\frac{\Delta K}{K}\right] \tag{5.12}
\end{equation*}
$$

One can re-express (5.12) in terms of output per unit labor $(\mathrm{Y} / \mathrm{N})$ by subtracting the growth rate of labor from both sides:
$(\Delta Y / Y)-(\Delta N / N)=\Delta A / A+0.7 \times\left[\frac{\Delta N}{N}\right]+0.3 \times\left[\frac{\Delta K}{K}\right]-(\Delta N / N)$
Which leads to:
$(\Delta Y / Y)-(\Delta N / N)=\Delta A / A+0.3 \times\left[\frac{\Delta K}{K}-\frac{\Delta N}{N}\right]$

Where the left hand side is the growth rate of labor productivity and the term in the [square brackets] on the right hand side is the growth rate of capital per unit labor.

This expression indicates that output per hour can rise because of improving technology (the A term) or because of capital deepening.

Source: Mark Doms, 2009, The Outlook for Productivity Growth: Symposium Summary" Federal Reserve Bank of S.F. Economic Letters, March 20.

