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This study examines the predictive content of futures prices for energy, agricultural, precious and
base metal commodities. In particular, we examine whether futures prices are (1) unbiased and/
or (2) accurate predictors of subsequent prices.We document significant differences both across
and within commodity groups. Precious and base metals fail most tests of unbiasedness and are
poor predictors of subsequent price changes but energy and agricultural futures faremuch better.
We find little evidence that these differences reflect liquidity conditions across markets. In
addition, we document a broad decline in the predictive content of commodity futures prices
since the early 2000s. © 2013 Wiley Periodicals, Inc. Jrl Fut Mark 34:607–636, 2014

Policymakers and other analysts have often relied on quotes from commodity futures markets to
derive forecasts of the prices of key commodities… The poor recent record of commodity futures
markets in forecasting the course of prices raises the question of whether policymakers should
continue to use this source of information and, if so, how.
Ben Bernanke, June 9, 2008

1. INTRODUCTION

Commodity prices have arguably played an important role in accounting for historical
macroeconomic fluctuations. The two oil price shocks in the 1970s remain the most common
explanation for the Great Inflation of the 1970s and the stagflationary patterns observed after
these episodes.1 Hamilton (2009) argues that the oil price run‐up of 2007–2008 can account
for much of the early stages of the Great Recession. Hamilton (1983) and Bernanke, Gertler,
and Watson (1997) note the broader point that most US recessions have been preceded by
large oil price increases. The evidence linking commodity price shocks to macroeconomic
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fluctuations is not limited to oil prices, however. For example, the oil price shocks of the 1970s
were accompanied by twin food price shocks of similar magnitude, a point emphasized early
on by Bosworth and Lawrence (1982) and more recently by Blinder and Rudd (2013). In
addition, small developing economies have often been dependent on a primary commodity for
much of their exports (e.g., Chile and copper) and have experienced dramatic boom‐bust
patterns as a result of commodity price changes.

Given this historical relationship between commodity prices and macroeconomic
fluctuations, forward‐looking policy‐makers and researchers have long been interested in
predicting commodity price movements.2 This paper studies one source of information about
future prices: commodity futures markets. In particular, we examine whether futures prices
are (1) unbiased and/or (2) accurate predictors of subsequent prices, in the markets for
energy, precious metals, base metals, and agricultural commodities. While there is a long
literature studying futures prices for energy markets and particularly oil (see Alquist and
Kilian, 2010 for a recent example), we build on this literature by extending the analysis to other
commodity markets and by emphasizing recent changes in the properties of futures prices. In
our view, a re‐examination is warranted in light of recent public policy concerns about sharp
movements in a broad range of commodity prices, the large inflows of new speculative funds
into energy markets, as well as the fact that the use of futures for non‐energy markets has
grown particularly rapidly in recent years.

We first document, using commodity futures data since 1990 at multiple horizons,
that there are significant differences in the properties of commodity futures both within
and across commodity groups. For example, precious and base metals stand out in how
strongly one can reject the null of unbiasedness. In addition, futures prices for these
commodities display very limited predictive content for future price changes. Much like
exchange rate forward prices (e.g., Meese and Rogoff, 1983, Engel, 1996, Cheung,
Chinn, and Pascual, 2005), metals futures do not typically outperform random walks in
terms of squared forecast errors. The limited predictive content of metal commodities
could be consistent with their historical use by global investors to hedge against aggregate
risks such as inflation, thereby potentially causing futures prices to depart from being
unbiased predictors of subsequent price changes, particularly if such financial flows were
disproportionately targeted to specific futures horizons (e.g., three‐month vs. six‐month
futures contracts). Consistent with the particularly poor predictive content of precious
metals, we document that one could have significantly increased the proportion of
predicted gold price changes by incorporating, above and beyond the information in the
gold futures basis, information from energy futures prices. For example, one could have
doubled the proportion of gold price changes accounted for at the 12‐month ahead
horizon (9% vs. 18%) and at the 6‐month horizon (5% vs. 10%) simply by using the
contemporaneous natural gas futures basis in addition to the gold basis.

In contrast, energy and agricultural commodities hew more closely to the unbiasedness
hypothesis. Futures contracts for these commodities also do relatively better in terms of
predicting subsequent price changes or the sign of price changes than those of precious or
base metals. And in some cases, futures prices significantly outperform random walk
forecasts. Thus, futures prices for energy and agricultural commodities display significantly
stronger predictive content and present less systematic deviations from those properties
expected to hold in efficient markets than is the case for metals futures.

However, we also document significant variation within commodity groups. In
particular, oil futures prices seem to fare worse in predicting subsequent price changes
than other energy commodities, particularly natural gas and gasoline. This is especially visible

2See Wu and McCallum (2005) and Chen et al. (2009) for examples.
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both in terms of mean squared errors as well as in predicting the sign of subsequent price
changes. Given the very high correlation among the prices of different energy products, such
differences in the predictive content of their respective futures prices is unexpected. In fact,
we show that significantly improved oil price forecasts could have been made by utilizing
information from other energy futures prices, thereby almost doubling the fraction of
subsequent oil price changes which could be accounted for at 6‐ and 12‐month futures
horizons.

We then consider whether the cross‐commodity and cross‐horizon variation in
unbiasedness can be accounted for by the liquidity of each market, since a lack of liquidity
could potentially drive persistent deviations from efficiency in a market. We follow
Bessembinder and Seguin (1993) and quantify the liquidity of each commodity at each futures
horizon (3‐, 6‐, or 12‐month) using the ratio of volume of contracts traded to open‐interest.
Consistent with liquidity playing a role in unbiasedness, we find that markets with higher
volumes traded relative to the number of outstanding futures contracts (open interest) do
indeed display weaker evidence against the null of unbiasedness. However, differences in
liquidity across futures markets can account for only a small fraction of the cross‐sectional
variation (10%) and fail to account in particular for the degree to which precious metals fail
tests of unbiasedness.

We also consider the time variation in the properties of futures contracts via rolling
five‐year regressions for each commodity at each horizon. The robust evidence against the
null of unbiasedness in precious metals is driven primarily by the early 2000s, during
which U.S. interest rates were held very low amidst deflationary concerns on the part of
the Federal Reserve. During this period, gold and silver prices began to rise in a sustained
fashion while the gold basis (the difference between longer‐horizon futures and the
one‐month futures) fell. A similar pattern occurred in base metal markets, with large
deviations from the null of unbiasedness over this time period. Metal commodity futures
markets have again displayed large movements away from unbiasedness over the last five
years, suggesting a potentially systematic link between their deviations from market
efficiency and global economic conditions.

While the properties of futures prices across commodity groups experienced little
comovement over the 1990s, this feature of the data disappeared over the course of the
mid‐2000s. First, all commodity groups experienced convergence in their average estimated
basis coefficients toward the null of unbiasedness over the mid‐2000s. This time
period presents the weakest evidence against unbiasedness across commodities of any period
in our sample. However, since the mid‐2000s, all four commodity groups have experienced
persistent deviations in the estimated coefficients on the basis away fromunbiasedness. Similar
results obtain using relative mean squared errors or tests of directionality: there appears to
have been a sharp reduction in the predictive content of commodity futures in recent years.
This could potentially reflect a number of factors, such as changing risk premia following
the global financial crisis or the increased financial investment into commodity futures. But
the fact that rolling directionality tests point to a persistent and common decline in the
predictive content of commodity futures since the early 2000s suggests that this feature of the
data is unlikely to be driven solely by the recent global economic turmoil.

Section 2 discusses the theory of storage and its implications for the properties of futures
prices, as well as some of the previous empirical evidence on futures prices. Section 3
describes our data. Section 4 presents baseline empirical results for the predictive content of
commodity futures from 1990 to 2012. Section 5 investigates the robustness of our findings to
conditional heteroskedasticity, whether the cross‐sectional variation in unbiasedness is
related to liquidity of each market, and time variation in the properties of futures prices.
Section 6 concludes.
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2. THEORY AND PREVIOUS WORK

The notion that the futures price is the best forecast of the spot price is an implication of the
efficient market hypothesis. In an efficient market, new information is reflected instantly in
commodity prices. If this is true, then price patterns are random, and no system based on past
market behavior can do other than break even. The link between efficiency and forecastability
arises from realizing that the difference between the current futures price and the future spot
price represents both the forecasting error and the opportunity gain or loss realized from
taking certain positions. The requirement that the forecasting error is zero on average is
consistent with both market efficiency (the absence of profitable arbitrage opportunities) and
the unbiasedness property of the forecaster.

The futures price of a storable commodity such as crude oil is determined by the spot
price and the cost incurred while the commodity is stored awaiting delivery sometime in the
future. The cost associated with holding the commodity until the delivery date is known as the
cost‐of‐carry. The cost‐of‐carry consists of the cost of storing oil in a tank (and perhaps
insurance) and the financial cost in the form of the opportunity cost of holding oil, or the cost
of funding, and perhaps a risk premium.3

The spot/futures pricing relationship is based on the assumption thatmarket participants
are able to trade in the spot and futures markets simultaneously, that is, they can utilize spot/
futures arbitrage. The relationship between the futures rate and the current spot rate is
given by:

f t;t�k � st�k ¼ dt;t�k þQt;t�k ð1Þ

where ft,t�k is the observed (log) time t� k futures contract price that matures at time t, and
st�k is the time t� k spot rate, dt,t�k the log cost‐of‐carry (the sum of storage costs minus
convenience yield, plus interest costs and a risk premium), andQt,t�k is a term accounting for
the marking‐to‐market feature of futures. The object on the left hand side of (1) is called the
“basis” in the commodity futures literature.4

If we assume the log spot rate follows a time randomwalk with drift, and expectations are
rational, then the time t� k expectation of the change in the spot rate will equal the basis and
the marking‐to‐market term. Hence, in the regression of the change in the spot rate on the
basis,

st � st�k ¼ aþ bðf t;t�k � st�kÞ þ et ð2Þ

a subsumes the terms on the right hand side of (1), as well as the parameters defining the time
series process governing the spot rate, while a¼ 0 and b¼ 1 if the basis is the optimal
predictor of the change in the spot rate. It is important to recall that rejection of the null
hypothesis is then a rejection of a composite hypothesis, including both market efficiency and
unbiased expectations.

Note that one can equivalently express the basis relationship in terms of futures prices at
different horizons, rather than the ex‐post spot price. For example, we can replace the spot
price in (2) with the previous period’s one‐month futures price to get

f t;t�1 � f t�kþ1;t�k ¼ aþ bðf t;t�k � f t�kþ1;t�kÞ þ et ð3Þ

3Williams andWright (1991) provide an excellent overview of the behavior of commodity prices and futures. See also
Fama and French (1987) and Pindyck (2001).
4The discussion and notation is based upon the exposition in Brenner and Kroner (1995).
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to similarly investigate the unbiasedness of futures prices (b¼ 1) or market efficiency (a¼ 0,
b¼1). The null of b¼ 0 is interesting as well, since in this case the basis has no predictive
content for subsequent price changes. Hence, while we will focus in our empirical estimates
primarily on the unbiasedness hypothesis, the additional questions of whether b is different
from zero as well as the market efficiency condition will also be of interest. In practice, we will
focus on specification (3) for reasons we discuss in Section 2, but we reach almost identical
results using specification (2) because, formost commodities, the correlation between ex‐ante
one‐month futures prices and ex‐post spot prices is nearly 1.

The basis equation is useful not only for assessing hypotheses such as unbiasedness
and market efficiency, but also to provide quantitative measures of the predictive content
of commodity futures. For example, the R2 of the regression yields the proportion of
subsequent price changes which could be accounted for ex‐ante using the futures basis.
In Section 4.2, we also consider two related approaches to quantify the predictive content
of commodity futures. The first is comparing the root mean squared forecast error of
futures prices relative to that of a random walk. Comparisons to naïve random walk
forecasts have long been used to quantify predictive content since the random walk
provides a simple benchmark to assess the additional information in futures prices (e.g.,
Meese & Rogoff, 1983). Second, following Pesaran and Timmermann (1992), we assess the
frequency at which the sign of the basis correctly predicts the sign of subsequent price
changes.

The literature examining the behavior of commodity futures markets is fairly extensive.
Early work focused primarily on studying the efficiency of futures markets and yielded diverse
conclusions. Many studies provided evidence for efficient markets and an equally large
number provided evidence that contradicts an efficient market (unbiased futures price
prediction) interpretation. For energymarkets, Serletis (1991) found evidence consistent with
efficient crude petroleummarkets. Bopp and Lady (1991), however, found that either the spot
or the futures price can be the superior forecasting variable depending on market conditions,
and the information content of the two price series is essentially the same. A related literature
has focused on the long‐run properties of the spot and futures prices, in the context of
cointegration (Crowder & Hamed, 1993; Moosa & Al‐Loughani, 1994; Herbert, 1993;
Walls, 1995), again finding mixed results.

More recent work has focused on the quantitative ability of futures prices to predict
subsequent price changes. For example, Alquist and Kilian (2010) and Alquist, Kilian, and
Vigfusson (2012) find little evidence that oil futures prices systematically outperform random
walks but also document that alternative sources of oil forecasts (statistical models, surveys of
professionals, and policy‐makers) only infrequently do better. We find similar results for oil
futures as they do, but we also highlight that futures markets in other energy markets tend to
do better, particularly for gasoline and natural gas. Chernenko, Schwarz, and Wright (2004)
compare the properties of oil and natural gas futures prices to those of exchange rate and
interest rate futures. Other approaches to improving on the performance of futures prices
have considered adjusting for risk premia (Pagano & Pisani, 2009) or using information from
exchange rates (Chen, Rogoff, & Rossi, 2009; Groen & Pesenti, 2010). In the same spirit as
these papers, we present new evidence that one could have improved upon oil and gold futures
prices in terms of predicting the subsequent price changes of each by exploiting information
from other commodity futures prices, particularly heating oil and natural gas. Even closer to
our approach is Reichsfeld and Roache (2011) who study a similar set of commodity futures
prices. However, we emphasize both the qualitative and quantitative differences observable
across as well as within commodity groups. Furthermore, we also consider the time variation
in predictive content as well as potential sources for the observed heterogeneity across
commodities.
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3. DATA

We consider four different types of commodity prices: energy, agricultural products, precious
metals, and base metals. For energy, we include petroleum, natural gas, gasoline, and heating
oil. Corn, soybeans, and wheat are the three agricultural commodities in our sample. For
preciousmetals, we consider gold and silver while our set of basemetals consists of aluminum,
copper, lead, nickel, and tin. Thus, our data include four energy products, two precious
metals, five base metals, and three agricultural commodities. Having a diverse set of
commodities is useful for a number of reasons. First, comparisons across commodities provide
a metric for quantifying the predictive content of futures for one commodity (e.g., how do oil
futures compare to gasoline futures?). Second, some commodities (metals in general, precious
metals in particular) have long been used as hedging mechanisms against broader
macroeconomic risks such as inflation or interest rate volatility because of the ease with
which they can store substantial monetary assets at little additional cost.5 In contrast, other
commodities may be expensive to store (e.g., natural gas) or may have limited durability (e.g.,
some agricultural products). As a result, one might expect differences in predictive content of
futures markets across commodities depending on the liquidity of the markets, the ease with
which the commodities can be stored, and whether they have a history of being used as a store
of value to hedge against macroeconomic uncertainty.

Commodity futures have historically been traded on a variety of exchanges. All four
energy products that we consider are traded on the New York Mercantile Exchange, as are
gold and silver. All five base metals futures are from the London Mercantile Exchange while
our agricultural commodities are from the ChicagoMercantile Exchange. All data on volumes
and prices for these commodities come as reported by Bloomberg. Appendix 1 provides details
on the specific series used for each commodity type.

We focus on end‐of‐month values for each commodity futures. For most of these
commodities, futures prices are consistently available since January 1990 at the 1‐, 3‐, 6‐,
and 12‐month horizons. For base metals, futures prices are not available prior to July 1997,
while our heating oil futures are reported by Bloomberg as of April 1990. In the case of
agricultural commodities, futures contracts are not available for delivery every month. For
example, in the case of corn and wheat, futures contracts are available for delivery in
March,May, July, September, andDecember, whereas soybean futures exist for sevenmonths
out of the year. Gasoline futures have a break in 2006 with the switch from reformulated
gasoline to RBOB gasoline in that year. In our empirical analysis, we use the original futures
series (HU) until December 2005 and switch to the new futures contract (RB) as of
January 2006.

Tomeasure thebasis andex‐postpricechanges,weuse the laggedone‐month futuresprice
rather than ex‐post spot prices.One reason is that spot prices are not consistently available from
Bloombergover theentire sample for somecommodities (e.g., corn).Thus,using theone‐month
futures yields consistency across commodity types. Second, in somemarkets (such as oil), most
spot trading is effectively done using one‐month futures contracts because of delivery lags. As a
result, the one‐month futures price is the more relevant measure to use for comparison with
longer‐horizon futures contracts. Third, with spot prices, one needs to ensure that the ex‐post
spot price is from theday atwhich the contract expires. In contrast, using the one‐month futures
ensures that different futures contracts have the same date of contract expiration (e.g., the
six‐month futures contract fromJanuary1990has the sameexpirationas theone‐month futures
fromMay1990). But none of our results are sensitive to the use of one‐month futures instead of

5Roache and Rossi (2009), for example, document that gold prices respond differently to economic news than other
commodities, consistent with their role as an inflation hedge.
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ex‐post spot prices. This reflects the fact that the correlation between ex‐post spot prices and the
ex‐ante one‐month futures is very close to one.

In the case of gasoline, all HU futures prices are compared to subsequentHU prices, and
RB futures are compared to subsequent RB prices. For agricultural commodities, we use only
the months immediately prior to delivery dates. This yields five observations per year in the
case of corn and wheat and seven observations per year in the case of soybeans. When no
contract is available for delivery at precisely the 3‐, 6‐, or 12‐month horizons, we use the
nearest horizon futures contract which is available.

Figure 1 plots the log of the one‐month futures prices for each of our 14 commodities,
groupedbycommodity type,andnormalizedbytheirApril1990value(July1997forbasemetals).
For the energy market, there is significant comovement among the prices of different
commodities, particularly for oil, heating oil and gasoline. Energy priceswere stable formuch of
the 1990s, but have risen 100–150 log points since then. Agricultural commodities similarly
display strong comovements with one another. Unlike energy commodities, there was no
persistent increase in agricultural prices until the end of 2005, since when these commodities
haverisenapproximately100logpoints.Goldandsilveralsoexhibit strongcomovementwithone
another and apersistent increase since the early 2000sof over 150 logpoints buthave otherwise
been much less volatile than energy and agricultural prices. Finally, base metals show less
comovement with one another than agricultural commodities, particularly in the case of
aluminum, but otherwise follow similar patterns, with a general rise in prices from the early
2000s to the end of 2007.

Consistent with Section 2, we define the h‐month basis at time t as the log‐deviation
between the time‐t futures price for a contract expiring at time tþ h and the time‐t futures
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FIGURE 1
Historical one‐month commodity futures prices

Note. The figure plots the log of the one‐month futures price for each commodity, indexed to an initial
value. For basemetals, the index period is July 1997. For all others, the index period is April 1990. [Color
figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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price for a contract expiring at time tþ 1 ðf tþh;t � f tþ1;tÞ. To assess the properties of the basis,
we will compare them to the ex‐post change in one‐month futures prices from time t to time
tþh�1 ðf tþh;tþh�1 � f tþ1;tÞ. Given our data, we can construct a 3‐, 6‐, and 12‐month basis for
all commodities.

Figure 2 provides illustrative evidence of the relationship between the six‐month basis for
energy and agricultural commodities ðf tþ6;t � f tþ1;tÞ and the ex‐post change in futures prices
over the next five months ðf tþ6;tþ5 � f tþ1;tÞ for each month t. Three of the energy products
(natural gas, heating oil, and gasoline) display a striking ability of the basis to accurately
predict subsequent changes in prices. While there are clear periods in which ex‐post changes
in prices were not reflected in the ex‐ante basis (e.g., the price declines of 2009), the figure
documents clear predictive power in the ex‐ante basis for a number of historical price changes.
In contrast to heating oil, gasoline and natural gas, the six‐month basis for oil prices appears to
anticipate a much smaller fraction of subsequent price changes. While part of this difference
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FIGURE 2
Ex‐post price changes and ex‐ante basis for energy and agricultural futures

Note. The figure plots, for each commodity, the six‐month futures basis (the log‐deviation between the
current six‐month futures contract and the current one‐month futures contract) and the subsequent
five‐month change in the one‐month futures contract for that commodity. The timing of ex‐post price
changes conforms precisely to timing of ex‐ante basis such that vertical difference each period represents
forecast errors. See Section 3 in the text for details. [Color figure can be viewed in the online issue, which
is available at wileyonlinelibrary.com.]
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reflects the greater seasonal (and therefore predictable) variation in gasoline, natural gas and
heating oil markets, similar results hold at the 12‐month frequency as well. This visual
evidence of a different predictive content across energy commodities futures prices is striking
given the very strong correlation among oil, gasoline, and heating oil prices documented in
Figure 1.

Agricultural commodities appear to lie in between these extremes: the bases for corn,
soybeans, and wheat seem to have anticipated many of the price changes of the early to
mid‐1990s, but each commodity experienced persistently positive bases in the late 1990s and
early 2000s with no corresponding systematic price increases ex‐post. There also appears to be
little systematic link between the basis and ex‐post price changes for each agricultural
commodity since the mid to late 2000s. Finally, for agricultural and energy commodities, one
can see that ex‐post price changes have become more volatile in the latter half of the sample,
but no such increase in volatility is visible in the basis. This suggests a decline in the predictive
capacity of these futures markets since the early 2000s, a point which we investigate more
formally in subsequent sections.

Figure 3 displays the equivalent relationships between the basis and ex‐post price
changes for preciousmetals and basemetals. The contrast between these figures and those for
energy and agricultural commodities is striking: there appears to be almost no relationship at all
between the basis and ex‐post price changes for any of themetal commodities.While the volatility
of price changes for metals is very similar to that of energy and agricultural products, the
volatility in the basis for eachmetal commodity is very small compared to that observed for the
other categories. Furthermore, it is difficult to identify any period in which the basis seemed to
correctly anticipate subsequent price changes. This visual evidence suggests that metal
markets, and their futures prices in particular, may have very different properties than other
commodity markets.

4. THE PREDICTIVE CONTENT OF COMMODITY FUTURES PRICES

The visual evidence in Figures 2 and 3 is strongly suggestive of differences in the predictive
content of futures prices across different types of commodities. In this section, we investigate
these differences using more formal statistical methods to characterize the nature and extent
of differences in the properties of futures prices across commodity markets.

4.1. Basis Regressions

To more formally evaluate the properties of commodity futures prices, we first turn to a
statistical analysis of the relationship between the basis and ex‐post price changes.
Specifically, we estimate Equation (3) by OLS using data from 1990 to 2012, or as available,
for each commodity and futures horizon (3‐, 6‐, and 12‐month). Standard errors are
constructed as in Newey and West (1987). We present estimates of b, the coefficient on the
basis, and test statistics for the null hypothesis that a¼ 0 and b¼1 in Table I.

For the crude oil market, the estimates for b at the 3‐, 6‐, and 12‐month horizons are not
statistically distinguishable from unity, as documented in Chinn, Leblanc, and Coibion
(2005) and Alquist and Kilian (2010), but are statistically different from zero. Hence, we can
reject the null hypothesis that the oil basis is uninformative about subsequent oil price
changes (i.e., b¼0) but not the unbiasedness hypothesis (b¼ 1). In addition, one cannot
reject the joint hypothesis of efficient markets (a¼0 and b¼1) at any horizon. However,
consistent with the visual evidence in Figure 2, the quantitative ability of the oil basis to
account for ex‐post price changes is consistently quite low, with a maximum R2 of 0.07 at the
12‐month horizon.
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The point estimates are similar for other energy commodities. The joint hypothesis of
efficient markets (a¼ 0 and b¼ 1) is only infrequently rejected. The coefficient on the basis is
statistically different from zero for all energy commodities and horizons, while the null of
unbiasedness (b¼ 1) can only be rejected at the 5% level for natural gas and heating oil at the
six‐month horizon. Consistent with the visual evidence in Figure 2, the basis for natural gas
and gasoline can account for a much larger component of ex‐post price changes than for oil:
their R2’s at the 3 and six‐month horizons are around 20–25% compared to 3% and 6% for oil
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FIGURE 3
Ex‐post price changes and ex‐ante basis for base and precious metal futures

Note. The figure plots, for each commodity, the six‐month futures basis (the log‐deviation between the
current six‐month futures contract and the current one‐month futures contract) and the subsequent
five‐month change in the one‐month futures contract for that commodity. The timing of ex‐post price
changes conforms precisely to timing of ex‐ante basis such that vertical difference each period represents
forecast errors. See Section 3 in the text for details. [Color figure can be viewed in the online issue, which
is available at wileyonlinelibrary.com.]
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at those same horizons.6 Surprisingly given Figure 2, the basis for heating oil does not account
for a larger share of ex‐post price changes than for oil prices at the six‐month horizon.
However, gasoline, natural gas and heating oil all have modestly higher R2’s at the 12‐month
horizon than oil. In short, these results suggest that all four energy futures markets are
characterized by unbiasedness and market efficiency, but the quantitative ability of these
futures to predict ex‐post price changes varies significantly across energy commodities,
particularly at shorter horizons.

The evidence for agricultural commodities, as was the case with energy commodities, is
consistent withmarket efficiency: we cannot reject the joint hypothesis of a¼0 and b¼1, nor
can we reject the unbiasedness hypothesis for any agricultural commodity at any horizon.
Furthermore, we can strongly reject the null that the basis is uninformative about future price
changes (b¼ 0) for all three agricultural commodities. However, there are again quantitative
differences across commodities in the predictive content of futures prices: soybeans and corn
futures account for a much larger fraction of subsequent price changes than wheat, especially
at longer horizons. Strikingly, while the predictive content of wheat futures is broadly similar
to that of oil at the 12‐month horizon, corn and soybeans futures have R2’s approximately
twice as large as those found in energy markets at the same horizon, although the latter is
reversed at short horizons. Thus, agricultural futures, like energy futures, display properties
consistent with unbiasedness and market efficiency, but again exhibit non‐trivial quantitative
differences in predictive content across commodities.

The visual evidence on base metals in Figure 3 indicated that there was very little
variation in the basis and that what little variation there was did not appear helpful in
predicting ex‐post changes in commodity prices. The results in Table I confirm this
impression: across base metal commodities and futures horizons, we can never reject the null
that b¼ 0, that is, that the futures basis is uncorrelated with subsequent price changes.
Furthermore, while the standard errors are very large due to the lack of historical variation in
the basis, we can reject the null of unbiasedness in more than half of the cases, and the joint
hypothesis of market efficiency is frequently rejected as well. In addition, the R2’s are all
extremely low (only two out of 15 exceed 2%) such that, in quantitative terms, the basis
appears to be of almost no use in predicting ex‐post price changes.

Finally, replicating the same analysis for gold and silver yields even more drastic
results. First, the nulls of market efficiency and unbiasedness are both consistently
rejected at the 5% level at all horizons. Furthermore, the point estimates of b are all
negative for gold and silver, and the null of b¼0 can even be rejected at the 5% level at all
horizons for gold. In fact, gold is the only commodity for which the evidence points to a
robustly negative relationship between the basis and subsequent price changes. Thus, not
only is the null of unbiasedness and market efficiency rejected for gold (as is the case for
most metal commodities), but the negative relationship between the basis and subsequent
price changes suggests that there are unique factors operating in this commodity market,
and possibly in the silver market as well. The negative relationship between the futures
basis for gold and, to a lesser extent, silver is analogous to the forward discount anomaly
observed in exchange rates (Engel, 1996), which suggests that the unique role played by
precious metals as a hedge against inflation may make them behave more like exchange
rates than typical commodities.

6This higherR2 for gasoline and natural gas than for oil at the 3‐ and 6‐month horizons only partly reflects predictable
seasonal variation in gasoline and natural gas prices. If we seasonally adjust gasoline and natural gas futures prices
prior to estimation, the R2s are still significantly higher than those obtained for oil futures. For example, the R2 for
natural gas prices at the 3‐month horizon declines from 24% to 14%, still well above the 3% obtained for oil futures
prices.
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Basis regressions therefore suggest a remarkable contrast across commodity groups as
well as, albeit to a lesser extent, within commodity groups. For energy and commoditymarkets,
futures prices are consistent with unbiasedness and the more general predictions of market
efficiency (with few exceptions). In contrast, in metal commodity markets, futures prices are
either completely uninformative about subsequent pricemovements or, in the case of gold and
to a lesser extent silver, have pointed in the wrong direction on average.

4.2. Alternative Metrics to Measure the Predictive Content of Commodity Futures

Basis regressions provide a natural metric, based on theory, to assess the extent to which
futures prices satisfy expected properties such as unbiasedness or market efficiency. In this
section, we consider two additional methods to quantify the predictive content of commodity
futures. First, we measure the size of the implied forecast errors from commodity futures and
compare them to random walk forecasts. Second, we assess, following Pesaran and
Timmermann (1992), whether the sign of the basis is generally informative about the sign of
subsequent price changes. For the first test, we present the root mean squared forecast error
(RMSE) from futures prices relative to that of a random walk, and assess the statistical
significance of differences between the two using bootstraps of the randomwalk process.7 For
the second test, we present the fraction of times in which changes in the sign of the basis
correctly predicted the sign of the subsequent changes in price changes over the same horizon
and assess the statistical significance of the results following Pesaran and Timmermann
(1992). Note that the traditional test of directionality would assess the extent to which the sign
of the basis would correctly predict the sign of subsequent price changes. However, for gold
futures, the basis is almost always positive in our sample, so test statistics cannot be
constructed. As a result, we perform the equivalent test using first‐differences of the basis and
price changes, that is, we assess whether the sign of changes in the basis predicts the sign of
changes in price changes.8

Table II presents results of both tests applied to the entire sample from 1990 to 2012, or
as available. For relative RMSE’s, energy futures prices consistently yield smaller squared
forecast errors than a naïve forecast, although the differences are only statistically significant
for natural gas and gasoline. Across energy commodities, futures prices fare better relative to
random walks at shorter horizons. As with the basis regressions, natural gas and gasoline
futures have the greatest ability to predict subsequent prices, while oil and heating oil do
relatively worse. Similar results obtain with the directionality tests: the change in the natural
gas and gasoline basis more frequently predicts the sign of subsequent changes in price
changes than do oil and heating oil futures. In most cases, changes in the basis are more
informative about the direction of future price changes at longer horizons.

For agricultural commodities, futures prices help predict the direction of subsequent
price changes, especially at longer horizons, but yield little improvement in terms of squared
forecast errors relative to a random walk. Base metals, as was the case with basis regressions,
display little predictive content in commodity futures: relative squared forecast errors for
futures are no smaller than random walk predictions and changes in the basis offer little
insight for predicting the sign of subsequent price changes at short horizons. Changes in the
basis, however, are more informative about subsequent price changes at longer horizons,
although quantitatively the effects are generally smaller than for energy markets. Precious
metal futures prices also achieve no better outcomes than random walk forecasts in terms of

7Results using absolute mean squared errors are qualitatively similar to RMSE’s.
8We present results for traditional tests of directionality in levels in Appendix Table II.
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squared forecast errors. While changes in the basis at long‐horizons for precious metals are
statistically informative about changes in subsequent prices, the quantitative magnitudes are
again much smaller than those found in other commodity categories. It should also be
emphasized that the fact that the basis for gold is positive almost every single month in the
sample is another anomalous feature of this market which is absent in all other commodity
futures markets.More broadly, the inability of metals futures markets, and especially precious
metals, to outperform random walks along most metrics is reminiscent of results from the
exchange rate literature (Meese & Rogoff, 1983; Cheung et al., 2005). Similarly, the fact that
estimated coefficients on the basis for metals markets are insignificantly different from zero or
negative is analogous to the common finding of a negative coefficient on the forward basis of
exchange rates when predicting ex‐post changes in exchange rates (e.g., Frankel &
Chinn, 1993; Engel, 1996). This suggests that, historically, metal commodity futures which
have been used by financial investors as hedges against broader macroeconomic risks display
properties more akin to those found in exchange rates than to energy and agricultural
commodities.

We also compare the predictive content of commodity futures to those of simple
univariate ARIMA models. To do so, we generate rolling out‐of‐sample forecasts from an
ARIMA representation of each commodity futures at each horizon, starting in January 2003.
We then compare these forecasts to random walk benchmarks in terms of root mean squared
forecast errors. Because these out‐of‐sample forecasts are over a different time sample, we
also construct root mean squared forecast errors of futures prices relative to random walks
over the equivalent time periods. The results, also shown in Table II, indicate that univariate
ARIMA models systematically fared much worse than futures prices and random walks in
predicting subsequent prices. For every commodity at every horizon, the relative RMSE of
futures is lower than that of univariate forecasts. It should also be noted that while most
futures prices achieve worse or unchanged relative RMSE over this restricted time period, that
of silver and especially gold futures are substantially improved. For example, the relative
RMSE of gold futures prices at the 12‐month horizon goes from 0.99 over the whole sample to
0.81 (the lowest of any commodity) over the sample since 2003. This result again reflects the
fact that the gold basis has been systematically positive. During the 1990s and early 2000s,
gold prices were fairly constant or falling so the positive basis was systematically worse than a
no‐change forecast. Since the early 2000s, on the other hand, gold prices have been rising so
the positive basis implies that longer horizon futures prices outperformed no‐change forecasts
on average.

4.3. The Efficiency of Oil and Gold Futures Prices

The basis regressions highlighted two key features of the data. First, oil futures prices have not
been as effective in predicting ex‐post oil price changes as other energy commodities. Second,
metal commodities, and particularly gold, futures prices display significant departures from
unbiasedness. The fact that oil futures prices can account for much less of subsequent price
changes than other energy commodities is particularly striking given the fact that price
changes across energy commodities are highly correlated. In this section, we investigate
whether information from non‐oil commodities is informative about ex‐post oil and gold price
changes after controlling for the basis of each. This is a test of the efficiency of futures prices,
the notion that futures prices should embody all relevant information about future prices. We
focus specifically on oil and gold futures for two reasons. First, these two markets have
historically received a disproportionate amount of attention, oil for its macroeconomic
implications and gold because of its traditional role as an inflation hedge. Second, each of
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these commodities stands out in its commodity class in some respect: oil futures account for a
smaller share of subsequent price changes than natural gas or gasoline futures, while gold
displays the sharpest evidence against unbiasedness among all metal commodities.

To assess whether one could have better predicted oil price changes using information
from non‐oil futures markets, we estimate the standard basis equation for oil prices at each
horizon, augmented with the contemporaneous basis from natural gas and heating oil
commodities at the same horizon. The results at the 3‐, 6‐, and 12‐month horizons are
presented in Panel A of Table III. Across horizons, we find evidence that useful information
for predicting ex‐post oil price changes was present in non‐oil futures prices even after
controlling for the oil price basis. At the three‐month horizon, the additional predictability of
oil prices coming from heating oil and natural gas prices is quite small, with the adjusted R2

rising only from 3% to 4%. However, at the 6‐ and 12‐month horizons, information in these
other energy futures prices significantly raises the predictability of oil price changes, with
adjusted R2’s rising from 6% and 7% to 10% and 11% respectively, almost doubling each. This
again suggests that the limited predictive content of oil futures prices relative to other energy
commodities does not stem solely from seasonal pricing patterns.

Second, we investigate whether gold price changes are similarly predictable ex‐post using
ex‐ante information from other commodity markets. For simplicity, we focus on additional
predictive power from natural gas futures, since these futures seem to be able to predict the
highest fraction of their own ex‐post price changes relative to other commodities. Again, we
estimate our baseline basis specification, in this case for gold at each horizon, augmented to
include the natural gas basis at the equivalent horizon, using the entire sample from 1990 to
2012. The results, presented in Panel B of Table III, point to significant available information
not being incorporated in gold prices: at each horizon, the natural gas basis has additional
predictive power above and beyond the information incorporated in gold futures prices. As
with oil, the effects are relatively large, especially at longer forecast horizons. The adjusted
R2’s at the 6‐ and 12‐month horizons rise from 5% and 9% to 10% and 18% respectively. These
represent large potential quantitative gains in predictability.

In short, these results point to significant differences in predictive content of futures
prices across commodity types. First, metals futures, and especially those of precious metals,
fail most tests of unbiasedness and market efficiency. In addition, these futures prices fare no
better than random walk forecasts in most respects. In contrast, energy and agricultural
commodities futures hewmore closely to unbiasedness and market efficiency. There is useful
information in futures prices in terms of predicting subsequent price changes, both in terms of
signs of price changes and in RMSE’s relative to random walks. Finally, there is significant
heterogeneity within commodity groups as well. Oil markets account for amuch smaller share
of ex‐post price changes than some energy markets, despite the very high correlation in their
spot prices. This is reflected in the fact that information in non‐oil futures prices could have
been used to improve upon the forecasts embedded in oil futures prices.

5. POSSIBLE SOURCES OF VARIATION IN PREDICTIVE CONTENT OF
COMMODITIES

The previous section identifies significant cross‐sectional variation in the predictive content of
commodity futures prices. For example, within energy commodities, natural gas and gasoline
futures appear to explain a larger share of subsequent price changes than do oil or heating oil
futures. Even larger differences exist across commodity groups, with metals (and especially
precious metals) displaying much weaker predictive content than energy or agricultural
commodities. In this section, we consider several potential sources for this variation. The first
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is statistical: we control for potentially heterogeneous conditional heteroskedasticity across
commodities. Second, we assess whether the cross‐sectional variation in predictive content
reflects different levels of liquidity across commodity markets. Third, we investigate time
variation in the properties of futures prices across commodities.

5.1. GARCH Effects

In the previous analysis, we allowed for serial correlation and heteroskedasticity of a general
form, using robust standard errors to make inferences regarding statistical significance.
However, it is well‐known that asset prices, including derivatives based on underlying
commodities, often display systematic conditional heteroskedasticity. This understanding
motivates a formal GARCH approach to modeling the heteroskedasticity.9

First, we test for the presence of conditional heteroskedasticity. Formal tests of the
null of no ARCH effects in the simple basis regressions are rejected the 1% level for all
commodity markets at all horizons. Thus, modeling the heteroskedasticity in errors is
likely to increase the efficiency of the estimates. As a result, we present in Table IV
estimates of the basis specifications for each commodity and time horizon using GARCH
(p,q), where p and q terms are chosen via the AIC criterion for each commodity at each
horizon.10

The use of GARCH reduces the standard errors of our point estimates by a substantial
amount, approximately 50% on average across commodities and horizons. The results confirm
the qualitative results from the previous section but yield more robust rejections of market
efficiency than was previously the case. For example, Wald tests now point to rejections of
market efficiency at the 5% level for all energy futures other than 12‐month heating oil.
Similarly, the reduced standard errors lead to more pervasive rejections of the null of
unbiasedness. For example, we can now reject unbiasedness for natural gas futures at all
horizons. Similar results obtain for other commodity groups. In agricultural products, the null
of unbiasedness can now be rejected for soybeans at the 6‐month horizon and for wheat at the
12‐month horizon. For base metals, we can reject the null of unbiasedness for 8 out of 15
commodity‐horizons at the 5% level, whereas this ratio was only 5 out of 15 in Table I.

Despite this, the quantitative ability of different futures markets to account for
subsequent changes in prices is largely unchanged: it is still the case that natural gas and
gasoline futures anticipated much larger fractions of ex‐post price changes than oil
futures at the three‐ and six‐month horizons. Similarly, the predictive content of energy
and agricultural futures overall vastly exceeds that of base and precious metals. In the
same vein, we can always reject the null hypothesis that the basis has no predictive power
for ex‐post price changes among energy and agricultural commodities, whereas metal
commodities frequently display coefficients on the basis which are not statistically
different from zero or else point in the wrong direction. Thus, while explicitly modeling
potential conditional heteroskedasticity at the level of each futures market yields more
pervasive and consistent rejections of unbiasedness and market efficiency across
commodity markets, the variation in the quantitative ability of different futures markets
to account for ex‐post price changes remains.

9See Hamilton (2007) for further motivation of GARCH.
10For the results in Table IV, we restrict both the p and q GARCH terms to be second‐order or less. Relaxing this
assumption does notmaterially affect the results. However,more general forms ofGARCH lead to excessive sensitivity
to individual observations and a resulting lack of robustness of results. We do not present GARCH estimates of gold
and silver at the 12‐month horizons because of missing observations within the sample for each of these commodities.
Qualitatively similar results obtain using Arch‐in‐Means.
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5.2. Liquidity Across Futures Markets

Unbiasedness and broader forms of efficiency require that markets be sufficiently liquid
for agents to readily and costlessly change positions in response to incoming information.
One potential source of heterogeneity across commodity markets in terms of the predictive
content of their futures markets is therefore the liquidity of each financial market. To
quantify the liquidity of different futures markets, we use a measure similar in spirit
to what is commonly done in the financial development literature. There, research
frequently measures the depth of equity markets via the rate at which shares are traded,
which can be proxied by the value of the traded volume of shares relative to market
capitalization (Beck & Levine, 2004). The latter has no direct equivalent in futures
markets, where the number of contracts between traders need not be directly tied to
the underlying stock of commodities available for delivery. However, one can use the ratio
of volume of trades to open interest as a measure of liquidity. Open interest refers to the
number of contracts outstanding that have not been closed or delivered upon. The
ratio of volume of contracts traded relative to open interest therefore provides a measure
of how many contracts have been traded relative to the stock of futures contracts
outstanding. This provides a useful metric of liquidity in futures markets (Bessembinder &
Seguin, 1993).

Using daily data on volume of trades and open interest from Bloomberg, we construct a
commodity and horizon‐specific measure of liquidity defined as the median over daily ratios of
volume to open interest from January 1, 2000 to August 23, 2012. Data on volumes and open
interest prior to 2000 is often sparsely available for a number of commodities, so we restrict
our attention to this common period. We use the median over all daily ratios since average
values can be sensitive to extreme values in volumes traded over just a few days. Thus, volume
to open‐interest ratios are measured for each commodity at each forecasting horizon (i.e., gold
six‐month futures). In Panel A of Table V, we show results from regressing these
cross‐sectional measures of liquidity on dummies for 6‐ and 12‐month horizons and
dummies for the commodity being in the precious metal group, the base metal group, or the
agricultural commodities group. Column 1 shows that over 25% of the cross‐sectional
variation can be accounted for simply by the forecasting horizon: both 6‐ and 12‐month
futures have significantly lower ratios of traded volumes to open‐interest relative to 3‐month
futures. Combined with dummies for each commodity group, 40% of the cross‐sectional
variation in volume‐open interest ratios is accounted for, with precious metals having
significantly lower ratios than energy commodities while agricultural and base metal futures
do not exhibit statistically significant differences in liquidity relative to energy futures. Thus,
liquidity varies in a systematic manner across contract horizons and some commodity types,
but also contains significant variation above and beyond commodity grouping and forecasting
horizon.

We then assess whether the cross‐sectional variation in unbiasedness across futures
markets is systematically related to the liquidity in each market. To do so, we regress the
t‐statistic for the null of unbiasedness (i.e., b¼1) from the GARCH estimates of Table IV on
a constant and our measure of market liquidity. The results are presented in Panel B of
Table V. We find a significant negative relationship between the t‐statistics for unbiasedness
and the depth of each market: commodity markets with high volumes to open interest ratios
display systematically weaker evidence against the null of unbiasedness. In Figure 4, we
present a scatter plot of volume to open interest ratios versus t‐statistics for unbiasedness.
The figure illustrates that the negative correlation between the two is not driven by specific
outliers. Indeed, a negative relationship is visible within each class of commodities.
Furthermore, we also show in Panel B of Table V that the negative relationship continues to
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hold when we control for either the time‐horizon of each futures market or the commodity
category. Thus, the fact that more liquid markets are also those for which it is harder to
reject the null of unbiasedness is not driven by any specific commodity group like precious
metals.

However, differences in liquidity, at least as measured by volume to open interest
ratios, can account for only a relatively small fraction—10%—of the cross‐sectional variation.
Simply including category‐level fixed effects accounts for just as much of the cross‐-
sectional variation as liquidity differences. In particular, the fixed effect for precious metals is
large and statistically significant. This suggests that factors other than liquidity considerations
explain the strong deviations from unbiasedness observed for gold and silver. This is
consistent, for example, with their traditional role as instruments to hedge against inflation
fears.

How do other aspects of the predictive power of futures vary with liquidity? We have
undertaken comparable analyses relating to forecast RMSEs, and fail to detect any impact.
Similarly, the predictive power measured using the direction of change metric is also
unrelated to the depth of the respective futures markets. Hence, we conclude that liquidity
accounts for at most a small proportion of the average variation in the predictive power of
futures prices across different commodities.

TABLE V
Market Liquidity and Unbiasedness

(1) (2) (3)

Panel A: dependent variable is ratio of volume to open interest
Constant 0.27��� (0.03) 0.16��� (0.03) 0.26��� (0.03)
6‐Month futures �0.17��� (0.04) �0.17��� (0.03)
12‐Month futures �0.18��� (0.05) �0.18��� (0.04)
Precious metals �0.11��� (0.04) �0.11��� (0.03)
Base metals 0.03 (0.06) 0.03 (0.04)
Agricultural �0.01 (0.04) �0.01 (0.03)
N 42 42 42
R2 0.37 0.06 0.47

Panel B: dependent variable is t‐statistic for unbiasedness
Constant 3.89��� (0.80) 4.03��� (1.00) 3.11��� (0.89)
Volume/OI �7.23�� (3.07) �7.76�� (3.38) �5.61� (3.00)
6‐Month futures �0.48 (0.91)
12‐Month futures 0.04 (1.04)
Precious metals 3.99�� (1.55)
Base metals 0.81 (1.01)
Agricultural �1.21� (0.70)
N 40 40 40
R2 0.10 0.05 0.30

Note. Panel A presents regressions of commodity and horizon specific measures of the ratio of volumes traded relative to open
interest on dummies for horizons of futures contracts and/or dummies for commodity group. Panel B presents results from regressing
t‐statistics for the null of unbiasedness fromTable IV onmeasures of volume to open interest for each commodity and futures contract
horizon, as well as dummies for the specific horizon or the specific commodity group. Dummies indicate levels relative to energy
products or three‐month horizons. �, ��, and ��� denote statistical significanceat the10%, 5%, and 1% levels respectively usingWhite
standard errors.
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5.3. Time Variation in the Predictive Content of Commodity Futures

Our baseline approach to basis regressions made use of the longest time sample available for
each commodity. However, this could mask important time variation in the properties of these
futures markets. To assess whether the predictive content of commodity futures has changed
over time, we therefore consider five‐year rolling OLS estimates of the basis equation for each
commodity and forecasting horizon.11 We then plot time‐varying estimates of b, the
coefficient on the basis, in Figure 5 along with 95% confidence intervals. In each case, the
time shown is the last month of the five‐year rolling period associated with the corresponding
estimates of the basis coefficient. For agricultural commodities, the rolling regressions are
done at the same frequency as before, which reflects the number of contract deliveries per year
(5 per year for corn andwheat, 7 per year for soybeans). Given five‐year rolling estimates at this
frequency, we then linearly interpolate all missing monthly values for presentation in the
figures. Time‐varying estimates for base metals start only in 2002 because of the absence of
data pre‐1997.

The results suggest that there has indeed been some significant time variation in the
predictive content of a number of commodity futures. For example, the unbiasedness
hypothesis could be rejected for oil futures in the mid‐to‐late 1990s at the 3‐month horizon
and again over the mid‐to‐late 2000s at 12‐month horizons. Heating oil displays similar
patterns. Indeed, each energy commodity displays deviations from unbiasedness at some
point over the sample, but most of these deviations are transitory. Interestingly, petroleum,
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FIGURE 4
Ratios of volume traded to open interest versus unbiasedness across commodities

Note. The figure presents a scatter plot of the ratio of volume traded to open interest for each commodity
at each futures horizon against the t‐statistic for the null of unbiasedness from regressions in Table IV.
See Section 5.2 in the text for details. [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

11We use OLS for rolling regressions because GARCH estimates are exceedingly sensitive to individual observations
in short samples and more generally have poor small‐sample properties.
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natural gas, heating oil and gasoline all display unusual behavior in estimates of the basis
coefficient over the last five years. For all four, estimates of b using 12‐month horizon
futures rise substantially at the very end of the sample, covering years from 2007 to 2012.
The 3‐ and 6‐month futures for heating oil instead point to dramatic declines in the basis
coefficient during this same time period. Because the standard errors are large over such
short samples, we cannot generally reject the null of unbiasedness at 12‐month horizons,
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FIGURE 5
Rolling estimates of basis equation for each commodity and futures horizon

Note. Each figure plots estimates of the coefficient on the futures basis from Equation (3) in rolling
five‐year regressions along with 95% confidence intervals (dashed lines) for each commodity and
forecasting horizon. See Section 5.3 in the text for details. [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]
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but the results do suggest potentially unusual behavior by energy futures prices during this
time period.

Panel B, which plots coefficients for precious metals and agricultural commodities,
presents even starker evidence of time variation. For example, the coefficient on the gold basis
experienced dramatic declines during the early to mid‐2000s, which likely explain the
rejection of unbiasedness over the entire sample. Indeed, the unbiasedness hypothesis could
generally not be rejected for gold futures either prior to or after the early 2000s although the
same is true for the null of b¼0. Thus, the lack of predictive content in gold futures appears to
be a pervasive feature of the time series, while the negative relationship between the gold basis
and subsequent spot prices appears to be driven primarily by a specific historical episode.
Silver futures present very similar time variation. The coefficients on the gold and silver basis,
especially at longer horizons, follow a cyclical pattern which loosely tracks U.S. interest rates
over this time period. These persistent and cyclical swings in the relationship between the gold
basis and subsequent gold price changes likely reflect the common use of gold as a hedging
instrument by global investors to protect themselves against potential inflation risks,
particularly during low‐interest rate periods such as the early 2000s or since 2008. Similar
large and erratic swings in the basis coefficient are visible for a number of base metal
commodities (Panel C) over this same time period. Copper, for example, exhibits a rapid
increase in the basis coefficient over recent years which closely resembles the pattern in
12‐month energy futures markets.

To summarize potential cross‐sectional heterogeneity in time variation, we present in
Panel A of Figure 6 the average, across all commodities and all horizons within each category,
of the absolute value of the estimated basis coefficients from the rolling regressions minus
one. Thus, these plots illustrate the average deviation from unbiasedness over time within
each commodity category. In Panel B of Figure 6, we also plot the average, across all
commodities and all horizons within each category, of the t‐statistics for the null of
unbiasedness from the rolling regressions. There are several features worth noting from this
figure. First, the fact that average deviations from unbiasedness are much more pronounced
for precious and base metals than for energy and agricultural commodities is a characteristic
of almost all periods. However, in the case of precious metals, statistical evidence against the
null of unbiasedness is primarily driven by the period during the early 2000s. This same time
period was also associated with sharp increases in deviations from unbiasedness in
agricultural and base metal futures markets. In contrast, energy futures markets saw declines
in both the deviation of point estimates from the null of unbiasedness as well as in the
t‐statistics for the unbiasedness null during the same sample period. Thus, this time period is
characterized by sharp disparities in the behavior of futures markets: strong evidence for
unbiasedness in energy markets but simultaneous departures from unbiasedness in
agricultural, base and precious metal markets. These correlated movements across
commodity markets stand in sharp contrast to the earlier period ending around 2001, during
which there was little visible comovement in unbiasedness across any commodity groups.

In contrast, in the samples ending between 2005 and 2007, we can observe a
convergence toward unbiasedness across commodity groups, both in point estimates and
t‐statistics. Indeed, the five‐year periods ending around 2007 are the only ones within the
sample when a broad convergence in point estimates is visible, with the null of
unbiasedness clearly not being rejected across all commodity groups. However, this period
was shortlived: all four commodity groups experienced persistent increases in deviations of
point estimates from unbiasedness over the course of subsequent years, with a strong
comovement apparent among all commodities in the period ending in 2009, although this
is not matched by an increase in t‐statistics for precious metals. Nonetheless, a key feature
of Figure 6 is that every commodity group displays larger deviations from the null of
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unbiasedness over the last few years relative to the period ending in 2007. While the
changes in t‐statistics are muted relative to the changes in point estimates due to the
higher standard errors visible in Figure 5 for most commodities during this recent time
period, the pervasive increase in deviations of point estimates from the null of
unbiasedness since the mid to late 2000s across commodity markets suggests a common

Panel A:  Average Absolute Value of Estimated Coefficient on Basis Minus One 
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FIGURE 6
Average deviations from unbiasedness across commodities over time

Note. Panel A plots the average across commodities and horizons (3, 6, and 12 months) of the absolute
values of estimated coefficients from rolling regressions in Figure 5 minus one, that is, absolute
deviations from unbiasedness. Averages are taken across each commodity within each group. Panel B
plots the average across the same commodities and horizons of the absolute values of the t‐statistics for
unbiasedness from rolling regressions in Figure 5. See Section 5.3 in the text for details. [Color figure can
be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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driving force. Whether this reflects changes in the risk premia (e.g., Hamilton &
Wu, 2012), the growing financial investment flows into commodity futures markets since
the early 2000s or other factors is an important question for future research to address.

In Figure 7, we provide similar five‐year rolling results, averaged across all commodities
and horizons within each class, for RMSE’s relative to random walks (Panel A) and
directionality tests (Panel B). For the latter, we present the fraction of correct sign predictions,

Panel A:  Time variation in RMSE’s by Commodity Group Relative to Random Walk 
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Time variation in predictive content of commodity futures

Note. Panel A plots rolling RMSE’s relative to that of a random walk over the preceding 60 months,
averaged across 3‐, 6‐, and 12‐month horizons for all commodities within each commodity group. Panel
B plots five‐year rolling fractions of correct sign predictions (using first‐differences of basis) minus their
unconditional expectation, averaged across 3‐, 6‐, and 12‐month horizons for all commodities within
each commodity group. See Section 5.3 for details. [Color figure can be viewed in the online issue, which
is available at wileyonlinelibrary.com.]
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using directionality tests in first‐differences as in Section 4, relative to their unconditional
expectation. For energy commodities, the results suggest broad stability in predictive content,
with some gradual declines over the sample: RRMSE’s rise from an average of around 0.90 in
the 1990s to almost 0.98 in the last five years, while fractions of correct sign predictions fell
from 0.18–0.19 in the 1990s to 0.13 in recent years. Time variation in the predictive content
of agricultural futures is dominated by the large decline in the early 2000s, deteriorations in
predictive content since the mid‐2000s are again visible using either RRMSE’s or tests of
directionality. Thus, both energy and futures markets display the same kind of declining
predictive content over recent years using thesemeasures as was the case in Figure 6 based on
estimated basis coefficients.

Results using precious metals are divergent along the two metrics: improving predictive
content based on RRMSE’s over much of the sample but declining predictive content
according to directionality tests. The former once again reflects the systematically positive
basis in gold and silver futures prices, combined with the gradual rise in gold and silver prices
since the early 2000s, which accounts for the persistent decline in RRMSE’s. However, the
deterioration in tests of directionality for precious metals suggests it would be misleading to
conclude that predictive content has improved. Base metals display little trend in RRMSE’s,
but a gradual decline in predictive content using directionality tests are again visible since the
early 2000s. Thus, across most measures of predictive content, we observe quite general
declines in the ability of futures prices to predict subsequent price changes since the early
2000s. The fact that this trend has been persistent and ongoing since the early 2000s suggests
that the ultimate source is unlikely to be related to global economic conditions since 2008 but
rather reflects deeper forces which predate the crisis.

6. CONCLUSION

Commodity prices have long played an important role in accounting for economic
fluctuations. Forecasting changes in commodity prices is therefore an important task for
forward‐looking policy‐makers. The growing use of futures markets has raised the question of
how much information these prices incorporate about future movements in spot prices. We
show that while energy futures can generally be characterized as unbiased predictors of future
spot prices, there is much stronger evidence against the null of unbiasedness for other
commodities, especially for precious and base metals. Furthermore, these differences in
unbiasedness translate into differences in forecasting ability: precious and base metals fare
worse than energy or agricultural markets in terms of squared forecast errors or predicting the
sign of subsequent price changes. There are also notable differences within commodity
classes. For example, oil futures markets have accounted for smaller fractions of subsequent
price changes than did natural gas or gasoline markets, despite the very high comovement
amongst their prices. Surprisingly, we find that information from futures prices in other
energy markets could have been used to help predict subsequent oil price changes between
1990 and 2012. The same is true for gold prices. In both cases, information in other
commodity futures markets could have yielded significant quantitative improvements in
forecasting ability.

Despite dramatic growth in these commodity futuresmarkets over time, recent years have
notbeencharacterizedbynotably strongerevidenceforunbiasedness in futuresmarkets. In fact,
wefind that, across commodity groups, point estimates of the basis coefficient havemoved away
from the null of unbiasedness since the mid‐2000s. This represents a significant reversal from
previous years, during which all commodity groups displayed strong convergence toward
unbiasedness. Furthermore, this comovement among the properties of futures prices appears to
be relatively new: there seemed to beno such comovementprior to the2000s. This suggests that
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common factors are becoming increasingly important in driving commodity futures prices, but
these factorsarenotnecessarily increasing thepredictivecontentofcommodity futures.Someof
the more prominent explanations include the financialization of commodity markets via index
funds (Tang & Xiong, 2010), changing risk premia associated with the global financial crisis, or
departures from full‐information rational expectations. While we do not directly address the
ultimate source of the historical changes in predictive content, the results from the rolling
directionality tests indicate that thedecline in thepredictivecontentofcommodity futuresprices
has been ongoing since the early 2000s, so that explanations based on changing risk premia are
unlikely tobe successful inexplaining this featureof thedata.Acrucial task for future research is
therefore to determine why the predictive content of futures prices has declined in this fashion.
Doing so could shed light onwhether this decline is likely to persist, or evenworsen (asmight be
implied by growing financialization), or whether it will recede as global economic and financial
conditions stabilize. In the meantime, the limited predictive content of commodity futures in
recent years suggests that policymakers should be wary of placing too much weight on futures
prices to forecast future commodity price changes.

APPENDIX

Table AI: Bloomberg Mnemonics for Futures Prices and Available Samples

Market

Futures

ticker

Available sample

1‐month 3‐month 6‐month 12‐month

Energy

Oil NYMEX CL 1990:1–2012:7 1990:1–2012:7 1990:1–2012:7 1990:1–2012:7

Natural gas NYMEX NG 1990:4–2012:7 1990:4–2012:7 1990:4–2012:7 1990:6–2012:7

Heating oil NYMEX HO 1990:1–2012:7 1990:1–2012:7 1990:1–2012:7 1990:1–2012:7

Gasoline NYMEX HU/RB 1990:1–2012:7 1990:1–2012:7 1990:1–2012:7 1990:1–2012:7

Agricultural

Corn LME C 1990:1–2012:7 1990:1–2012:7 1990:1–2012:7 1990:1–2012:7

Soybeans LME S 1990:1–2012:7 1990:1–2012:7 1990:1–2012:7 1990:1–2012:7

Wheat LME W 1990:1–2012:7 1990:1–2012:7 1990:1–2012:7 1990:1–2012:7

Precious metals

Gold NYMEX GC 1990:1–2012:7 1990:1–2012:7 1990:1–2012:7 1990:1–2012:7

Silver NYMEX SI 1990:1–2012:7 1990:1–2012:7 1990:1–2012:7 1990:1–2012:7

Base metals

Aluminum CME LA 1997:7–2012:7 1997:7–2012:7 1997:7–2012:7 1997:7–2012:7

Copper CME LP 1997:7–2012:7 1997:7–2012:7 1997:7–2012:7 1997:7–2012:7

Lead CME LL 1997:7–2012:7 1997:7–2012:7 1997:7–2012:7 1997:7–2012:7

Nickel CME LN 1997:7–2012:7 1997:7–2012:7 1997:7–2012:7 1997:7–2012:7

Tin CME LT 1997:7–2012:7 1997:7–2012:7 1997:7–2012:7 1997:7–2012:7

Note. For gasoline futures, we use HU price data until December 2005 and RB price data starting in January 2006. However, all
comparisons of ex‐ante futures price predictions to ex‐post price realizations are done using equivalent price series (e.g.,
December 2005 HU three‐month futures are compared to February 2006 HU one‐month futures).

634 Chinn and Coibion



REFERENCES

Alquist, R., &Kilian, L. (2010).What dowe learn from the price of crude oil futures? Journal of AppliedEconometrics,
25, 539–573.

Alquist, R., Kilian, L., & Vigfusson, R. J. (2012). Forecasting the price of oil. In G. Elliott & A. Timmermann (Eds.),
Handbook of economic forecasting (Vol. 2). Amsterdam: North Holland (forthcoming).

Barsky, R. B., &Kilian, L. (2002).Dowe really know that oil caused the great stagflation? Amonetary alternative. In B.
Bernanke & K. Rogoff (Eds.), NBERMacroeconomics Annual 2001 (pp. 137–183). Cambridge, MA: TheMIT
Press.

Beck, T., & Levine, R. (2004). Stock markets, banks, and growth: Panel evidence. Journal of Banking and Finance,
28, 423–442.

Bernanke, B. S., Gertler, M., & Watson, M. (1997). Systematic monetary policy and the effects of oil price shocks.
Brookings Papers on Economic Activity, 1, 91–142.

Bessembinder, H., & Seguin, P. (1993). Price volatility, trading volume, and market depth: Evidence from futures
markets. Journal of Financial and Quantitative Analysis, 28, 21–39.

Blinder, A. S., & Rudd, J. B. (2013). The supply‐shock explanation of the great stagflation revisited. InM. Bordo & A.
Orphanides (Eds.), The Great Inflation: The rebirth of modern central banking. Chicago, IL: University of
Chicago Press (forthcoming).

Bopp, A. E., & Lady, G.M. (1991). A comparison of petroleum futures versus spot prices as predictors of prices in the
future. Energy Economics, 13, 274–282.

Bosworth, B. P., & Lawrence, R. Z. (1982). Commodity prices and the new inflation.Washington, DC: The Brookings
Institution.

Table AII: Directionality Tests in Levels Versus First‐Differences

Level specification First‐difference specification

3‐month 6‐month 12‐month 3‐month 6‐month 12‐month

Energy products
Oil 0.48 0.47 0.58�� 0.61��� 0.70��� 0.69���

Natural gas 0.57�� 0.59��� 0.56 0.68��� 0.73��� 0.73���

Heating oil 0.54 0.51 0.60�� 0.56�� 0.66��� 0.66���

Gasoline 0.61��� 0.66��� 0.64��� 0.70��� 0.70��� 0.70���

Precious metals
Gold 0.51n.a. 0.60n.a. 0.69n.a. 0.51 0.56�� 0.57��

Silver 0.54 0.59��� 0.63��� 0.54 0.59��� 0.56���

Base metals
Aluminum 0.54 0.56 0.47� 0.64��� 0.65��� 0.71���

Copper 0.51 0.50 0.51 0.56� 0.71��� 0.62���

Lead 0.46 0.52 0.50 0.51 0.60��� 0.61���

Nickel 0.51 0.54 0.55� 0.55 0.65��� 0.64���

Tin 0.50 0.54 0.48 0.51 0.55 0.59
Agricultural

Corn 0.53 0.60��� 0.63��� 0.69��� 0.65��� 0.74���

Soybean 0.54 0.58�� 0.60��� 0.50 0.63��� 0.61���

Wheat 0.53 0.59�� 0.61��� 0.64��� 0.65��� 0.67���

Note. The table presents the fraction of times in which the sign of the basis correctly predicted the sign of subsequent price
changes at the samehorizon (columns 1–3) or inwhich the sign of themonthly change in the basis correctly predicted the sign of the
monthly change in price changes at the same horizon (columns 4–6). Statistical significance as in Pesaran and Timmermann
(1992) at the 10%, 5%, and 1% levels are indicated by �, ��, and ���. For gold in levels specification, test statistics cannot be
constructed because of insufficient negative values of the basis, which is indicated by n.a..

The Predictive Content of Commodity Futures 635



Brenner, R., & Kroner, K. (March 1995). Arbitrage, cointegration, and testing the unbiasedness hypothesis in
financial markets. Journal of Financial and Quantitative Analysis 30, 23–42.

Chen Y‐C., Rogoff, K., & Rossi, B. (2009). Can exchange rates forecast commodity prices? Quarterly Journal of
Economics, 125, 1145–1194.

Chernenko S. V., Schwarz, K. B., & Wright, J. H. (2004). The information content of forward and futures prices:
Market expectations and the price of risk. International Finance and Discussion Papers No. 808 (Washington,
DC: Board of Governors of the Federal Reserve System, June).

Cheung, Y‐W., Chinn,M.D., & Pascual, A. G. (November 2005). Empirical exchange ratemodels of the nineties: Are
any fit to survive? Journal of International Money and Finance, 24, 1150–1175.

Chinn M. D., Michael L., & Olivier C. (2005). The predictive content of energy futures: An Update on petroleum,
natural gas, heating oil and gasoline markets. NBER Working paper 11033 (January).

Crowder, W., & Hamed, A. (1993). A cointegration test for oil futures market efficiency. Journal of Futures Markets,
13, 933–941.

Engel, C. (1996). The forward discount anomaly and the risk premium: A survey of recent evidence. Journal of
Empirical Finance, 3, 123–192.

Fama, E. F., & French, K. R. (1987). Commodity futures prices: Some evidence on forecast power, premiums, and the
theory of storage. The Journal of Business, 60, 55–73.

Frankel, J. A., & Chinn, M. D. (1993). Exchange rate expectations and the risk premium: Tests for a cross‐section of
17 currencies. Review of International Economics, 1, 136–144.

Groen, J. J. J., & Pesenti, P. A. (2010). Commodity prices, commodity currencies and global economic developments.
NBER Working paper 15743.

Hamilton J. D. (April 1983). Oil and the macroeconomy since World War II. Journal of Political Economy, 91, 228–
248.

Hamilton, J. D. (Spring 2009). Causes and consequences of the oil shock of 2007–08. Brookings Papers on Economic
Activity, 215–259.

Hamilton, J. D. (2010).Macroeconomics andARCH. In T. Bollerslev, J. R. Russell, &M.Watson (Eds.), Festschrift in
honor of Robert F. Engle (pp. 79–96). Oxford University Press.

Hamilton, J. D., & Wu, C. J. (2012). Risk premia in crude oil futures prices. Unpublished manuscript.
Herbert J. (1993). The relation of monthly spot to futures prices for natural gas. Energy 18, 1119–1124.
Meese, R. A., & Rogoff, K. (1983). Empirical exchange rate models of the seventies: Do they fit out of sample? Journal

of International Economics, 14, 345–373.
Moosa, I., & Al‐Loughani, N. (1994). Unbiasedness and time varying risk premia in the crude oil futures market.

Energy Economics 16, 99–105.
Newey, W. K., & West, K. D. (1987). A simple, positive semi‐definite, heteroskedasticity and autocorrelation

consistent covariance matrix. Econometrica 55, 703–708.
Pagano, P., & Pisani,M. (2009). Risk‐adjusted forecasts of oil prices. The B.E. Journal of Macroeconomics, 9, Article

24.
Pesaran, M. H., & Timmermann, A. (1992). A simple nonparametric test of predictive performance. Journal of

Business and Economic Statistics, 10, 461–465.
Pindyck, R. S. (2001). The dynamics of commodity spot and futures markets: A primer. Energy Journal, 22, 1–29.
Reichsfeld, D. A., & Roache, S. K. (2011). Do commodity futures help forecast spot prices? IMF Working paper

11‐254.
Roache, S. K., & Rossi, M. (2009). The effects of economic news on commodity prices: Is gold just another

commodity? IMF Working paper 09‐140.
Serletis, A. (1991). Rational expectations, risk and efficiency in energy futures markets. Energy Economics, 13, 111–

115.
Tang, K., &Xiong,W. (2010). Index investment and the financialization of commodities. NBERWorking paper 16385

(November).
Walls D. W. (1995). An econometric analysis of the market for natural gas futures. Energy Journal, 16, 71–83.
Williams, J., & Wright, B. (1991). Storage and commodity markets. Cambridge: Cambridge University Press.
Wu, T., & McCallum, A. (2005). Do oil futures prices help predict future oil prices? Federal Reserve Bank of San

Francisco Economic Letter, 2005‐38.

636 Chinn and Coibion


