Answers to Problems from Lecture (11/19)

1. Our test statistic is: Rejection region is:	F = 8.028 $F > F_{.05}$, based on:	9 d.f. in the numerator 12 d.f. in the denominator
Therefore, we reject the null	$\Rightarrow F > 2.80$ hypothesis.	
2. Our test statistic is: Rejection region is:	F = 3 $F > F_{.05}$, based on: $\Rightarrow F > 2.42$	9 d.f. in the numerator 19 d.f. in the denominator
Therefore, we reject the null A bound on the p-value is giv .025 > p > .01	hypothesis . en by:	
3. Our test statistic is: Rejection region is:	F = 2.079 $F > F_{.025}$, based on: $\Rightarrow F > 2.71$	9 d.f. in the numerator 13 d.f. in the denominator
<pre>(remember that the test is 2-tailed) Therefore, we do not reject the null hypothesis. A bound on the p-value is given by:</pre>		
4. Our test statistic is: The p-value is given in the tal Therefore, we do not reject t would not reject the null hypo It is important to note that alt	F = 2.079 (given ble as $p = .2554$ he null hypothesis . A othesis for any reasona hough we do not reject	in the table) p-value this high means that we ble size α test.

It is important to note that, although we do not reject the null hypothesis, we do *not* conclude that the variances are equal, and that the t-test is valid. This only shows us that we have *failed to conclude* that they are *unequal*. This is a subtle, but extremely important point; we never accept the null hypothesis. Rather, we fail to reject the null hypothesis.