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We construct an example in which the least squares estimator has unbounded bias and no
moments, even though the regressor and disturbance have moments of all orders and are
independently distributed across observations.
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1. Introduction

In this note, we construct a univariate example in which the least squares estimator has unbounded bias and no
moments, even though the regressor and disturbance have moments of all orders and are independently distributed across
observations. Aswell, the regressor is continuously distributed, so our example does not turn on a possible inability to invert
the moment matrix of the regressor.

Our example has two motivations. The first comes from consideration of bias or mean squared prediction error in least
squares regressions. Let X be the T × k design matrix, where T is the sample size and k the number of regressors. Then
X ′X is the k × k moment matrix of the regressors. To insure integrability of the least squares estimator, literature on least
squares bias or mean squared prediction error sometimes makes a high level assumption on the existence of moments of
(X ′X)−1 (e.g., Shaman, 2010) or implicitly assumes integrability without making a specific assumption (e.g., Bao and Ullah,
2010). Our paper contributes by illustrating that innocuous assumptions about dependence and moments do not suffice to
insure integrability. The second motivation relates to the existence of negative moments. Research has given a necessary
and sufficient condition for the existence of a negative first moment for a given random variable (Khuri and Casella, 2002)
and, in the least squares context, a sufficient condition for existence of moments of (X ′X)−1 (Findley and Wei, 2002). Our
paper contributes by supplying a weaker sufficient condition than in Findley and Wei (2002), although ours, unlike Findley
and Wei’s, is only applicable for a univariate regression setup.

In Section 2, we give a necessary and sufficient condition for the existence of moments of (X ′X)−1for a univariate regres-
sion model. We then present a sufficient condition for the existence of moments of the least square estimator. In Section 3,
we construct a counterexample in which the least squares estimator has unbounded bias and nomoments, even though the
regressor and disturbance have moments of all orders. Section 4 has some comments.
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2. Lemmas on the existence of moments

Write the regression as

yt = xtβ + ηt , t = 1, . . . T . (1)

where all variables are scalars; yt and xt are observed, ηt is the unobservable disturbance, and β is the parameter of interest.
Thus the least squares estimator is β̂T = (

T
t=1 x

2
t )

−1(
T

t=1 xtyt) = β + (
T

t=1 x
2
t )

−1(
T

t=1 xtηt). (We omit the usual 1
T

normalization of each of the sums to keep notation uncluttered.) In the notation of the introduction, k = 1 and
T

t=1 x
2
t

corresponds to X ′X .
From Holder’s inequality, for any ε > 0,

E(β̂T − β)

 ≤

E




T
t=1

x2t

−1

(1+ε)


1

1+ε

×

E




T
t=1

xtηt


1+ε
ε


ε

1+ε

.

Hence if xt and ηt have moments of all orders (as we shall shortly assume), a necessary condition for E
β̂T − β

 = ∞ is

that (
T

t=1 x
2
t )

−1 has nomoment of order higher than one, and a sufficient condition for E
β̂T − β

 < ∞ is that there exists

ε > 0 s.t. E(
T

t=1 x
2
t )

−(1+ε) < ∞.
Intuitively, in order for E(

T
t=1 x

2
t )

−1
= ∞, one wants (

T
t=1 x

2
t )

−1 to have a fat tail, i.e., one wants
T

t=1 x
2
t to have

high probability of being near zero. The following Lemma 1 is central to our construction of xt that satisfies this criterion,
delivering a sufficient and necessary condition for (

T
t=1 x

2
t )

−1 to have moments of order s.

Lemma 1. Let δt be a sequence of parameters, 0 < δt < 1, t = 1, 2, . . . , T . For a sequence of independent random variables
zt , t = 1, . . . , T , let the cumulative distribution function (cdf) of zt be P(zt ≤ z) = zδt , 0 < z ≤ 1. Then for any s > 0, a
sufficient and necessary condition for E(

T
t=1 zt)

−s
= ∞ is

T
t=1 δt ≤ s for some s > 0.

Proof. To show
T

t=1 δt ≤ s ⇒ E(
T

t=1 zt)
−s

= ∞, let c > 0 be an arbitrary positive constant. By Markov’s inequality,
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s

≥ E

 1
T

t=1
zt

s · I

 1
T

t=1
zt

s > c


 ≥ P

 1
T

t=1
zt

s ≥ c

 · c.

Further,
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.

The equality on the third line follows from independence of the zt ’s.
For

T
t=1 δt < s, since c can bemade arbitrarily large, the desired result follows. For

T
t=1 δt = s, by the above equation,

we have

E

 1
T

t=1
zt

s · I

 1
T

t=1
zt

s > c


 ≥ 2

−

T
t=1

tδt
, ∀c > 0,

which is obviously not true if E(
T

t=1 zt)
−s < ∞, so we have E(

T
t=1 zt)

−s
= ∞.
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The converse (
T

t=1 δt > s ⇒ E(
T

t=1 zt)
−s < ∞) follows from an argument similar to one made in Sriram and Bose

(1988) for constant δ. Details are in the Appendix. �

The key to Lemma 1 is that the cdf of zt is zδt in a neighborhood of the origin (equivalently, the pdf (probability density
function) of zt is zδt−1 in that neighborhood); the result follows even if we relax the condition to only require P(zt ≤ z) =

O(zδt ) as z → 0.

Using Lemma 1, we give a sufficient condition for E
β̂T − β

 < ∞:

Lemma 2. Let {(xt , yt)}∞t=1 come from model (1) with observations are independent over time t. Assume that xt and ηt have

moments of all orders and ∀t, P(x2t ≤ x) = O(xδt ) as x → 0, then we have E
β̂T − β

 < ∞ for all T such that
T

t=1 δt > 1.

Proof. As mentioned above, since
T

t=1 xtηt has moments of all orders, by Holder’s inequality, the sufficient condition for

E
β̂T − β

 < ∞ is that there exists an ε > 0 s.t. E(
T

t=1 x
2
t )

−(1+ε) < ∞.

Since
T

t=1 δt > 1, we have that there exists an ε > 0 s.t.
T

t=1 δt > 1 + ε. By assumption, ∀t, P(x2t ≤ x) = O(xδt ) as
x → 0, so by applying Lemma 1 at s = 1 + ε, we have E(

T
t=1 x

2
t )

−(1+ε) < ∞. �

3. A counterexample

In this section, we shall construct an example in which least squares has unbounded bias, i.e., E(β̂T − β) = ∞, which
implies as well that β̂T has no moments.

Our process for xt in (1) will behave like zt when xt > 0, but when xt < 0 will have no mass in a neighborhood of zero.
To simplify notation, our example sets θt = 1 − δt .

The joint distribution of (xt , ηt) in our example is as follows. Suppose {xt , ηt}
∞

t=1 are independent and not identically
distributed (i.n.i.d.) random variables, where the pdf of xt ’s is defined as:

ft(x) =


x−θt if 0 < x ≤ c(θt)

1
2K(θt)

if −
5
2
K(θt) < x ≤ −

3
2
K(θt),

0 otherwise

where 0 < θt < 1, and c(θt )

0
x−θt =

1
2
, i.e. c(θt) =


1 − θt

2

 1
1−θt

,

and

K(θt) =

 c(θt )

0
x · ft(x)dx = E(xt · I(xt > 0)).

Thus, by construction E(xt · I(xt < 0)) = −K(θt). So we have E(xt) = 0 and median of xt is 0.
Based on xt , the conditional distribution of ηt is defined as

if xt > 0, P(ηt = η|xt) =


pt if η = 1
1 − pt if η = −xt ,

if xt < 0, P(ηt = η|xt) =


1
2

if η = ct

1
2

if η = dt

where non-stochastic pt , ct and dt will be defined so that E(ηt) = 0 and E(ηtxt) = 0. That is,

E(ηt) = E(E(ηt |xt))

= E((pt − (1 − pt)xt) · I(xt > 0) +
ct + dt

2
· I(xt < 0))

= pt − 2(1 − pt)K(θt) +
ct + dt

2
= 0,
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and

E(ηtxt) = E(xtE(ηt |xt))

= E((pt − (1 − pt)xt) · xt · I(xt > 0) +
ct + dt

2
· xt · I(xt < 0))

= ptK(θt) − (1 − pt)K2(θt) −
ct + dt

2
K(θt) = 0,

where K2(θt) = E(x2t · I(xt > 0)).
Solving the above equations, we can easily get

pt =
2K(θt)

2
+ K2(θt)

2K(θt)2 + K2(θt) + 2K(θt)
,

and

ct + dt = 4(1 − pt)K(θt) − 2pt ,

and we choose arbitrary ct and dt such that ct + dt satisfies this last equation.
In other words, for any sequence {θt}

∞

t=1 where 0 < θt < 1 ∀t , there exists {pt , ct , dt}∞t=1 such that {xt , ηt}
∞

t=1 has the
distributions described above with E(xt) = 0, E(ηt) = 0 and E(ηtxt) = 0 and median of xt is 0.

Suppose we have (1), with β̂T − β = (
T

t=1 x
2
t )

−1(
T

t=1 xtηt). In the following, for simplicity we set β = 0.

Theorem 1. Assume that
T

t=1 δt =
T

t=1(1 − θt) ≤ 1, then we have

E

(β̂T − β)+


= E(β̂+

T ) = ∞ and E

(β̂T − β)−


= E(β̂−

T ) < ∞,

so,

E(β̂T − β) = E(β̂T ) = E(β̂+

T ) − E(β̂−

T ) = ∞,

where (β̂T − β)+ = max{β̂T − β, 0} and (β̂T − β)− = max{−(β̂T − β), 0}.

Proof. For the positive part,
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T ) = E


T

t=1
ηtxt

T
t=1

x2t


+

≥ E




T
t=1

ηtxt

+

T
t=1

x2t

·

T
t=1

I(xt > 0)



≥ E




T
t=1

ηtxt

+

T
t=1

x2t

·

T
t=1

I(xt > 0) ·

T
t=1

I(ηt = 1)

 = E




T
t=1

ηtxt

+

T
t=1

x2t

·

T
t=1

I(xt > 0, ηt = 1)
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0
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0
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·
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T
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·

T
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 = ∞.

The last inequality follows because (
T

t=1 xt)
2
·
T

t=1 I(xt > 0) ≥ (
T

t=1 x
2
t ) ·

T
t=1 I(xt > 0). The second to last equality

follows from the definition of joint distribution of (xt , ηt) and the last equality follows from Lemma 1.
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For the negative part,

E(β̂−

T ) = E


T

t=1
ηtxt

T
t=1

x2t


−

= E




T
t=1

ηtxt

−

T
t=1

x2t

 ≤ E


T

t=1
(ηtxt)−

T
t=1

x2t



=

T
t=1

E

 (ηtxt)−

T
t=1

x2t

 ≤

T
t=1

E


(ηtxt)−

x2t


=

T
t=1

E


ηt

xt

−

< ∞.

The last equality follows by explicitly writing the expectation E(·) out. �

4. Further discussion

Some comments:

1. In our example, since xt and ηt each has compact support, each has moments of all orders.
2. The assumption that the median of xt is zero is to simplify the algebra. We could instead choose a value c(θt) such that

a given quantile of xt is zero.
3. Similarly, it was for simplicity that we used discreteness in part of the conditional distribution of ηt given xt . Our result

still holds if ηt is continuous around each of the discrete values used above.
4. Much of the complication of the example is because we set ourselves the goals of E(β̂T − β) = ∞, which requires

E(β̂T − β)+ = ∞ and E(β̂T − β)− < ∞. Had we aimed solely for E|β̂T − β| = ∞, we could have accomplished this
with the same process for xt but with ηt simply an i.i.d. Bernoulli process.

5. In our example, as x → 0, P(x2t ≤ x) = P(|xt | ≤
√
x) =

1
1−θt

x(1−θt )/2 = O(x−δt/2). By construction, we have
T

t=1 δt ≤ 1,

so
T

t=1 δt/2 ≤
1
2 . It obviously violates the sufficient condition in Lemma 2, which requires

T
t=1 δt/2 > 1.

6. In the notation of Lemma 1, Sriram and Bose (1988) considered E(
T

t=1 zt)
−1 with constant δ (i.e., δt = δ < 1 for all

t). They showed E(
T

t=1 zt)
−1

= ∞ for T sufficiently small, E(
T

t=1 zt)
−1 < ∞ for T sufficiently large. As in Stuttgen

(2014), our Lemma 1 allows the density of zt to shift with t , with δt becoming smaller and the density becoming steeper
as t increases. The first part of the proof of Lemma 1 is completely different from the proof in Sriram and Bose (1988).

7. As noted below Lemma 1, we only require a symmetric Lipschitz condition of P(x2t ≤ x) at origin. This contrasts with
the stronger assumption in Findley and Wei (2002), which, when specialized to the univariate case, imposes a uniform
Lipschitz condition on R.

Appendix

Details on proof of Lemma 1:
Here is the proof that

T
t=1 δt > s ⇒ E(

T
t=1 zt)

−s < ∞.
Assume

T
t=1 δt > s. We mimic the argument made in Sriram and Bose (1988) for constant δ.

Let ST =
T

t=1 zt . Then

E(1/SsT ) =


∞

0
P[1/SsT ≥ x]dx =


∞

0
P[e−xSsT ≥ e−1

]dx ≤ e


∞

0
E[e−x1/sST ]dx

= e
 1

0
+


∞

1

 T
t=1

E[e−x1/szt ]dx,

where the inequality follows from Markov inequality and the last equality follows from the independence of zt ’s. Clearly 1
0

T
t=1 E[e−x1/szt ]dx < ∞. For 1 < x < ∞, we have,

Ee−x1/szt =

 1

0
P[e−x1/szt ≥ y]dy =

 1

0
P[zt ≤ −(log y)/x1/s]dy

= x1/s


∞

0
P[zt ≤ z]e−zx1/sdz ≤ x1/s


∞

0
zδt e−zx1/sdz = C · x−δt/s,

where the third and last equality follow for change of variable and the inequality follows from the fact P(zt ≤ z) = zδt < 1.
Here C is a generic constant.
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All together, we have

E


T

t=1

zt

−s

≤ e
 1

0
+


∞

1

 T
t=1

E[e−x1/szt ]dx ≤ C1 + C


∞

1
x
−

T
t=1

δt/s
dx < ∞,

since
T

t=1 δt > s. �
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