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Abstract
Long horizon regressions that rely on linear models are common in many applied

fields. Examples from economics include forecasting inflation 12 quarters ahead

(Crone et al., 2013) and relating 120 month ahead changes in exchange rates to cur-

rent period variables (Snaith et al., 2013). We describe R code to implement recently

developed procedures that adjust long horizon regressions to lessen bias in parameter

estimates (West, 2016).
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1 Introduction

In this chapter we consider small sample bias in long horizon least squares

regressions in discrete time linear time series models. A leading application

is to “direct” multistep forecasts. We describe R code that adjusts for small

sample bias in such regressions. Such adjustments may be important because

in some specifications such bias is arbitrarily large for an arbitrarily long horizon

(West, 2016).

We begin by reviewing long horizon regressions and the direct method for

making a multistep forecast. We then describe R functions to implement

recently developed procedures that modify long horizon regression parameters

to lessen bias. We close with the code for an empirical application.

Throughout, our topic is solely construction of bias adjusted regression

estimates, taking as given a set of regressors or predictors. That is, we do

not discuss selection of predictors nor many other topics that are important
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in applied work such as construction of confidence intervals and forecast eval-

uation. See West and Zhao (2018) for how bias adjustment relates to forecast

evaluation via mean squared prediction error.

The R code can be downloaded from https://www.ssc.wisc.edu/
�kwest/appendices/appendices.htm.

2 Long horizon regressions

Let yt be a scalar time series, with data running up to time T. We suppose that

one wishes to model or forecast yt+q for some horizon q+1>0. If the data are

monthly, q+1 is measured in months, and similarly for frequencies other than

monthly.

In economics applications, the relevant range for q+1 runs from one step

ahead (q+1¼1) to q+1 in excess of 100. One step ahead forecasts—business

investment next quarter, employment next month, and so on—are ubiquitous.

Multistep forecasts are also common. The Survey of Professional Forecasters

asks participants to forecast GDP and inflation up to five quarters ahead;

Mark (1995) forecasts exchange rates 16 quarters ahead; and Crone et al.

(2013) forecast inflation 12 quarters ahead. Policy and academic work

sometimes look at even longer horizons. Lunsford and West (2017) forecast

interest rates 10 years ahead; Snaith et al. (2013) relate 120 month ahead

changes in exchange rates to period t predictors; and Hjalmarsson (2011)

relates 10 year ahead stock returns to period t predictors. These examples

could be multiplied many times over.

Note that the final two examples used the verb “relates” and not

“forecasts.” Such research evaluates the connection between a many step

ahead variable and a set of regressors using in-sample analysis only. The

R procedures we describe here are just as valuable for such in-sample analysis

as it is for analysis that involves forecasting. However, to focus the discus-

sion, we often shall describe our R functions in terms of forecasts.

Much though not all the relevant work—both in- and out-of-sample—

relies on stationary linear models, which we maintain here. Specifically, we

assume that the forecast or in-sample modeling of a stationary variable yt+q
relies on the projection of yt+q onto a constant and a (k� 1) vector Xt�1. Write

the population least squares projection as

yt+ q ¼ α +X0
t�1β + ηt+ q: (1)

The disturbance ηt+q is unobserved and is defined as the difference

between yt+q and the population projection of yt+q onto a constant and Xt�1.

In economics, there are two broad classes of applications. In the first class,

the elements of Xt�1 are financial market or survey variables that are hypothe-

sized to be good predictors of an economic variable y. A simple example

occurs in the Snaith et al. (2013) paper cited above:

66 PART I Statistical Inference

https://www.ssc.wisc.edu/~kwest/appendices/appendices.htm
https://www.ssc.wisc.edu/~kwest/appendices/appendices.htm
https://www.ssc.wisc.edu/~kwest/appendices/appendices.htm


l Let st be the log of the end of month nominal exchange rate (say, dollars

per British pound), so that

Δst � st� st�1

is approximately percentage change in the exchange rate. Observe that

with this definition,

yt+ q � st+ q� st�1 ¼Δst + q +Δst+ q�1 +⋯ +Δst

is approximately the percentage change in the exchange rate from month

t�1 to month t+q.

l Let it be the nominal return on a nominally safe q+1 month US bond.

Since we are assuming for the sake of illustration that the data are

monthly, if q+1¼120, then it is the interest rate on a 10-year US Treasury

bond. (“Nominally safe” means: the borrower [i.e., the US government]

will not default, and the return is only guaranteed in nominal rather than

real inflation adjusted terms.) Let it
∗ be the corresponding foreign interest

rate (the comparable interest rate in the UK, in this example).

Then a certain economic model says that the interest differential on 10-year

bonds it� it
∗ well explains the cumulative change in the exchange rate over

the following 10 years. So the regression run is

yt+ q � st+ q� st�1 ¼ α + β1 it� i∗tð Þ+ ηt+ q; X0
t�1 � it� i∗t and k¼ 1: (2)

The second broad class of applications are ones where Xt�1 consists of

deterministic terms and lags of yt and perhaps other variables. An example

is Marcellino et al. (2006), who examine prediction of many monthly eco-

nomic series at horizons up to q+1¼24 months, using both univariate

(Xt�1 includes lags of yt) and bivariate (Xt�1 includes lags of yt and of a sec-

ond variable) models. In the simplest possible case, the model is univariate

and the forecasting horizon is one step ahead (q+1¼1). Then (1) is

yt ¼ α + β1yt�1 + β2yt�2 +…+ βkyt�k + ηt; X
0
t�1 ¼ yt�1…yt�kð Þ: (3)

A specification such as (3) indicates that the researcher thinks an AR(k)
model well approximates yt. For this same set of predictors, a multistep direct

prediction (q+1>1) relies on the projection

yt+ q ¼ α+ β1yt�1 + β2yt�2 +⋯+ βkyt�k + ηt+ q: (4)

Eq. (4) relies on the fact that a multistep prediction of an AR(k) model is

linear in k lags of the variable. Of course, the coefficients α, β1,… , βk in (4)

are different from those in (3) (except when q+1¼1).
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A modest permutation of (4) involves predicting the average rather than

point in time forecast. For example, we generally are less interested in infla-

tion in the fourth quarter of next year than we are in average inflation over the

next four quarters. This sort of application involves a regression of the form

yt+ q � xt+ q + xt + q�1 +⋯ + xt
� �

= q+ 1ð Þ
¼ α + β1xt�1 + β2xt�2 +⋯+ βkxt�k + ηt+ q: (5)

Again, the coefficients in (5) are, in general, different from those in (4).

Each of (3)–(5) illustrated the direct multistep forecast of yt+q. Note for

future use that in (4) and (5), if, indeed, the hypothesized AR(k) model is cor-

rect, the disturbance follows a moving average process of order q:

ηt+ q �MA qð Þ: (6)

In many though not all motivations for regressions in the first class of

applications, illustrated by (2), it is also true that ηt+q�MA(q).
A brief digression on methods for multistep forecasts: for forecasts such as

those in (4) and (5), an alternative approach is to recursively generate j period
ahead forecasts by using j�1 period ahead forecasts. This is the approach of

Box and Jenkins (1976), for example. Let “^” denote a least squares estimate.

For example, in the model (4), the Box and Jenkins method constructs one and

two step ahead forecasts via

one step ahead forecast¼ α̂+ β̂1yT +⋯ + β̂kyT�k + 1, (7a)

two step ahead forecast¼ α̂ + β̂1� one step ahead forecastð Þ +β̂2yT +
…+ β̂kyT�k + 2: (7b)

This is sometimes called the iterated or plug-in method of forecasting. Our

procedures for bias adjustment are trivially applicable for one step ahead fore-

casts such as (7a), when the direct and iterated methods are identical. But they

are not directly applicable for multistep iterated forecasts such as (7b). For a

theoretical comparison of iterated and direct forecasts, see Ing (2003). We

focus on direct forecasts because they are dominant in economics.

3 Bias adjustment for long horizon regressions

3.1 Introduction

Least squares estimators of time series models are biased in finite samples.

That is, even if we make (mild) assumptions so that estimates are consistent

for underlying population quantities, in finite samples the expectation of the

least squares estimator is not, in general, equal to the underlying population

quantity. For the simple AR(1) model (in (3), k¼1 and ηt� i.i.d.), Kendall

(1954) suggested that
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Eβ̂1 � β1�
1 + 3β1ð Þ

T
: (8)

More generally, West (2016) shows that for a k�1 vector b that depends

on own- and cross-moments of Xt�1 and ηt, the least squares estimator of (8)

satisfies

Eβ̂¼ β +
b

T
+O T�3=2
� �

: (9)

In the simple AR(1) model underlying (8), k¼1, β¼β1 and b¼ � (1+3β1).
The small sample bias we are concerned with in this chapter is the b/T term

in (9). We describe R code to construct an estimate b̂, yielding a bias adjusted

estimate β̂� b̂=T.
Bias in estimate of the constant term α (defined in (1)) follows from:

bias to order T�1 inα̂
� �¼ EX0

t

� �
b:

Given an estimate b̂ supplied by the R code we are about to describe, and

a sample average X, one can adjust for such bias via:

bias adjusted estimate of αð Þ¼ α̂�X
0
b̂=T:

Because such an adjustment follows directly from adjustment for bias in the

slope coefficient vector β, we shall not further discuss bias adjustment of α.
A number of papers have derived b/T when forecasts are one step ahead

(q+1¼1) and ηt is a conditionally homoskedastic martingale difference. See

Shaman and Stine (1988) for the univariate AR (Eq. 4) and the summary in

Engsted and Pedersen (2014) when the one step ahead forecast comes from

an equation from a vector autoregression. West (2016) derives b/T for arbitrary

horizons q+1 and allowing time varying second moments in ηt+q. Our

R procedures implement a subset of the results allowed in West (2016). In par-

ticular, our code coheres with a special case of the theory in West (2016).

This special case requires that (a) a certain cumulant condition holds that rules

out time varying second moments and (b) ηt+q is uncorrelated not just with

Xt�1 itself but also with all lags of Xt�1 (i.e., Eηt+ qX
0
t�j ¼ 0 for j¼2, 3, …).

(This last condition is generally assumed under the null of the model but may fail

under misspecification. For example, in (4), if yt�AR(k), then Eηt+ qX
0
t�j ¼ 0 for

all j�1 and the condition holds. But if yt�AR(m) for some m>k, then in (4)

the condition fails and Eηt+ qX
0
t�j 6¼ 0 for at least one j>1.) In any application

in which (a) or (b) fail, the estimate b̂ that our code delivers should be taken

with a larger than usual grain of salt.

See West (2016) for details. One important theoretical result from West

(2016): in regressions such as (2) or (5) where the left hand side variable is a

long horizon sum or average of a stationary variable, bias b is arbitrarily big

in absolute value for an arbitrarily long horizon q. This is a general result for
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such left hand side variables, and is not specific to the examples such as (2) and

(5). Hence a bias adjustment is especially appealing for such regressions.

To understand the parameters and/or moments that must be passed to our

functions that estimate b, it may be helpful to note that b depends on own- and

cross-covariances of the right hand side variables Xt�1 and the disturbance

ηt+q. The first pair of functions that we are about to describe (longhor1,

longhor) construct estimates of the relevant second moments and the user

needs only to pass a parameter specifying a certain lag length. The second pair

of functions that we describe (proc_vb_ma0, prov_vb_maq) rely partially on

the user to construct the relevant second moments; prior to invoking the func-

tions, the user is required to have estimated a certain autoregression or vector

autoregression, with the results of that estimation passed to our R functions.

The first pair of functions (longhor1, longhor) are high-level, but require

that Xt�1 consist solely of lags of a single variable such as in (2)–(5). This sin-
gle variable may or may not be lags of the left hand side variable; the “may”

case is illustrated in (3) and (4), the “may not” in (2) and (5). The second pair

of functions (proc_vb_ma0, prov_vb_maq) are lower level, requiring more

work from the user. But they do not restrict the specification of Xt�1.

3.2 R function longhor1

One of our R functions is most easily motivated with reference to any of (3)–(5).
The user passes a vector yseries with data on the left hand side variable and a

second vector xseries with data on the right hand side variable. The two vectors

are different in the case of (5) but are the same in the cases of (3) or (4). The

user also specifies the integer order of the lead of the left hand side relative to

the right hand side nq (¼q in (1)) the integer number of lags nk (¼k in (1))

on the right hand side, integer pointers first and last to the sample period and

an integer narlag that should be set to nk if (3)–(5) is of interest and whose

presence is explained below. The function returns three nk �1 vectors:

l vbias (¼ b, as defined in (9));

l betahat (¼ least squares β̂);
l betahat_adj (¼ bias adjusted β̂¼betahat� (vbias/T), T¼ last-first+1).

See Table 1, which summarizes this information.

To clarify dating and variable definitions: the regression of interest is

yseries, nq periods ahead, on lags 1 to nk of xseries:

yseries t + nqð Þ¼ α + β1xseries t�1ð Þ+⋯+ βkxseries t�nkð Þ
+ disturbance t + nqð Þ,

t+ nq¼ first,…, t + nq¼ last:

(10)

Since the regression is run with yseries dates running from first to last, the

dates on xseriest�1 go from t�1¼ first_nq�1 to t�1¼ last_nq�1.
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To further clarify dating, consider a concrete example. Suppose that yseries

includes 99 observations. For simplicity of exposition, assume data are annual

and run from 1901 to 1999. Thus yseries(4) is data from 1904 and xseries
(11) is data from 1911, for example. Suppose further that nq¼7 and

nk¼2¼narlag. Suppose, finally, that one wishes to run the regression with left

hand side data running from 1910 to 1990 (thus not using some of the data):

yseriest+ 7 ¼ const:+ β1xseriest�1 + β2xseriest�2 + disturbance,

t + 7¼ 1910,…,1990
(11)

TABLE 1 Function longhor1

result <- longhor1(yseries, xseries, first, last, nq, nk, narlags)
vbias <- result[[1]]; betahat <- result[[2]]; betahat_adj
<- result[[3]]

The right hand side variables in the regression of interest consist of a constant and lags
of a single variable, such as in (2)–(6). The left hand side may or may not be a lead of
the same variable.

Passed by user

yseries vector for the left hand side variable

xseries vector for the right hand side variable

first integer start date for the left hand side variable in the regression

last integer end date for the left hand side variable in the regression

nq q: integer horizon, nq� 0

nk k: integer number of lags k of xseries to include on the r.h.s. of the
regression (1)

narlag integer number of lags to include in estimating an AR model for xseries
(needed to compute the bias). The user should insure that narlag is
sufficient to produce a white noise residual in this autoregression

Returned to user

result[[1]] nk�1 vector: b̂¼estimate of k�1 numerator of bias to order T�1

(T¼ sample size)

result[[2]] nk�1 vector: β̂¼ordinary least squares estimate of k�1 β

result[[3]] nk�1 vector, bias adjusted β̂, result[[3]]5 result[[2]]2 (result[[1]]/T),
T¼ last-first+1

Functions invoked directly or indirectly by longhor1: proc_vb_ma0, proc_vb_maq, and
proc_vbias.
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Thus the vector of the left hand side variable and the matrix of stochastic

right hand side variables are

yseries1910

yseries1911

⋮
yseries1990

0BBB@
1CCCA,

xseries1902 xseries1901

xseries1903 xseries1902

⋮ ⋮
xseries1982 xseries1981

0BBB@
1CCCA:

Then one invokes longhor1 via

result< -longhor1 ðyseries, xseries, 10, 90,7, 2, 2Þ ,
vbias< -result½½1�� ; betahat< -result½½2 �� ; betahat_adj< -result½½3�� :

(12)

In this example, the procedure returns three 2�1 vectors: betahat � β̂�
β̂1 β̂2
� �0

, vbias ¼ b̂, betahat_adj � β̂� b̂=T, where T¼81.

More generally, the procedure is invoked via

result< -longhor1ðyseries, xseries, first, last, nq, nk, narlagÞ
vbias< -result½½1�� ; betahat< -result½½2 �� ; betahat_adj< -result½½3�� :

(13)

Note: The code does not do error checks for missing data. So, suppose in

the concrete example just given, where available data run from 1901 to 1999,

that the user passes first¼5 along with nq¼7. Then the function would

assume the first observation on the left hand side variable is 1905 and the first

observation on xseries is 8 years earlier (8¼nq+1), i.e., 1897—a date that

is not in the sample. Results are unpredictable if, as in this illustration,

parameters point to data that are not available.

Procedure longhor1 can also handle applications such as (2), at the addi-

tional cost of the user specifying a lag length for an autoregression in the right

hand side variable. Let xt be a generic right hand side variable in a regression,

with xt¼ it� it
∗ in (2) as an example. As noted above, b depends on own- and

cross-covariances of the right hand side variables Xt�1—in this case, simply

xt—and the disturbance ηt+q. In longhor1, to compute the necessary second

moments, the code relies in part on the presumption that the dynamics of xt
can be approximated by a finite order autoregression. The user must specify

the order of this autoregression, i.e., the order of an autoregression in xt that
produces an approximately white noise disturbance. That is the purpose of

the parameter narlag. In (3)–(5), it will normally be the case that

narlag¼nk—one chooses to use k lags in the regression because use of k lags
produces an approximately white noise disturbance. But in (2), the theory that

leads to the regression does not constrain the order of an approximating

autoregression for xt(¼ it� it
∗).

To illustrate: suppose that the user decides that an AR(4) produces an

approximately white noise disturbance in it� it
∗. Then for (2), one invokes

longhor1 with
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l nk¼1 (because there is only one stochastic right hand side variable), and

l narlag¼4 (on the user’s conclusion that an AR(4) in it� it
∗ produces

an approximately white noise residual).

3.3 R function longhor

This is a generalization of longhor1 in which a vector autoregression rather

than an autoregression is used to compute autocovariances of the variables

whose lags are in Xt�1. In the exchange rate example (2), one might suppose

that sharper estimates of the moments of it� it
∗ will result from use of the time

series of exchange rates in addition to the time series of it� it
∗.

Again let xt be the variable whose lags are in Xt�1. Let w1t,… , wnt be n
additional variables thought to have useful information about the autocovar-

iances of xt. Put these n additional variables in a matrix Wseries. Then to

compute autocovariances from a VAR in (xt, w1t,… , wnt) one invokes

longhor passing Wseries and setting nWseries¼n. See Table 2.

3.4 R functions proc_vb_ma0 and proc_vb_maq

These are low level functions invoked by longhor and longhor1. They are

flexible enough to allow computation of bias to order T in any least squares

regression. An example of a regression covered by these procedures but not

allowed by longhor or longhor1 is a direct forecast that relies on a bivariate

information set

TABLE 2 Function longhor

result <- longhor(yseries, xseries, Wseries, nWseries, first,
last, nq, nk, narlag)

vbias <- result[[1]]; betahat <- result[[2]]; betahat_adj
<- result[[3]]

The right hand side variables in the regression of interest consist of a constant and lags
of a single variable, such as in (2)–(6). The left hand side may or may not be a lead of
the same variable.

Parameters are as for longhor1, with the two additional parameters defined as

Wseries matrix containing variables in addition to xseries to be used in the VAR
that will be used to compute autocovariances of xt

nWseries the number of series or columns in Wseries. If nWseries¼0, the
procedure calls longhor1 to compute b

Functions invoked directly or indirectly by longhor: longhor1, proc_vb_ma0,
proc_vb_maq, and proc_vbias.
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yt+ q ¼ α+β1yt�1+β2yt�2 +⋯+βmyt�m+βm+ 1xt�1+βm+ 2xt�2+⋯+βkxt�m+ηt+ q;

X0
t�1 ¼ yt�1, yt�2,…, yt�m, xt�1, xt�2,…, xt�mð Þ:

(14)

In (14), k¼2m. Of course our functions also allow the left hand side vari-

able to be not point in time as in (14) but an average or cumulated sum as in

(2) or (5). The key difference between (14) and specifications covered by

longhor and longhor1 is that the latter require that Xt�1 consist of lags of a

single variable, whereas there are lags of two different variables on the right

hand side of (14). The functions proc_vb_ma0 and proc_vb_maq accommo-

date not only two but any number of different variables on the right hand side

of the regression of interest.

In contrast to longhor and longhor1, proc_vb_ma0 and proc_vb_maq

require the user to do preliminary calculations before being invoked. First,

the user, and not these functions, is required to estimate β̂. These functions

will compute b̂ but not β̂. Second, the user, and not these functions, must esti-

mate a vector autoregression whose variables include those in Xt�1, passing

certain results from this vector autoregression to these two functions.

To illustrate how to invoke these functions, let us use (14), setting m¼2

for concreteness:

yt+ q ¼ α+ β1yt�1 + β2yt�2 + β3xt�1 + β4xt�2 + ηt+ q; k¼ 4; X0t�1¼ yt�1, yt�2, xt�1, xt�2ð Þ:
(15)

The user needs to specify a vector autoregressive model for the right hand

side variables in (15) that can be used by our R functions to deliver accurate

estimates of the autocovariances of Xt�1. The fact that there are two lags on

the right hand side of (15) suggests that a vector autoregression of order 2 will

suffice. Let Yt(2�1)¼ (yt, xt)
0. Write the VAR(2) as

Yt ¼ const:+Φ1Yt�1 +Φ2Yt�2 +Vt; Vt � i:i:d; ΩV �EVtV
0
t : (16)

In (16), Φ1, Φ2, and ΩV are 2�2; Vt is 2�1; here and in subsequent equa-

tions “const.” is an inessential vector of constants whose dimension may be

different in different equations.

The user must estimate a VAR such as (16) and pass to our R functions the

estimates of the autoregressive coefficients (Φ1 and Φ2 in example (16)) and

the variance–covariance matrix of the disturbance to the VAR (ΩV in example

(16)) to our R functions. These estimates are passed after rewriting the VAR

in the VAR(1) companion form. For the VAR (16), the companion form is
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Yt

Yt�1

 !
¼ const:+

Φ1 Φ2

I2 02�2

 !
Yt�1

Yt�2

 !
+

Vt

02�1

 !
,written compactlyas

Zt
4�1

¼ const:+ Φ
4�4

Zt�1
4�1

+ Ut
4�1

:

(17)

The general setup: let Zt be the nZ�1 vector of variables in the VAR used

to compute moments related to Xt, with the VAR written in companion form.

That is,

Zt�EZt
nZ�1

¼ Φ
nZ�nZ

Zt�1�EZt�1ð Þ + Ut
nZ�1

, ΩU
nZ�nZ

¼EUtU
0
t , Xt

k�1
¼ PX

k�nZ

Zt
nZ�1

(18)

Note that the elements of Xt are elements of Zt.
The user must compute and pass to the code: the dimension k of Xt (called

nk in the code), the dimension of nZ of Zt (called nZtwid in the code), PX and

estimates Φ̂ and Ω̂U (called PX, phitwid, and omegaUtwid in the code).

In the example (16) and (17), nk¼4, nZtwid¼4,

PX¼
1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

0BBB@
1CCCA

and, letting “b”denote a least squares estimate or residual,

phitwid¼ Φ̂1 Φ̂2

I2 02�2

 !
,omegaUtwid¼ Ω̂V 02�2

02�2 02�2

 !
,Ω̂V ¼ T�1

X
V̂tV̂

0
t�1:

The user must also pass some moments related to the cross-covariances

between Zt or Xt on the one hand and ηt on the other. We supply separate func-

tion calls for (1) ηt+q i.i.d., and (2) ηt+q�MA(q). The first is a special case of

the second.

Let η̂t+ q be the least squares residuals. Let Zt be the vector of variables in

the companion form VAR. The two separate function calls are:

(1) q¼0 and ηt� i.i.d.: The user needs to compute and pass an estimate

of EηtZt0, called EetaZtwid0. In example (16) and (17), in which

Z0t¼(yt, yt�1, xt, xt�1),
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EetaZtwid0¼ T�1
X

η̂tyt, T
�1
X

η̂tyt�1, T
�1
X

η̂txt, T
�1
X

η̂txt�1

� �
:

(To prevent misunderstanding: yes, in this example T�1
P

η̂tyt�1 ¼ 0 and

T�1
P

η̂txt�1 ¼ 0 by construction, since least square residuals are orthogonal

to the regressors.)

(2) ηt+q�MA(q): The user passes the integer parameter nq (the value of q) as
well as (i) a matrix EetaZtwid and (ii) a vector EXeta. (i) and (ii) are

defined as follows:

(i) EetaZtwid is a matrix of dimension (q+1)�nZ. In this matrix, for

i¼0,… , q, the (i+1)st row is a 1�nZtwid estimate of Eηt + qZ
0
t+ i.

The estimate can be computed by the user as

estimate ofEηt+ qZ
0
t+ i ¼ T�1

X
η̂t + qZ

0
t+ i:

(ii) EXeta is an estimate of the nk�1 vector E(Xt+Xt+1+⋯+Xt+q�1)ηt+q.
The estimate can be computed by the user as

EXeta¼ T�1
X

Xt +Xt+ 1 +⋯ +Xt+ q�1

� �
η̂t + q:

Here is the syntax to invoke the functions. The functions return the nk �1

estimate of b̂, called vbias.

	 ηt � i:i:d : (19a)

vbias< -proc_vb_ma0ðnZtwid, phitwid, omegaUtwid, nk, PX, EetaZtwid0Þ

	 ηt �MA qð Þ : (19b)

vbias< -proc_vb_maqðnZtwid, phitwid, omegaUtwid, nk, PX, EetaZtwid, EXeta, nqÞ :

Relative to the procedure used when ηt� i.i.d., the procedure for ηt�MA(q)
requires that the user change one parameter (EetaZtwid0 ! EetaZtwid)

and include two additional parameters (EXeta and nq). See Tables 3 and 4.

After obtaining vbias � b̂ from either procedure, the user must divide by

sample size T, to obtain bias adjusted estimate¼ β̂� b
T.

4 R code for an empirical application

Table 5 has R code for an application using longhor1. It estimates (4) with

lag length k¼2 and horizon q+1¼12.
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TABLE 3 Function proc_vb_ma0

vbias <- proc_vb_ma0(nZtwid, phitwid, omegaUtwid, nk, PX,
EetaZtwid0)

l In (1), q¼0 and the regression disturbance ηt� i. i. d. The right hand side variables in
the regression are not restricted to be a constant and lags of a single variable.

l The user has estimated an auxiliary regression, written in companion form as

Zt�EZt
nZ�1

¼ Φ
nZ�nZ

Zt�1�EZt�1ð Þ+ Ut
nZ�1

, ΩU
nZ�nZ

¼EUtU
0
t, Xt

k�1
¼ PX

k�nZ

Zt
nZ�1

:

This regression produces an approximately white noise disturbance Ut.
l The user has also estimated (1), yielding least squares residuals {η̂t }.

Passed by user

nZtwid nZ: integer number of variables in the auxiliary VAR (13)

phitwid Φ̂: matrix of autoregressive estimates in (13)

omegaUtwid Ω̂U: matrix of estimates of the variance–covariance matrix in (13)

nk k: integer number of variables in regression (1)

PX PX: matrix selecting from Zt the right hand side variables in the
regression of interest in (13) (PX¼ I is possible)

EetaZtwid0 vector estimate of EηtZt
0, i.e., T�1

P
η̂tZ

0
t

Returned to user

vbias nk�1 vector: b̂¼estimate of k�1 numerator of bias to order T �1

Functions invoked by proc_vb_ma0: proc_vbias.

TABLE 4 Function proc_vb_maq

vbias <- proc_vb_maq(nZtwid, phitwid, omegaUtwid, nk, PX,
EetaZtwid, EXeta, nq)

l In (1), q may be any integer and the regression disturbance ηt+q�MA(q). The right
hand side variables in the regression are not restricted to be a constant and lags of
a single variable.

l The user has estimated an auxiliary regression, written in companion form as

Zt�EZt
nZ�1

¼ Φ
nZ�nZ

Zt�1�EZt�1ð Þ+ Ut
nZ�1

, ΩU
nZ�nZ

¼EUtU
0
t, Xt

k�1
¼ PX

k�nZ

Zt
nZ�1

:

This regression produces an approximately white noise disturbance Ut.
l The user has also estimated (1), yielding least squares residuals {η̂t + q}.

Continued
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TABLE 4 Function proc_vb_maq—Cont’d

Passed by user

nZtwid nZ: integer number of variables in the auxiliary VAR (13)

phitwid Φ̂: matrix of autoregressive estimates in (13)

omegaUtwid Ω̂U: matrix of estimates of the variance–covariance matrix in (13)

nk k: integer number of variables in regression (1)

PX PX: matrix selecting from Zt the right hand side variables in the
regression of interest in (13) (PX¼ I is possible)

EetaZtwid estimates of Eηt+qZ
0
t+i�1, i¼1 to q+1. Matrix of dimension (nq+1)

nZtwid (i.e., of dimension (q+1) nZ). Row i+1 has the estimate of
Eηt+qZ 0

t+i, e.g., the first row of EetaZtwid is T�1
P

η̂t + qZ
0
t

EXeta vector estimate of E(Xt+Xt+1+⋯+Xt+q�1)ηt+q,
i.e., T�1

P
Xt +Xt +1 +⋯+Xt + q�1

� �
η̂t + q

nq integer value of q in (1)

Returned to user

vbias nk�1 vector: b̂¼estimate of k�1 numerator of bias to order T �1

Functions invoked by proc_vb_maq: proc_vbias.

TABLE 5 R code to illustrating use of longhor1

rm(list=ls())

library(MASS)

library(expm)

source("lagmatrix.R")

source("proc_vbias.R")

source("proc_vb_ma0.R")

source("proc_vb_maq.R")

source("UtilFunc_OLS.R")

source("longhor.R")

source("longhor1.R")

# Parameterwe Setting

T <- 240 # sample size

ARp <- 2 # Order of AR

q_horizon <- 11 # Forecast horizon is q+1
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