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This article presents analytical and simulation results on the properties of two tests for forecast encom-
passing, allowing throughout for dependence of the forecasts on estimated regression parameters. One
test. which was intended for forecasts that do not depend on regression parameters, was developed by
Harvey, Leybourne, and Newbold. This test works relatively well when the size of the sample of fore-
cast errors is very small. A second test, which explicitly accounts for uncertainty about the regression
parameters, otherwise is comparable or preferable.
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In a recent article, Harvey, Leybourne, and Newbold (1998,
henceforth HLN) developed and evaluated tests for forecast
encompassing. The theory and simulations of HLN assume
that forecast errors are observed without error. But many if not
most economic forecasts rely on regression estimates. Forecast
errors thus often are regression residuals that are contaminated
by error in estimation of the regression parameters.

This note considers forecast encompassing when forecasts
rely on regression estimates. It concludes that even when
forecasts are based on regression estimates, the test statistic
proposed by HLN (1998) is relatively attractive under the fol-
lowing condition: The size of the sample of forecast errors
is very small, as measured either by number of observations
(say, n < 8) or as a fraction of the size of the sample used to
compute the regression estimates (say, n less than a tenth of
the regression sample size). But otherwise, attempting to apply
this statistic when forecasts rely on regression estimates—an
application not considered or recommended by HLN (1998),
[ hasten to point out—probably is inadvisable. A test statis-
tic that explicitly accounts for the dependence of the forecast
errors on regression estimates seems comparable or preferable.

For expositional clarity, [ use an example with univari-
ate least squares forecasting models, one-step-ahead forecast
errors, and forecasts made using a single estimate of the
regression parameters. The appendix presents the generaliza-
tion to nonlinear and multivariate models, multistep forecasts,
and forecasting schemes in which parameter estimates are
updated as new data become available so that different fore-
casts use different regression estimates.

1. ASYMPTOTIC RESULTS

In the example I use, the investigator is comparing two
models for a scalar variable y,. The two models are

Y= Xlr.Bl +ey,

Y :XZIBZ+62[' (1)

In (1), all variables are scalars, and 3, and 3, are unknown
parameters. The variables are assumed to be stationary and
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Out-of-sample:

well behaved in the sense made precise by Diebold and
Mariano (1995), HLN (1998), and West and McCracken
(1998). In this simple example I also impose the conditions
that the vector of regression disturbances (e,,, ¢,,)" is inde-
pendently and identically distributed, with each disturbance
uncorrelated with the corresponding regressor (i.e., Ee; X, =
Ee, X, =0).

To compare the two models, one performs an encompassing
test. Let

d/ = ef[ —€1,€y;. (2)

As explained by HLN (1998), if Model (1) encompasses
Model (2), Ed, =0, and that is the null.

If B, and B, were observed, one could test H,: Ed, =0 by
examining

R+n R+n

e - _ a2

d=n" Y d=n") (e, —e,e,). 3)
1=R+1 t=R~+1

(See the following paragraphs for why the sample starts at
R+1.) Let S denote the variance of <,. HLN (1998) noted
that it follows from Diebold and Mariano (1995) that, under
standard assumptions about forecast errors,

Jn(d—Ed) ~,N(0, S),S=E(d,—Ed,)*. (4)
This suggests obtaining a standard error as the square root of
the sample variance of d,. The simulations of HLN (1998)
show, however, that using degrees-of-freedom adjustment and
using critical values from a ¢ rather than a normal distribution
result in distinctive improvement in test statistics.

What are the implications of 8, and 3, being unknown?
Evidently, they will be estimated before forecasts are made. So
suppose that data from r=1,..., R are used to obtain least
squares estimates 3, and 3,. These estimates are then used to
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make forecasts from 7 =R+1,. .., R+n. (I take as given the
split of the sample into R and n.) One examines not d but

R+n
7 2 A
d=n Z (€7, —¢,,3)
t=R+1
é\ll:yr—"xllﬁl* éZrzyr_XlzBZ' (5)

Define

Vg = (2 x 2) asymptotic variance—covariance

matrix of the estimator of 8= (B, 8,)

D= Ea_Bl/ = (1 x 2) expectation of the vector
of derivatives of d, with respect to g’
D= (—ZEeIrXII +Eey X, EeltXZr)
= (EFZIXH’ EeerZr)’

7 = limit as sample size goes to infinity of

%,ﬂ'<oo. (6)

Under the conditions of West and McCracken (1998),

Jn(d—Ed)~,N(0, Q), Q=S+ 7DV,D’
=E(d,—Ed ) +7DVyD'. (7)

On comparing (7) and (4). we see that parameter estima-
tion introduces extra uncertainty because 7DV, D" is nonneg-
ative and except in very special cases will be strictly positive.
Evidently, using S (or a consistent estimate of ) to perform
inference, which is appropriate when there is no parameter
estimation error, will result in too many asymptotic rejec-
tions at any specified significance level. In considering use of
HLN’s (1998) test, the question is whether the distortion is
trivial and so can be ignored in practice. I first consider the
asymptotic formulas (4) and (7) analytically, and then turn to
simulations to quantify the effects of parameter uncertainty in
finite samples.

One simple condition that ensures that the distortion is small
is that 7 is small because, for arbitrarily small 7, *n'DVBD’ 1S
arbitrarily small compared to §. When 7 is small, one keeps
n <« R as the sample size grows so that many more obser-
vations are used to obtain the estimates of 3 than are used
to obtain the estimate of Ed,. As one might expect, in such
a case uncertainty about 8 will be small compared to uncer-
tainty that would be present even if 8 were known. If one uses
n/R as the obvious finite-sample analogue to 7, then a range
of values of 7 is suggested, some small [e.g., n/R ~ .15 as in
Ericcson and Marquez (1993)], some moderate [e.g., n/R~ .4
as in Cooper (1972)], some, especially in financial applica-
tions, large [e.g., the range of values of n/R is from about 5
to 18 as in Engle, Hong, and Kane (1990)].

Of course, the term WDVBD’ is small for any 7 if Vg is
small: Ceteris paribus, the smaller the variance of the estimator
of 3, the less important is such variance for inference about
Ed,. [Note, however, that (in contrast to ) one is typically
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not free to vary V, without also varying D and E(d, — Ed,)*.]
To gauge the magnitude of DVgD', let us impose the null
hypothesis that Model (1) encompasses Model (2). Then ¢,
cannot be predicted by Model (2), so

D= (EeyX,, 0) = DVD'
= (Eezrxlr)zvﬂ(lv 1)
= (EezrXII)Z(EXEI)_Q(Exlzre%r ' (8)

[In (8), the usual heteroscedasticity-robust formula has been
used for the asymptotic variance of the least squares estima-
tor of B,.] To get a precise, and simple, statement about the
relative size of the two terms in (7), let us further assume that
B,=0 (= e, =X,B,+e¢,) and that X, and e,, are iid nor-
mal. With some algebra, one can then establish that

DVgD' =S = /n(d — Ed,) ~, N(0, Q)
Q=(1+m)S=(1+mE(d,—Ed,)*
=(l+m)Ed’. (9)

The final equality holds since Ed, =0 under the null.

It is easy to calibrate the asymptotic magnitude of the dis-
tortion from using S (or a consistent estimate of S) to per-
form inference. If (say) 7 = .1, asymptotic ¢ statistics using
VS rather than \/ (14+)S will be too small by a factor of
V1.1~ 1.03, implying that nominal 5% tests will have actual
size of about 6%. This is arguably a small distortion; it affirms
Chong and Hendry’s (1986) view that, if n/R is small, one can
sometimes safely abstract from error in estimation of param-
eters when performing encompassing tests. But for larger val-
ues of 7, the distortion is larger. If 7 = (say).5, nominal 5%
t tests using +/S rather than /(I +)S will asymptotically
have actual size of about 11. If = =2, the implied size is
about 26. As noted previously, many applications do involve
ratios of prediction to regression samples that are moderate or
large, indicating that accounting for parameter estimation error
will be important in samples large enough for the asymptotic
approximation to be accurate.

The simple result (9) requires assumptions that will be dif-
ficult to defend in most applications—for example, that X,,
is iid. As discussed in the appendix, the asymptotic result (7)
holds quite generally. It may help to note here that under the
null that Model (1) encompasses Model (2), (7) typically takes
a relatively simple form. Suppose that Model (1) relies on
a parameter vector ,(k, x 1) Model (2) a parameter vector
B, (the dimension is not relevant) with corresponding predic-
tion errors e, and e,,. Let de|,/df3, be the (k, x 1) derivative
of e,, with respect to 3,. For example, in the linear model
v, = X},B,+ey,de,/dB, = —X,,. Let Vp; denote the k, x k,
asymptotic variance—covariance matrix of $8,. Then, under the
null, the asymptotic variance of d, is

Edrz +[Eey (de, /3B, )]/VBI [Eey (de,,/0B))]-

The asymptotic variance is more complicated if the predic-
tion horizon is multiperiod, or if one uses what the appendix
calls “recursive” or “rolling” schemes for forecasting. See the
appendix for details.
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2. SIMULATION RESULTS

To get a sense of whether the asymptotic approximation is
helpful in samples of typical size, I performed a small Monte
Carlo experiment. As in HLN (1998), I tried prediction sam-
ple sizes n =8, 16, 32,64, 128, and 256. For each choice of
n, I tried a range of values of R, subject to the constraint
that n+ R <768: n/R=2,1,.5,.25,.125, .0625. (The upper
bound of 768 was imposed to limit the amount of computa-
tion. For n = 256, for example, this choice allows n/R =2, 1,
and .5, but not n/R = .25, 125, or .0625.) The range of val-
ues of n/R tends toward the smaller side of values found in
the empirical work that I am familiar with (see the preceding
references). I lean toward smaller values because the asymp-
totic theory suggests that there will be a smaller distortion
from ignoring dependence on estimated regression parameters
for smaller values of n/R. The number of replications was
10,000. 1 generated the data according to (1), with 8, =0,
B,=1.and (e,,, X,,. X,,)" iid normal with diagonal variance—
covariance matrix with diagonal elements (1, 1, 2).

Using data from 1 to R, least squares was used to obtain
estimates B, and Bj and VP(I 1), the usual heteroscedasticity-
consistent estimate of Vg(1,1). (No heteroscedasticity is
present in the data, but to be conservative I assume that
the investigator does not know this.) T used sample aver-
ages of é,,X,, and of (d, —d)* to construct D(1) and §,
where the sample was over the n forecast errors. Two t tests
were performed. The first mimicked HLN (1998), making a
degrees-of-freedom adjustment to S and using critical values
from a 7(n — 1) distribution. The second used conventional
asymptotics:

Jn d
Test 1: Compute \/
compare to t{n — 1) distribution. (10a)
d
Test 2: Compute ﬁ__,
/ ~
v Q
compare to N(0, 1) distribution,
15 =§+(%)[3(1)ZVB(1, 1). (10b)

Resuits for two-sided nominal 5% tests are presented in
Table 1. (As documented in an additional appendix that is
available on request, results were similar for 10% tests; for 5
and 10% tests that use #(6) rather than normally distributed
data, for tests that construct @ imposing homoscedasticity
in estimation of V4(1, 1), and for tests that do not impose
Ee, X,, =0 in estimation of DV;D'.) The “8.3" near the upper
left of the table, for example, indicates that in about 830 of
the 10,000 simulations, Equation (10a) was greater than 2.365
in absolute value [2.365 is the critical value for a two-sided
.05 test for a 7(7) distribution).

As may be seen from the upper left corner of the table, the
statistic (10a), which does not explicitly account for sampling
error in estimation of 3, and $3,, is more accurate when n =8
and n/R =1, 2. Neither statistic is especially accurate when
n =28 and n/R = 2, a perhaps unsurprising finding since the
size of the sample used to estimate the 8's is so small (R =4).

Table 1. Empirical Sizes of Nominal 5%-Level Tests for Forecast

Encompassing
Q
Test

n slatistic 2 1 .5 .25 .125 .0625
8 Eq. (10a) 8.3 5.9 5.0 43 3.7 3.6

Eqg. (10b) 9.8 6.4 5.4 53 6.3 7.7
16 Eg. (10a) 15.5 10.8 7.8 59 5.1 4.8

Eq. (10b) 8.0 5.1 4.1 45 5.3 6.1
32 Eq. (10a) 20.8 14.2 9.6 6.5 55 5.1

Eqg. (10b) 6.5 5.0 4.2 43 5.0 55
64 Eqg. (10a) 235 155 10.3 7.9 6.6

Eqg. (10b) 55 4.7 4.8 52 5.4
128 Eq. (10a) 247 15.7 10.6 8.1

Eq. (10b) 53 4.7 4.8 52
256 Eq. (10a) 252 16.7 10.8

Eq. (10b) 5.0 47 48

NOTE: 1. This table presents empirical sizes of nominal .05 two-sided tests for Hy: £d; =
0,di = E(efr - eq1€2¢). The model is given in (1), with 81 =1, B2 =0, (eqy, Xy, Xz;)' iid normal
with variance—covariance matrix = diag(1,1,2). 2. “n” is the number of one-step-ahead forecast
errors used to compute d; d is the sample average of 62, — é,:6y,. where é;; is the forecast
error when the least squares estimate of 3; is used for forecasting [see (5)]; A is the sample
size used to compute the least squares estimates of 84 and S8,. Thus in the row labeied "8,”
the values of R corresponding to the six values of n/R are 4, 8, 16, 32, 64, and 128. 3. Equation
(10a) is a statistic that would be asymptotically valid as n — = if the e;;'s were observed,
rather than computed as regression residuals. Because regression residuals are used and
0 < m =limg ,_,o n/R, Equation (10a) will asymptotically have an actual size greater than
.05. Equation (10b) is a statistic that is asymptotically valid as R, n — o« and takes account of
the fact that d is constructed from regression residuals. 4. Equation (10a) uses critical values
from a t(rm — 1) distribution, Equation {(10b} from an N(O, 1) distribution. The entries “8.3" and
“9.8" in row n =8, column n/R = 2, for example, indicates that in about 830 of the 10,000
samples, the Equation (10a) test statistic was greater than 2.365 in absolute value [2.365 is
the critical value for a #(7) distribution]; in about 980 of the 10,000 samples, the Equation (10b)
test statistic was greater than 1.96 in absolute value.

The statistic (10b}), which explicitly accounts for such sam-
pling error, typically is more accurate when n > 16 and n/R >
.125, though there are exceptions (n = 16, n/R = .125) and
a number of cases in which the ranking depends on the loss
function for over- versus under-rejection. In connection with
the loss function, my own sense is that most economists would
prefer to underreject slightly rather than overreject sharply,
and that sense underlies my interpretation of (10b) as prefer-
able (e.g., for n =256, nominal sizes of 4.7 and 4.8 are prefer-
able to 16.7 and 10.8). By the same token, the last column
of the table suggests that, for n/R = .0625, the test (10a) is,
overall, preferable. This is consistent with the previous inter-
pretation that abstracting from error in estimation of regression
parameters is safe when the ratio of forecast size to regression
size is small.

For larger n/R, the asymptotic tendency of Equation (10a)
to reject too much is reflected in the simulation. Indeed, for
n > 64, the sizes of the statistic (10a) predicted by the asymp-
totic approximation are roughly reflected. For example, the
asymptotic size is about 26 for lim, ,_,  n/R=m =2, versus
the 23.5-25.2 range reported in the table.

3. SUMMARY

Many if not most economic forecasts are based on regres-
sion estimates. In performing an encompassing test using such
forecasts, the statistic proposed by HLN (1998) is relatively
attractive for very small # (say, n < 8) or when n is very
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small compared to the size of the sample used to compute the
regression estimates (say, n/R < .1). But otherwise, asymp-
totic and simulation results argue for applying instead a test
statistic that explicitly accounts for the dependence of the fore-
cast errors on regression estimates. Unfortunately, perceptible
size distortions remain in samples of relevant size, and alter-
native procedures that lead to more accurately sized tests are
highly desirable.
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APPENDIX: ASYMPTOTIC RESULTS

This appendix sketches the general version of the asymp-
totic distribution of the estimator of Ed,, taking account of
dependence of the prediction errors on estimated parameters.
Technical conditions and further discussion may be found in
West (1996) and West and McCracken (1998).

Let v, denote the scalar variable being forecast by two mod-
els. As previously, write the parameter vector from model i as
B, and stack the two vectors in a (k x 1) vector 8= (], B85).
Lct the total amount of data available be R+n+h — 1, where
“h” is the forecast horizon (kA = 1 in the preceding analy-
sis). Three schemes for obtaining parameter estimates figure
prominently in the literature. The schemes must be distin-
guished because asymptotic results vary across the three. The
fixed scheme was the one illustrated previously. Data from 1
to R are used to estimate B, and 3, and this single set of
estimates is used in all predictions. In the rolling scheme, the
investigator rolls through the sample, first using data from 1
to R to estimate the 3,’s and predict yg,,, then data from 2
to R+ 1 are used to estimate the 3,’s and this new set of esti-
mates is used to predict yg, 4. . .., and finally data from n
to R+ n—1. In the recursive scheme, the sample size used
to estimate the B,’s grows: The investigator first uses from
1 to R to estimate the B,’s and predict yg,,, then estimates
using data from 1 to R+ 1 and uses the new estimates to pre-
dict yg.i4p,- ... and finally estimates using data from 1 to
R+n—1 to predict yp,, h_1-

As previously, define 7 < oo as w = limg ,_,, #/R. Define
the scalars A, and A,, as follows:

Sampling scheme A, Ay
recursive l—7'In(14+7) 2[1l=7"In(1+m)]
rolling, m < | T T— Zi
- 2 3
rolling, 7 > 1 1——1— 1——1—
2m 37
fixed 0 . (A.])
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[ assume predictions at time ¢ rely on an estimate of 8 =
(B}, B,) that can be written B(r) = B(¢)G(¢). Here, B(r) is a
(k x g) matrix that converges to a rank & matrix B and G(¢)
is a (g x 1) mean-zero orthogonality condition used to esti-
mate 8. G(7) is an average of a random variable g(¢) that has
expectation O; the average is taken over 1 to R (fixed scheme),
t—R+1 to t (rolling scheme), or 1 to 7 (recursive scheme).
When maximum likelihood is used, g = k, B(t) is the Hes-
sian evaluated on the line between ﬁ(r) and B, and G(r) is the
score. When instrumental variables (more generally, general-
ized method of moments) is used, ¢ > k (g > k in overiden-
tified models) and B(¢) is a matrix selecting which combina-
tion of orthogonality conditions to set to 0. When the models
are nonnested, as is vusually the case in practice, B(¢) and its
large-sample counterpart B are block diagonal, and G(¢) sim-
ply stacks the orthogonality conditions from the two models.
(The results here allow the two models to share some orthog-
onality conditions, as will also often be the case in practice.)

Write the forecast error (which may be multi- rather than
one-step-ahead) as e, = e, (8,), with sample counterpart ¢&;,.
Define

§ = Z E(dz_Edz)(d1—j_Ed/)v

(Ix1)

p—

ng = Z Eglg;ﬁ"

(gxq)  j=-o

Sdg = Z E(dr_Edr)ng’ VB EBSS’S‘Bl’

(Ixq) j=— (kxk)

(dr Edr(B)E[elz(Bl)]z“elr(B|)€21(.Bz),
Ix1)

D = E[ﬁd,/aﬁ]',

(1xk)

d = n"E(i, = n‘lz(é;‘, —é,,6y).

(tx1)

Vg is the asymptotic variance—covariance matrix of the esti-
mator of 8. Then

Vn(d—Ed,) ~, N0, Q),
Q=S+A,(DBS,,+S
+ A DVgD'.

B'D')

dg

(A.2)

The obvious sample analogues may be used in estimation of
the quantities in (A.2). Autocovariances of d, and g, = g,(8,)
may be used to estimate S, S,,, and §,,, using nonparametric
kernel estimators such as those of Andrews (1991) and Newey
and West (1994) if desired; standard estimators of regression
variance—covariance matrices may be used to estimate Vg a
sample average of aci, /3B may be used to estimate D.

Under the null of encompassing (Ed, = 0), simplifi-
cations usually obtain. Let me illustrate first with lin-
ear models y, = X,8,(B)) + e, and y, = X;,8,(B,;) + €.
[To clarify the notation: If (say) Model (1) is an autore-
gression of order k, — 1, then X,, includes a constant
and ¥, ., ¥,_p_is s Yimp—iie2 By includes the autoregres-
sive parameters; X|,g,(B,) is the usual h-step-ahead autore-
gressive forecast.] A sufficient condition for Ed, = 0 is
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E(ey | Xy Xo0 ¥ions Xiimps Xoots Yiopis - - - ) = 0. [If Model
(1) is an autoregression, then of course it is redundant to
include lagged y,’s along with lagged X,,’s in the conditional
expectation.] In the more general, possibly nonlinear case, suf-
ficient conditions for Ed, =0 are that e,, has mean O con-
ditional on (1) y,_; for j > h, (2) current and lagged values
of predictions from each of the models, and (3) current and
lagged values of the derivatives of ¢,, and e,, with respect to
B, and B,.

Under these conditions, the autocorrelations of d, will be
0 after the hth, implying S =¥"/"!, . Ed,d, ;. Similarly, D
will have the form [—FEe,,(de,,/3B,), 054, ]- This means that
DVyD'" will reduce to [Ee, (de;,/3B,)]'Vgi[Eey (e, /3B, ],
where Vi, is the k, x k; variance—covariance matrix of B,
and there will be no need to explicitly calculate the cross-
covariance between the estimators of 3, and 3,. The middle
term in (A.2), DBS, + S, B'D’, simplifies analogously.

If neither model encompasses the other, more complex cal-
culations are required. See West (in press).

[Received July 1999. Revised April 2000.]
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