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ON OPTIMAL INSTRUMENTAL VARIABLES ESTIMATION OF
STATIONARY TIME SERIES MODELS∗

By Kenneth D. West1

University of Wisconsin, U.S.A.

In many time series models, an infinite number of moments can be used
for estimation in a large sample. I supply a technically undemanding proof of
a condition for optimal instrumental variables use of such moments in a para-
metric model. I also illustrate application of the condition in estimation of a
linear model with a disturbance that is serially uncorrelated and conditionally
heteroskedastic.

1. introduction

In many instrumental variables (IV) applications, an infinite number of moments
is available for use in large sample estimation. This is in particular the case with most
time series models. If a given variable, say zt , is a legitimate instrument, so, too, are
its lags zt−1� zt−2� � � � .
Several theoretical papers on optimal IV estimation have allowed for an infinite

number of moments, including Hayashi and Sims (1983), Hansen (1985a), Hansen,
Heaton and Ogaki (1988), Heaton and Ogaki (1991), and Bates and White (1990,
1993). Some other papers have shown that for some empirically realistic data gener-
ating processes, use of the entire set of available moments can result in large asymp-
totic efficiency gains relative to use of a small set of moments (Hansen and Singleton,
1991; West and Wilcox, 1996). Simulations in West and Wilcox (1996) showed that
these gains are often realized in samples of size typically available.
Nevertheless, time series applications seem to rarely attempt to use anything but

a small set of moments. If my experience is any guide, one reason is that much of
the theoretical work is technically demanding. How one would construct an optimal
estimator in a particular application is probably not obvious to the typical researcher.
In the next section of this article, I supply a technically undemanding proof of a

condition characterizing an optimal IV estimator. This condition was first proved in
Hansen (1985a). While the methods and assumptions I use do require some econo-
metric sophistication, they will, I hope, be sufficiently familiar that many readers
will find it straightforward to interpret my results. Indeed, in the final section of
this article I do so by constructing the optimal IV estimator of the parameters of a
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univariate linear model with a serially uncorrelated and conditionally heteroskedas-
tic disturbance, when the space of instruments is defined to be nonstochastic linear
combinations of current and lagged values of a given variable.
To prevent confusion, let me note two limitations. First, in contrast to much of

the theoretical literature, I do not consider what determines whether a given space
of estimators includes one that satisfies the optimality condition. This simplifies the
analysis. Second, I do not describe how to make an optimal estimator feasible. Rather,
my aim is to show how to solve for what might be called a “population” optimal
estimator, one that relies on moments or parameters that will be unknown in typical
applications. In application one will have to estimate these moments and parameters.
See West and Wilcox (1996) for an application that uses a parametric estimation
technique; see Kuersteiner (1996) for one that uses a nonparametric technique.

2. an optimality condition

The aim is to efficiently estimate the (k× 1) unknown parameter vector β0 in the
regression model

yt = ft�β0� + ut�(2.1)

Here, yt and ut are each l × 1, yt is observed, and ut is unobserved. The known
function ft � Rk → Rl is continuously differentiable with probability one in an open
neighborhood around β0, with a k× l matrix of derivatives

Ft = Ft�β0� ≡
∂ft
∂β

�β0��(2.2)

Possible dependence of Ft on β0 is suppressed for notational simplicity. The t sub-
scripts on f and F indicate that they depend not only on β0 but also on observable
data, for example, ft�β0� = X ′

tβ0, Ft = Xt in a linear model.
A set of instruments, each of dimension (k × l), is available for estimation. (As

illustrated below, the assumption that the row dimension of an instrument is the
same as that of β0 is not restrictive; if more than k moment conditions are exploited
in estimation—as will be the case in the relevant applications—they are assumed
to already have been combined.) Let Z denote this set (which may have an infinite
number of elements). Let �Zt
 ∈ Z and �Z̃t
 ∈ Z denote two typical instrument
processes. I assume

�vec�Ztut�′� vec�Z̃tut�′
′(2.3)

is covariance stationary with summable autocovariances.

Covariance stationarity is assumed for algebraic simplicity; with some complication in
notation, heterogeneity such as that allowed in Bates and White (1990, 1993) could
be accommodated.
Let β̂ be the estimate of β0 associated with �Zt
. (The dependence of β̂ on observ-

able data and on sample size T is suppressed here and throughout.) A given Zt
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satisfies

ZtF
′
t is covariance stationary;(2.4a)

EZtut = 0� EZtF
′
t is of rank k�(2.4b)

T−1/2
T∑
t=1

Ztut ∼A N�0� S�� S ≡
∞∑

j=−∞
EZtutu

′
t−jZ

′
t−j�(2.4c)

S positive definite

√
T �β̂− β0� − �EZtF

′
t �−1

(
T−1/2

T∑
t=1

Ztut

)
→p 0�(2.4d)

Condition (2.4a) is again maintained for algebraic simplicity. The other conditions
are also standard: (2.4b) is an identification condition, (2.4c) is a central limit result,
and (2.4d) is a characteristic of IV estimators. Primitive conditions that insure (2.4c)
and (2.4d) may be found in Hansen (1982, 1985a).
To clarify both the notation and the interpretation of (2.4d) it may be helpful

to first review the generalized method of moments (GMM) interpretation of IV
estimation and then consider a linear example. For the informal GMM interpretation,
let β̂ be chosen in light of the moment condition 0 = EZtut = EZt�yt − ft�β0��, so
that 0 = T−1∑T

t=1Zt�yt − ft�β̂��. A mean value expansion applied to each element of
the right hand side of this first order condition yields

0 = T−1
T∑
t=1

Zt�yt − ft�β0�� + T−1
T∑
t=1

Zt

[
−∂ft
∂β

( ◦
β
)]�β̂− β0��

where
◦
β is the mean value whose elements lie between those of β̂ and β0. This may

be rewritten

√
T �β̂− β0� − �EZtF

′
t �−1

(
T−1/2

T∑
t=1

Ztut

)

=
[{

T−1
T∑
t=1

[
Zt

∂ft
∂β

�
◦
β�

]}−1
− �EZtF

′
t �−1

](
T−1/2

T∑
t=1

Ztut

)
�

which evidently will satisfy (2.4d) under suitable conditions.
To further clarify, and to touch briefly on asymptotic properties of feasible esti-

mators, consider a textbook two stage least squares (2SLS) example (although the
results of this article do not yield any special insight under textbook conditions).
Suppose yt = X ′

tβ + ut , so that F ′
t = X ′

t , where X ′
t is 1 × k and yt and ut are

scalars. Let Qt be the q × 1 vector of variables appearing in the reduced form,
q ≥ k. Let Ẑt = ÂQt , Â = �T−1∑T

t=1XtQ
′
t��T−1∑T

t=1QtQ
′
t�−1, so that Â is k × q

and Ẑt is k × 1. The 2SLS estimator is β̂2SLS = �∑T
t=1 ẐtX

′
t�−1

∑T
t=1 Ẑtyt . Define

A ≡ EXtQt�EQtQ
′
t�−1, Zt ≡ AQt , β̂ = �∑T

t=1ZtX
′
t�−1

∑T
t=1Ztyt . Suppose Ztut is sta-

tionary and Zt , Xt �= Ft�, ut , and β̂ satisfy (2.4). Then under the mild additional
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conditions that T−1∑T
t=1XtQ

′
t →p EXtQ

′
t and �T−1∑T

t=1QtQ
′
t�−1 →p �EQtQ

′
t�−1,√

T �β̂2SLS − β̂� →p 0, and the asymptotic distribution of β̂ is also that of β̂2SLS.
This example is representative of overidentified models, in which a feasible combi-

nation of instruments used in estimation will depend on sample information. In such
models, the Zt referenced in my formal assumptions is an asymptotic combination
that depends on population rather than sample moments. To extend the analysis to
feasible estimators, one must verify that feasible estimators and the ones discussed
here have the same asymptotic distribution. For such verification in models with
an infinite set of underlying moment conditions, see, among others, Newey (1988),
Kuersteiner (1996) and West et al. (1998).
To return to the general discussion: Let β̂ and β̂∼ be the estimates associated with

�Zt
 and �Z̃t
 ∈ Z. Let “acov” denote the asymptotic covariance between the two
estimators:

acov�β̂� β̂∼�(2.5)

≡ lim
T→∞

E

{
�EZtF

′
t �−1

(
T−1/2

T∑
t=1

Ztut

)}{
�EZ̃tF

′
t �−1

(
T−1/2

T∑
t=1

Z̃tut

)}′

= �EZtF
′
t �−1

{
lim
T→∞

T−1
T−1∑

j=−T+1
�T − �j��EZtutu

′
t−jZ̃

′
t−j

}
�EFtZ̃

′
t�−1

= �EZtF
′
t �−1

∞∑
j=−∞

EZtutu
′
t−jZ̃

′
t−j�EFtZ̃

′
t�−1�

The final equality follows since
∑∞

j=−∞ EZtutu
′
t−jZ̃

′
t−j < ∞ by (2.3) (Anderson, 1971:

p. 460). Similarly, define

acov�β̂� β̂− β̂∼� ≡ acov�β̂� β̂� − acov�β̂� β̂∼� ≡ avar�β̂� − acov�β̂� β̂∼��(2.6)

and analogously for the asymptotic covariance between arbitrary finite linear combi-
nations of estimators. In (2.6), “avar” denotes “asymptotic variance.” From (2.4) it
follows that

√
T �β̂− β0� ∼A N�0� avar�β̂��� avar�β̂� = �EZtF

′
t �−1S�EFtZ

′
t�−1�(2.7)

The aim is to characterize the Zt that results in the smallest possible avar(β̂). As
usual, one positive definite matrix is said to be no larger than another if the difference
between them is positive semidefinite.
Through the rest of this section, �Zt
 and �Z∗

t 
 refer to elements of Z, with cor-
responding estimates β̂ and β̂∗.
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Proposition 1. Suppose that

EFtZ
′
t =

∞∑
j=−∞

EZ∗
t utu

′
t−jZ

′
t−j�(2.8)

EFtZ
∗′
t =

∞∑
j=−∞

EZ∗
t utu

′
t−jZ

∗′
t−j �(2.9)

Then avar(β̂∗� ≤ avar�β̂).

Proof. Conditions (2.8) and (2.9) imply that

∞∑
j=−∞

EZ∗
t utu

′
t−jZ

∗′
t−j�EFtZ

∗′
t �−1 =

∞∑
j=−∞

EZ∗
t utu

′
t−jZ

′
t−j�EFtZ

′
t�−1

⇐⇒ �EZ∗
t F

′
t �−1

∞∑
j=−∞

EZ∗
t utu

′
t−jZ

∗′
t−j�EFtZ

∗′
t �−1

= �EZ∗
t F

′
t �−1

∞∑
j=−∞

EZ∗
t utu

′
t−jZ

′
t−j�EFtZ

′
t�−1

⇐⇒ acov�β̂∗� β̂∗� = acov�β̂∗� β̂� ⇐⇒

acov�β̂∗� β̂∗ − β̂� = 0 �⇒(2.10)

avar�β̂� ≡ acov�β̂� β̂� = acov�β̂− β̂∗ + β̂∗� β̂− β̂∗ + β̂∗�

= acov�β̂− β̂∗� β̂− β̂∗� + acov�β̂∗� β̂∗�

≥ acov�β̂∗� β̂∗� ≡ avar�β̂∗�

The last equality follows from (2.10); the inequality follows since acov�β̂ − β̂∗� β̂ −
β̂∗� is positive semidefinite.

Proposition 2. Suppose that Z∗
t satisfies (2.8) for all �Zt
 ∈ Z. Then avar�β̂∗� ≤

avar�β̂� for all β̂.

Proof. Note that if Z∗
t satisfies (2.8) for all possible Zt , it does so for Zt = Z∗

t

as well �⇒ (2.9) must hold as well. The result then follows from Proposition 1.

Remarks. (1) If Z∗
t satisfies Proposition 2, then the efficiency bound avar�β̂∗�

can also be obtained using as an instrument matrix CZ∗
t for any nonsingular �k× k�

matrix C. (2) Equation (2.8) is Equation (4.9) in Hansen (1985a).2 (3) We see

2 Related results may be found in Breusch et al. (1999).
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in (2.10) that the optimal estimator satisfies the familiar efficiency condition that
it is uncorrelated with the difference between it and any other estimator. (4) It is
possible that there is no �Z∗

t 
 ∈ Z that satisfies Proposition 2. Hansen (1985a) dis-
cusses conditions on Z that insure that an optimal estimator exists. (5) Equation (2.8)
can sometimes be used to solve explicitly for Z∗

t , thereby constructively verifying that
Z contains Z∗

t satisfying Proposition 2. This is illustrated in the next section.

3. example

Here I apply the results of the previous section to estimation of a univariate lin-
ear regression with an innovation that is a conditionally heteroskedastic martingale
difference. Let

yt = Xtβ0 + ut ≡ ft�β0� + ut�(3.1)

where ut , yt , and Xt are scalars �l = k = 1�. Lags of a scalar variable zt are available
as instruments. I assume that �zt�Xt� ut�′ is fourth-order stationary and invertible,
and that ut is mean zero and serially uncorrelated:

E�ut � zt� ut−1 zt−1� � � �� = 0�(3.2)

Let εt be the Wold innovation in zt , assumed to be a martingale difference
sequence, εt = zt − E�zt � zt−1� zt−2� � � ��.
Let us suppose that the space of instruments is well-behaved distributed lags on

zt , or equivalently and more conveniently, εt . Thus, allowable Zt ’s may be written as

Zt =
∞∑
j=0

Gjεt−j�
∞∑
j=0

�Gj� < ∞� EZtXt �= 0�(3.3)

where the Gjs are scalars. Since the data have been assumed to be fourth-order
stationary, conditions (2.3) and (2.4a, b) now follow; assume that all �Zt
 ∈ Z satisfy
(2.4c, d) as well. (Primitive conditions to insure this when, for example, zt = Xt = yt−1
may be found in Weiss (1984) among others.) I will let �G∗

j 
 denote the distributed
lag weights for the optimal Z∗

t .
For clarity in solving for �G∗

j 
, I assume as well

Eu2t εt−jεt−i = 0 when i �= j�(3.4)

This assumption greatly simplifies the algebra and in many applications is probably
harmless (the condition is maintained in GARCH models with conditionally symmet-
ric distributions, for example).
Since ut is conditionally serially uncorrelated, the right hand side of (2.8) reduces

to
∑∞

j=−∞ EZ∗
t utut−jZt−j = EZ∗

t u
2
t Zt . Condition (2.8) holds for arbitrary Zt if and

only if it holds for arbitrary �1× 1� εt−i for i ≥ 0:

EXtεt−i = E

( ∞∑
j=0

G∗
j εt−j

)
u2t εt−i�(3.5)
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From (3.4), this is simply

EXtεt−i = G∗
i Eε

2
t−iu

2
t �⇒ G∗

i = EXtεt−i/�Eε2t−iu
2
t ��(3.6)

Remarks. (1) If yt = β0yt−1 + ut and zt = yt−1�⇒ εt = ut−1�, for example,
EXtεt−i = βi

0Eu
2
t , G

∗
i = βi

0Eu
2
t /�Eu2t u2t−i−1�, and Z∗

t = ∑∞
j=0G

∗
j �yt−j−1 − β0yt−j−1�.

Kuersteiner (1996: p. 13) independently presents the form of the optimal weights for
an autoregression of any finite order and develops as well a sophisticated nonpara-
metric feasible estimator. (2) If ut is conditionally homoskedastic, so that Eε2t−iu

2
t =

Eε2t−iEu
2
t , a little algebra reveals Z

∗
t = E�Xt � zt� zt−1� � � ��/Eu2t (a result easily ver-

ified by replacing
∑∞

j=0G
∗
j εt−j with �EXt � zt� zt−1� � � ��/Eu2t on the right hand side

of (3.5)). (3) Extensions to multiple equation multivariate models are straightfor-
ward if notationally complex. (4) While this estimator is efficient within the assumed
space, when ut is conditionally heteroskedastic a yet more efficient estimator may be
obtained if one considers a broader space that includes stochastic functions of lagged
z’s (see Hansen, 1985b: pp. 33–34). I use the smaller class for clarity and because
it allows for relatively straightforward extensions to more general environments. (5)
Such extensions usually entail more complicated computations to solve for �G∗

i 
 in
terms of moments of the data. Suppose first that ut follows a moving average process
of known finite order n but is conditionally homoskedastic. Then application of the
technique sketched in this section—i.e., use (2.8) with Zt = εt−i, i = 0� 1� 2� � � �—will
yield a constant coefficient linear difference equation in �G∗

i 
 of order 2n, which
may be solved in routine fashion (this provides an alternative derivation of results in
Hayashi and Sims, 1983; Hansen, 1985a: Section 5.2). If, as well, ut is conditionally
heteroskedastic, or one drops the symmetry assumption (3.4), the resulting difference
equations will generally not have constant coefficients and may be infinite order, and
thus they will be difficult to solve explicitly. Under regularity conditions, one can then
proceed as follows: Use (2.8) with Zt = εt−i, i = 0� 1� � � � � J − 1, for some integer J,
in each equation setting G∗

i = 0 for all i ≥ J. This yields a set of J linear equations
that can be solved for G∗

0� � � � �G
∗
J−1. The resulting values will not quite be those of

the optimal ones, since they are solved by setting G∗
i = 0 for i ≥ J. But since the

optimal weights on distant ε’s are declining (i.e., G∗
i → 0 as j → ∞), for large J this

solution will well approximate the optimal one.
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