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heteroskedasticity and autocorrelation

corrections
Heteroskedasticity and autocorrelation consistent (HAC)
covariance matrix estimation refers to calculation of
covariance matrices that account for conditional het-
eroskedasticity of regression disturbances and serial
correlation of cross products of instruments and regres-
sion disturbances. The heteroskedasticity and serial
correlation may be of unknown form. HAC estimation
is integral to empirical research using generalized method
of moments (GMM) estimation (Hansen, 1982). In this
f  article I summarize results relating to HAC estimation,
with emphasis on practical rather than theoretical aspects.
The central issue is consistent and efficient estimation
of what is called a ‘long-run variance, subject to the
constraint that the estimator is positive semidefinite in
finite samples. Positive semidefiniteness is desirable since
the estimator will be used to compute standard errors
and test statistics. To fix notation, let h, be a g x 1 sta-
tionary mean zero random vector. Let I; denote the
g x q autocovariance of h, at lag g, T'; = Eih,_|; of
course, I'; = I'_{. The long run variance of h, is the g x g
matrix

w

§=> Tj=Te+ > (IG+T). (1)
. <

j==o

Apart from a factor of 27, the symmetric matrix S, which
I assume to be positive definite, is the spectral density of
h, at frequency zero. As discussed below, techniques
for spectral density estimation are central to HAC esti-
mation. (For an arbitrary stationary process, the sum in
the right-hand side of (1) may not converge, and may not
be positive definite even if it does converge. But here and
throughout I assume unstated regularity conditions. As
well, T use formulas that allow for relatively simple nota-
tion, for example assuming covariance stationarity even
when that assumption can be relaxed. The cited papers
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may be referenced for generalizations and for technical
conditions.)

To illustrate how estimation of S figures into covar-
iance matrix estimation, consider the following simple
example. As in Hansen and Hodrick (1980), let us
suppose that we wish to test the ‘rationality’ of a scalar
variable x; as an n period ahead predictor of a variable
Yiinep for n 2> 0: the null hypothesis is Ey,, . = x;,
where E, denotes expectations conditional on the infor-
mation set used by market participants. The variable x,
might be the expectation of y, ., reported by a survey,
or it might be a market determined forward rate. Let ut
denote the expectational error: u; =y, .\ — Ey,, ..y =
Verns1 — % (The expectational error u, which is not
realized until period t+#n+1, is dated t to simplify
notation.)

One can test one implication of the hypothesis that x,
is the expectation of y,, ., by regressing y,,, , on a
constant and x,, and checking whether the coefficient on
the constant term is zero and that on x, is 1:

YVitpt1 = Bo + Bixe +u = X[/ﬁ + uy;

Hy: B =(0,1).
' (2)

Under the null, EX,u, = 0, so least squares is a consistent
estimator. As well, X;u, follows a moving average process
of order n. Thus the asymptotlc Varlance of the least
squares estlmator of fis (EX.X/)” S(EX,X,) , where
S=To+ 3 (I +1Y), Tj=EXau(X,ju-)'. This
example maps 1nto the notatlon used in (1) with h; =
X;u;, q =2 and a known upper bound to the number
of non-zero autocovariances of h,. Clearly one needs to
estimate EX,X, and S to conduct inference. A sample
average of X, X/ can be used to estimate EX,X,. If n = 0,
so that h, is serially uncorrelated, S = EX,ut(Xtut)' and
estimation of S is equally straightforward; White’s (1980)
heteroskedasticity consistent estimator can be used. The
subject at hand considers ways to estimate S when h, is
serially correlated. I note in passing that one cannot
sidestep estimation of Sby applying generalized least
squares. In this example and more generally, generalized
least squares is inconsistent. See Hansen and West (2002).

To discuss estimation of S, let us describe a more
general set-up. In GMM estimation, h, is a g x 1
orthogonality condition used to identify a k-dimensional
parameter vector f. The orthogonality condition takes
the form

hy = Zou, (3)

for a q X £ matrix of instruments Z, and an £ x 1 vector
of unobservable regression disturbances u,. The vector of
regression disturbances depends on observable data
through B, u, = u,(f). In the example just given,
q=2, L=1, Zi=X;, w(p)= Vignyr — X{B. The
example just given is overly simple in that the list of

instruments typically will not be identical to right-hand
side variables, and the model may be nonlinear. For a
suitable k x g matrix D, the asymptotic variance of the
GMM estlmator of f§ takes the form DSD’ (for example,

= (EX,X/)”" in the example just given). In an
overldentlﬁed model (that is, in models in which the
dimension of the orthogonality condition g is greater
than the number of parameters k) the form D takes
depends on a certain weighting matrix. Let /4 be the
g X k matrix Oh,/0f. When the we 1ghting matrix is
chosen optimally, D = (Eh,dS™'Eh,)” Eh,S™" and the
asymptotic variance DSD' simplifies to (Ehf/S™ Eh,g) ™"
The optimal weighting matrix is one that converges in
probability to S, and thus the results about to be pre-
sented are relevant to efficient estimation as well as to
hypothesis testing. In any event, the matrix Eh,g typically
is straightforward to estimate; the question is how to
estimate S. This will be the focus of the remainder of the
discussion.

We have sample of size T and sample counterparts to
u, and hy, call them @, = u,(f) and h, = h,(B). Here, B is
a consistent estimate of f§. In the least squares example
given above, i, is the least squares residual, &, =y, ,
~X/B, and h; = X,ity = X,(y,,,_, — X/P). One path to
consistent estimation of S involves consistent estimation
of the autocovariances of h,. The natural estimator is a
sample average,

For given j, (4) is a consistent (T— 00) estimator of I

I now discuss in turn several possible estimators, or
classes of estimators, of S: (1) the truncated estimator;
(2) estimators applicable only when h, follows a moving
average (MA) process of known order; (3) an autore-
gressive spectral estimator; (4) estimators that smooth
autocovariances; (5) some recent work, on estimators
that might be described as extensions or modifications of
ones the estimators described in (4).

1 The truncated estimator

Suppose first that it is known a priori that the autoco-
variances of h, are zero after lag n, as is the case in
the empirical example above. A natural estimator of S is
one that replaces population objects in (1) with sample
analogues. This is the truncated estimator:

STR—FO'FZ

In the more general case in which I';#0 for all j, the
truncated estimator is consistent if the truncation point
n— 00 at a suitable rate. Depending on exact technical
conditions, the rate may be n/T?—0 or n/T"*—0
(Newey and West, 1987). The truncated estimator need
not, however, yield a positive semidefinite estimate. With

4+ T). (5)
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certain plausible data generating processes, simulations
indicate that it will not be p.s.d. in a large fraction of
samples (West, 1997). Hence this estimator is not used
much in practice.

2 Estimators applicable only when h, follows an MA
process of known order n

Such a process for h, holds in studies of rationality (as
illustrated above) and in the first order conditions from
many rational expectations models (for example, Hansen
and Singleton, 1982).

Write the Wold representation of h, as h, = e+
@11 + - + Oe,_,. Here, e, is the g X 1 innovation in
h,. Let Q denote the q x q variance covariance matrix of
e,. Then it is well known (for example, Hamilton, 1994,
p. 276) that '

S=(I+0,+--+0,)QU+0+ - +0,)
(6)

Suppose that one fits an MA(n) process to h;, and plugs the
resulting estimates of the ®; and Q into the formula for S.
Clearly the resulting estimator is T" "2 consistent and positive
semidefinite. Nevertheless, to my knowledge this estimator
has not been used, presumably because of numerical diffi-
culties in estimating multivariate moving average processes.
Two related estimators have been proposed that
impose a smaller computational burden. Hodrick
(1992) and West (1997) suggest an estimator that
requires fitting an MA(n) to the vector of regression
residuals #;, (or, in Hodrick’s, 1992, application, using
MA coefficients that are known a priori). The compu-
tational burden of such MA estimation will typically be
considerably less than that of MA estimation of the
h, process, because the dimension of u, is usually
much smaller than that of h, For example, i, will be a
scalar in a single equation application, regardless of
the number of orthogonality conditions captured in h,.
Write the estimated MA process for @, as
=&+, &1+ +¥,Ey, where the ; are
¢ x £. (Note that &, the £ x 1 innovation in u, is not
the same as e, the g x 1 innovation in h,.) Then a T2
consistent and positive semidefinite estimator of S is

T—n
SMA—Z = T_l Zdt+ndt+n/dt+n
t=1
= (Z: + Zialhy + - + Zoiall) o
(7)

where, again, Z, is the g x £ matrix of instruments (see
eq. (3)).

Eichenbaum, Hansen and Singleton (1988) and Cumby,
Huizanga and Obstfeld (1983) propose a different strategy
that avoids the need to estimate a moving average process
for either u, or h, They suggest estimating the parameters
of h,’s autoregressive representation, and inverting the

autoregressive weights to obtain moving average weights.
Call the results ®y,...,0,, with Q the estimate of the
innovation variance—covariance matrix. The resulting esti-
mator S = (I + O + - + ©,)Q(I + 0, +.-40,) s
positive semidefinite by construction. The rate at which it
converges to S depends on the rate at which the order of
the autoregression is increased.

3 Autoregressive estimators

Den Haan and Levin (1997) propose and evaluate an
autoregressive spectral estimator. Suppose that h, follows
a (possibly) infinite-order vector autoregression (VAR)

es)
hr = Z (I)]‘h,_j + €, Eete/ = Q (8)

j=1

Then (Hamilton, 1994, p. 237)

© -1 0
S= <I—Z®j> Q(I— Z@,)
j=1 =1
9)

The idea is to approximate this quantity via estimates
from a finite-order VAR in h,. Write the estimate of a
VAR in h; of order p as

71’

I’;t = (i)lﬁtvl + -+ (i)pl';t—p + ét»

T
Q=T" Z &8, .

t=p-+1

(10)

Then the estimator of § is

. (I . iq)g(z_ iqx)

_1’

(11)

Den Haan and Levin (1997, Section 3.5) conclude that if p
is chosen by BIC, and some other technical conditions
hold, then this estimator converges at a rate very near "
(the exact rate depends on certain characteristics of the
data). A possible problem in practice with this estimator
(as well as with the estimator described in the final par-
agraph of Section 2, which also requires estimates of a VAR
in h;) is that it may require estimation of many parameters
and inversion of a large matrix. Den Haan and Levin
therefore suggest judiciously parametrizing the autoregres-
sive process, for example by using the BIC criterion
equation-by-equation for each of the q elements of h,.

4 Estimators that smooth autocovariances

In practice, the most widely used class of estimators
is one that relies on smoothing of autocovariances.
Andrews (1991), building on the literature on estimation
of spectral densities, established a general framework for
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analysis. Andrews considers estimators that can be written
T-1

A - L,

S=Iy+ E kil +17)

=t

(12)

for a series of kernel weights {k;} that obey certain prop-
erties. For example, to obtain a consistent estimator, we
need k; near zero (or perhaps identically zero) for values
of j near T—1, since autocovariances at large lags are
estimated imprecisely, while k;— 1 for each j is desirable
for consistency. We would also like the choice of k; to
ensure positive definiteness.

The two most commonly used formulas for the kernel
weights are:

Bartlett : for some m >0 : k;

=1—[j/(m+1)]

for j <m, kj=0 for j>m. (13a)

Quadratic spectral (QS) : for some m>0,
and with x; =j/m: kj = [25/12n2x]2]

x {[sin(6nx;/5)/(67mx;/5)] — cos(6mx;/5)}.
(13b)

If we let zj= 6mx;/5, the QS formula for kj can be written
in more compact form as (3/z7){[sin(z;) /2] — cos(z)}.
Call the resulting estimators Spr and ng. For example,

m
Ser=To+ D _[1 —j/(m+1)](I;+T)).
=1
(14)
The vast literature on spectral density estimation suggests
many other possible kernel weights. For conciseness, 1
consider only the Bartlett and QS kernels.

To operationalize these estimators, one needs to choose
the lag truncation parameter or bandwidth m. I note that
for both kernels, consistency requires m— o0 as T— o0,
even if h, follows an MA process of known
finite order, as in the example given above. Thus one
should not set m to be the number of non-zero autoco-
variances. Subject to possible problems with positive defi-
niteness, setting m = is fine for the truncated estimator
(5) but not for estimators that use nontrivial weights {kit.

Andrews shows that maximizing the rate at which S
converges to S requires that m increase as a suitable
function of sample size, with the ‘suitable function’
varying with kernel. For the Bartlett and QS, the maximal
rates of convergence are realized when

Bartlett : m = yT*/*(or m
= (integer part of yT'/*)) for some y#0,
QS :m=yT"* for some y#0, (15)

in which case Sgr converges to S at rate T and the
mean squared error in estimation of S goes to zero at rate
T?7; the comparable figures for QS are T%° and T*°.
Since both estimators are nonparametric, they converge
at rates slower than T"?; since faster convergence is bet-
ter, the QS rate is preferable to that of the Bartlett.
Indeed, Andrews (1991), drawing on Priestley (1981),
shows that for a certain class of kernel weights {k;}, the
mean squared error of QS rate is optimal in the following
sense: a T*° rate on the asymptotic mean squared error is
the fastest that can be achieved if one wants to ensure a
positive definite S, and within the class of kernels that
achieve the T*° rate, the QS has the smallest possible
asymptotic mean squared error.

As a practical matter, the formulas in (15) have merely
pushed the question of choice of m to one of choice of y;
putting arbitrary y in (15) yields convergence that is
as fast as possible, but different choices of y lead to
different asymptotic mean squared errors. The choice of
7 that is optimal from the point of view of asymptotic
mean squared error is a function of the data (Hannan,
1970, p. 2&(326)). Let s<‘2 =37 ,Q(=8);8M =
D |79 8 =307 Q. For scalar (g=1) S
optimal choices are:

Bartlett : y = 1.1447[S() /S©)?/3,

’ 16
QS :p = 1.3221[S® /55, (19
(See Andrews, 1991, for the derivation of these formulas.)

Andrews (1991), Andrews and Monahan (1992) and
Newey and West (1994) proposed feasible data depend-
ent to procedures to estimate y, for vector as well as scalar
h;. Rather than exposit the general case, I will describe
two ‘cookbook’ procedures that have been offered as
reasonable starting points in empirical work. One
procedure relies on Andrews (1991) and Andrews and
Monahan (1992), and assumes the QS kernel and esti-
mation of y via parametric models. The second relies on
Newey and West (1994), and assumes a Bartlett kernel
and nonparametric estimation of p. I emphasize that
both papers present more general results than are pre-
sented here; both allow the researcher to (for example)
use any one of a wide range of kernels.

Let there be a g x 1 vector of weights w= (wy, ws, ...,
w,)" whose elements tells us how to weight the various
elements of S with respect to mean squared error. The
weights might be sample dependent, and den Haan and
Levin (1997) argue that there are benefits to certain
sample-dependent weights, but a simple choice proposed
by both papers is: w;=0 if the corresponding element of &,
is a cross product of a constant term and a regression
disturbance, otherwise w;=1. Andrews’s loss function is
the normalized expectation of Y% w;(S; — S;)°, while
Newey and West’s loss function is the normalized expec-
tation of [w'(S — S)w]’; the normalization is T** for QS
and T*” for Bartlett.
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Both procedures begin with using a vector autoregres-
sion to prewhiten, and end with re-colouring. The basic
justification for prewhitening and re-colouring is that
simulation evidence indicates that this improves finite
sample performance.

1. Prewhitening: Estimate a vector autoregression in h;,

most likely of order 1. Call the residuals hA:

hihe{

H
Mﬂ

ht Aht 1 +ht7

T . A -1
(Z hlAlht_{> :
t=2

2. Let lA"]T denote the jth autocovariance of the VAR
o - ot e
I; = (T-1) lz‘tr=2+jhth14j/' USIAng {I;}
(rather than {I';} [the autocovariances of h]), and

choosing m optimally as described in steps 2a or 2b
below, construct an estimate of the long run variance of

the residual of the VAR just estimated. Call the result 3"
2a. Andrews and Monahan (1992): Fit a univariate AR(1)

to each of the g elements of ﬁj Call the resulting estimate
of the AR coefficient and variance of the residual p; and
67. Compute

Z 6;)/(1=p
wid} /(1 —

3 21[5/5]"°, tgs = s T, (18)

=2
(17)

residual ﬁj,

=

D% %

> 7’)A)QS

T M»& I

Then plug n%Qs into formula (13b) Call the result lgj.

ComputeS —F +ZT 1k( T’)
Neweg and West (1994). Set n=integer part of
12(T/100) ®. Compute
sW =T w—l—Zle FT

i=1

W’ Vpr = 1.1447[5(1)/§(0)]2/3,

o _ Z

pr = 1nteger part of T3, (19)

Then compute §" according to (14), using ripr.
3. Re-colouring: compute § = (I — A)“lﬁ1 (I—A)"
These two recipes for estimates of S can serve as a starting
point for experimentation for alternative choices of m
and alternative kernels.

What is the simulation evidence on behaviour of these
and other proposed estimators? In answering this ques-
tion, I focus on sizing of test statistics and accuracy of

confidence interval coverage: accuracy in estimation of S is
desirable mainly insofar as it leads to accuracy of inference
using the relevant variance—covariance matrix. The simu-
lations in papers cited in this article suggest the following.
First, no one estimator dominates others. This means in
particular that the rate of convergence is not a sufficient
statistic for performance in finite samples. The truncated
estimator often and the autoregressive estimator some-
times perform more poorly than the slower converging QS
estimator, which in turn sometimes performs more poorly
than the still slower converging Bartlett estimator. Second,
given that one decides to use QS or Bartlett, performance
generally though not always is improved if one prewhitens
and uses a data-dependent bandwidth as described in the
recipes above. Third, the QS and Bartlett estimators tend
to reject too much in the presence of positive serial cor-
relation in h,, and have what I read as a DGP dependent
rejection rate (sometimes over-reject, sometimes under-
reject) in the presence of negative serial correlation in ;.
The truncated estimator is much likelier to fail to be pos-
itive semidefinite in the presence of negative than positive
serial correlation. Finally, the performance of all estimators
leaves much to be desired. Plausible data-generating proc-
esses and sample sizes can lead to serious mis-sizing of any
given estimator. Nominal 0.05 tests can have empirical size
as low as 0.01 and higher than 0.25.

5 Some recent work

Because simulation studies have yielded disappointing
performance, ongoing research aims to develop better
estimators. I close by summarizing a few of many recently
published papers.

1. I motivated my topic by observing that consistent
estimation of S is a natural element of consistent esti-
mation of the variance—covariance matrix of a GMM
estimator. Typically we estimate the variance—covariance
matrix because we wish to construct confidence intervals
or conduct hypothesis tests. A recent literature has eval-
uated inconsistent estimators that lead to well-defined
test statistics, albeit statistics with non-standard critical
values. These estimators set lag truncation (or band-
width) equal to sample size. For example, for the Bartlett
estimator, these estimators set m=T-—1 (see Kiefer,
Vogelsang and Bunzel, 2000; Kiefer and Vogelsang,
2002). Simulation evidence indicates that the non-
standard statistics may be better behaved than standard
statistics. Jansson (2004) provides a theoretical rationale
for improved performance in a special case, with more
general results in Kiefer and Vogelsang (2005). Phillips,
Sun and Jin (2006; 2007) propose a related approach,
which under some assumptions will yield statistics with
standard critical values.

2. Politis and Romano (1995) propose what they call a
‘trapezoidal’ kernel. A trapezoidal kernel is a combina-
tion of the truncated and Bartlett kernels. For given
truncation lag m, let x;=j/(m+1). Then for some ¢,

R e e s



RS

heteroskedasticity and autocorrelation corrections 11

0<c<l1, the trapezoidal weights satisfy: k=1 if
0<x<¢ k=(g—1)/(c—1) for ¢<xj < 1. Thus for
0<j<c(m+1), the autocovariances receive equal
weight, as in the truncated kernel; for c(m+1)<j
< m + 1, the weights on the autocovariances decline lin-
early to zero, as in the Bartlett kernel. Such kernels
have the advantage that, like the truncated kernel, their
convergence is rapid (near TV?), They share with the
truncated kernel the possibility of not being positive
semidefinite. The authors argue, however, that these
kernels are better behaved in finite samples than is the
truncated kernel. ;

3. Xiao and Linton (2002) propose ‘twicing’ kernels.
Operationally, one first computes an estimate such as one
of those described in Section 4. One also constructs a
multiplicative bias correction by smoothing periodogram
ordinates via a ‘twiced’ kernel. For a properly chosen
bandwidth and kernel, the mean squared error of the
estimator is of order T®° (versus T** for the QS and
T2 for the Bartlett, absent any corrections). As well,
Hirukawa’s (2006) version of the Xiao and Linton esti-
mator is positive semidefinite by construction. (The rate
results for this estimator and that described in the
previous paragraph do not contradict Andrews’s, 1991,
optimality result for the QS kernel, because these
procedures fall outside the class considered by Andrews.)

KENNETH D. WEST

See also rational expectations models, estimation of; Euler
equations; generalized method of moments estimation;
spectral analysis; time series analysis.
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