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Abstract

We compare the out-of-sample forecasting performance of univariate homoskedastic,
GARCH, autoregressive, and nonparametric models for conditional variances, using
five bilateral weekly exchange rates for the dollar, 1973-1989. For a one-week horizon,
GARCH models tend to make slightly more accurate forecasts. For longer horizons, it is
difficult to find grounds for choosing between the various models. None of the models
perform well in a conventional test of forecast efficiency.
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1. Introduction

This paper compares the forecasting performance of six models for a univari-
ate conditional variance, using bilateral weekly data for the dollar versus the
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currencies of Canada, France, Germany, Japan, and the United Kingdom,
1973-1989. The six models include a homoskedastic one, two GARCH models
(Bollerslev, 1986; Engle and Bollerslev, 1986), two autoregressions, and a non-
parametric one. We compare the out-of-sample realization of the square of the
weekly change in an exchange rate with the value predicted by a model of the
conditional variance, for horizons of one, twelve, and twenty-four weeks. The
measure of performance that we focus on is mean squared prediction error
(MSPE).

For twelve- and twenty-four-week-ahead forecasts of the squared weekly
change, it is difficult to find grounds to choose one model over another. But at
a one-week horizon, we find that GARCH models have a slight edge over the
other models. The GARCH mean squared prediction errors tend to be slightly
smaller, and regressions of realized exchange rate squares on their estimated
conditional variances tend to find somewhat more evidence of predictive power.
But statistical tests typically cannot reject at conventional significance levels the
null that the MSPE from the GARCH models is equal to those of other models,
and standard regression tests for bias and efficiency strongly reject the null that
the GARCH conditional variance differs from the realized exchange rate square
by a white noise error. It appears that GARCH models leave something to be
desired, even at the one-week horizon.

Other papers have compared univariate volatility models in related frame-
works. Using monthly stock return data and a one-month-ahead MSPE cri-
terion, Akigray (1989) found GARCH models preferable to naive and ARMA
ones, and Pagan and Schwert (1990a) found GARCH and ARMA models
preferable to nonparametric and Markov switching ones. While we, too, find
that GARCH models perform well, our results complement and extend these
earlier ones in three ways.

First, and least important, we use exchange rate instead of stock price data.
One would obviously like to know if what works with one type of data works
with another as well. Second, we formally test for equality of MSPEs across
models, using a straightforward asymptotic technique that may be of general
interest. Third, we consider not only one-period but multi-period horizons as
well. Since, in the end, we could not reject the null of equality of MSPEs across
models, and since we found no grounds for preferring one estimator over
another at horizons of more than one period, our endorsement of GARCH
models is more moderate than it would have been had we not performed these
tests and examined these horizons.

Before turning to the analysis, a final remark seems advisable. The literature
on conditional volatility has grown enormously in recent years (see Bollerslev
et al,, 1992, for an excellent survey), and it is simply not practical to simulta-
neously study every model that has been proposed. While we feel that we have
chosen a representative set of models, we recognize that some readers might
prefer a different set. We hope that such readers will nonetheless find it useful
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that our analysis leads us to speculate that successful models will allow for what
standard tests suggest is movement in unconditional variances.’

Section 2 describes our data and models, and Sections 3 and 4 our empirical
results. Section 5 concludes. An Appendix available on request from the authors
contains some results omitted from the paper to save space.

2. Data, models, and estimation techniques
2.1. Data

Our exchange rates are measured as dollars per unit of foreign currency,
between the U.S. and Canada, France, Germany, Japan, and the United King-
dom.? The data are Wednesday, New York noon bid rates, as published in The
Federal Reserve Bulletin. When Wednesday was a holiday we used Thursday
data; when Thursday was a holiday as well we used Tuesday data. After an
initial observation was lost due to differencing (see below), the sample for each
country included the 863 observations from March 14, 1973 to September 20,
1989. Figs. 1.Al to 1.A35 plot the levels rather than differences of the series, with
the vertical axis measured in cents per unit of foreign currency. Figs. 1.B1 to 1.B5
will be discussed below.

Prior to our formal analysis, we took logarithmic differences of the series, and
then multiplied by 100. That is, our exchange rate series is

e, = 100 * In(exchange rate in week t/exchange rate in week t — 1),

and thus has the interpretation of percentage change in the level of the exchange
rate. With a slight abuse of terminology, we will sometimes refer to our data as
‘exchange rates’ rather than ‘percentage changes in exchange rates’.

Table 1 contains some summary statistics on these data. Most standard errors
and p-values in the remainder of the table also are robust to the possible
presence of serial correlation and conditional heteroskedasticity, and are com-
puted as described below. Table 1 is consistent with the results of many earlier
studies (e.g., Baillie and Bollerslev, 1989; Diebold and Nerlove, 1989; Engle and
Bollerslev, 1986). Exchange rate changes appear to have zero unconditional

! We find this to also be a message, perhaps implicit, in the studies using stock price data by Pagan
and Schwert (1990a, b) and Chou et al. (1991), as well in Loretan and Phillips (1992).

2 We also obtained Italian data. But in-sample statistics such as those reported in Table 1 suggest
a nonzero unconditional mean. Fitted GARCH models tended to be explosive, with & + ff > 1 inthe
notation of Table 2; apparently this resulted in part from the nonzero sample mean since removing
this mean lessened the tendency to get explosive estimates. We dropped Italy rather than fit means as
well as variances.
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Table 1
Summary statistics

Canada France Germany Japan UK.
Panel A: ¢,
1. Mean —0.020 —0.044 0.042 0.068 —0.052
(0.020) (0.050) (0.056) (0.056) (0.055)
2. Standard 0.552 1.408 1.466 1.361 1.406
deviation (0.029) (0.053) (0.064) (0.063) (0.080)
3. Skewness —0423 0.103 0.480 0.385 0.261
(0.455) {0.245) (0.203) (0.233) (0.270)
4. Excess 4.981 2.490 2.133 2.587 3.092
kurtosis (2.636) (0.846) (0.900) (0.715) (0.857)
5. Modified 71.47 20.89 1343 20.52 13.57
L-B (10) [0.681] [0.022] [0.200] [0.025] [0.194]
6. Modified 61.84 63.47 53.74 71.92 54.10
L-B (50) [0.122] [0.096] [0.333] [0.023] [0.321]
7. Modified 111.99 98.46 87.99 122.26 88.47
L-B (90) [0.058] [0.254] [0.540] [0.005] [0.526]
8. Minimum —4.164 — 6.825 — 4488 — 6.587 — 5.691
9. Q1 —0.313 — 0.851 —0.850 — 0.641 —0.773
10. Median —0.030 0.000 0.023 —0.027 —0.034
11. Q3 0.272 0.675 0.855 0.606 0.708
12, Maximum 2.550 7.741 8.113 6.546 7.397
Panel B: ¢}
13. Mean 0.305 1.983 2.147 1854 1.978
{0.030) (0.148) (0.190) (0.166) (0.223)
14.  Standard 0.809 4.196 4.395 4.001 4.446
deviation (0.213) (0.598) (0.763) (0.513) (0.768)
15. L-B(10) 34.27 37.82 56.72 51.92 98.12
[0.000] [0.000] [0.000] [0.000] [0.000]
16. L-B (50) 52.50 129.59 134.75 101.16 322.19
[0.377] [0.000] [0.000) [0.000] [0.000]
17. L-B (90) 65.41 178.42 166.25 138.44 337.07
[0.976] [0.000] [0.000] [0.000] [0.000]

1) The variable ¢, is the percentage change in the weekly exchange rate. The sample includes 863
weekly observations from March 14, 1973 to September 20, 1989.

2) In rows 1-4, 13, and 14, heteroskedasticity and autocorrelation consistent asymptotic standard
errors are in parentheses.

3} Rows 5to 7and 15 to 17 contain Ljung-Box statistics of order given in the header to the row. In
rows 5 to 7, the statistics are computed as in Eq. (4) to allow for possible conditional heteroskedastic-
ity in ¢,. The p-values of the asymptotic chi-squared statistics are given in the lower halves of the
rows.
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means (line 1), and, with the possible exception of Japan, appear to be serially
uncorrelated (lines 5 to 7).

Exchange rate changes are also very fat-tailed. This leptokurtosis may be seen
in Figs 1.B1 to 1.BS5, each of which plots both a normal density whose mean and
variance match sample estimates and a histogram of the data. More formal
evidence is in panel A of Table 1. The standard deviation of exchange rate
changes is about 1% per week (line 2); the maximum and minimum changes in
this sample of size 863 are generally five or more standard deviations away from
the mean (lines 8 and 12), and the interquartile range is much less than two
standard deviations (lines 9 and 11). Excess kurtosis is greater than two and is
significantly different from zero at any conventional significance level for all
countries except Canada (line 4). With the exception of Germany, there is no
evidence of skewness (line 3).

Panel B of Table 1 contains some summary statistics on squared exchange
rates. The means and standard deviations (lines 13 and 14) are presented for
convenience of interpretation of our empirical results; they are redundant in the
sense that the point estimates can be deduced from the appropriate entries in
panel A. Rows 15 to 17 in panel B suggest that, in stark contrast to the levels, the
squares of exchange rates are highly serially correlated. This, too, is a result
consistent with many earlier studies.

2.2. Models and estimation techniques

The in-sample evidence in Table 1 that e, is linearly unpredictable is sup-
ported by the stronger results from other studies, some of which use out-of- as
well as in-sample evidence, that there is not even any nonlinear dependence in
the conditional mean of ¢,. The most salient reference is Diebold and Nason
(1990), who drew their data from exactly the same source as did we, but over the
slightly shorter sample period 1973-1987. Despite much in-sample evidence of
nonlinear dependence in the mean of ¢,, they found little out-of-sample evidence
of such dependence. Papers that come to similar conclusions using other data,
sometimes with multivariate information sets, include Meese and Rogoff (1983)
and Meese and Rose (1991). We therefore will limit ourselves to models in which
the conditional mean of e, is zero.

To define our models, some notation is needed. Let

hl.j = var,e, ;) = Eletz+j
= (population) variance of ¢, . ;,
conditional on information generated by past ¢, s <1, (la)

h,. ; = fitted conditional variance of e, ;, according to model m
(e.g., model m is GARCH(1,1) or homoskedastic), estimated
using data on past e, s < f; (1b)

h=h, Emz = i‘lmm; (1c)
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R = endpoint of first sample used in estimation of
regression parameters; (1d)

T = endpoint of last sample used in estimation. (le)

Note our dating convention: what we denote h, corresponds to what is often
called k.| or g, (e.g., Engle, 1982). For concreteness in interpreting (1b) and
(1c), 1t may help to note that in the tables below we report results for j = 1, 12, 24,
corresponding to approximately weekly, quarterly, and semiannual horizons.
:l'o do so for a given horizon, we obtain for each model T — R + 1 fitted values
hue st =R, ..., T,formodels m = 1, ... , M, where the number of models M in
the tables below is six. We then compute the root mean squared prediction error
(RMSPE) for model m at horizon j as

T 1/2
[(T —R4A1Y (ek - ffm,.,r)ﬂ . )

t=R

We focus on RMSPE because mathematical expectations have minimum
RMSPE, so a good statistical model for the expected value of exchange rate
squares will tend to have forecast errors whose average squared value is small.’

Column 1 of Table 2 lists the models we estimated, column 3 the acronyms
used in some subsequent tables.* Column 2 gives the formula for the one-period-
ahead conditional variance, except for the nonparametric estimator for which
the formula for the arbitrary j-period-ahead forecast is given. Since all the other
models are linear, multi-period forecasts can be obtained by the usual recursive
prediction formulas. Consistent with the assumption that exchange rate changes
have zero conditional mean, in such forecasts the changes were assumed to be
conditionally uncorrelated at all nonzero lags (ie., E,_ ¢,e,,; = 0 for all j > 0).

The homoskedastic model (line 1) simply sets the conditional variance at all
horizons equal to the sample mean of lagged e;’s.

Two GARCH models were used (lines 2 and 3). Both were estimated by
maximum likelihood assuming conditional normality, using analytical deriva-
tives, with presample values of h and e? set to sample means. Lee and Hansen
(1991) and Lumsdaine (1989) show that the conditional normality assumption is
not necessary for the consistency and asymptotic normality of the estimators.’

3In related work (West, Edison, and Cho, 1993) we consider an alternative measure of model
quality, which also tends to favor GARCH.

*We also used these models in another paper (West, Edison, and Cho, 1993), and some of the prose
in the remainder of this subsection also appears in that paper.

® For efficiency reasons one might nonetheless prefer to assume, say, a conditional t-distribution, if
the conditional density is in fact r. Our reading of the in-sample evidence is that this is not essential;
e.g., Baillie and Bollerslev (1989) found little support for the use of a t in weekly exchange rate data.
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Table 2
Models, formula for the one-period-ahead conditional variance, and acronyms used in later tables

Column 1 Column 2 Column 3
Model Formula for h, Acronym

Homoskedastic model
1. Homoskedastic h=w homo

GARCH models

2. GARCH (1,1)

he=w + ael + Bh -,
ho=ae?+ (1 —o)h,_,

(1,1)

3. IGARCH (1,1) g

Autoregressive models

4. AR (12)in e? ho=o+¥ 200k e2AR

5. AR (12)in |e,| h, = (m/2)(E;le 4+ 12, le] AR
E/le+( =0+ Z}j,aile,,iﬂ

Nonparametric model

6. Gaussian kernel h. ;= E(elle); nonp

;'r.j = va:}jwm.j@zz'p

Wiy = (.',N.j/z;v:’l’csy,,-,

e, j=exp[—0.5(ex — €)%/b*].
b = bandwidth defined in text

We chose GARCH(1,1) and IGARCH from a larger set of possible GARCH
models after (1) analysis of some in-sample diagnostics seemed to suggest
GARCH(1,1) for Canada, Germany, and the U.K., and IGARCH for France
and Japan, and (2) a little experimentation with ARCH(l), ARCH(2),
GARCH(1,2), and GARCH(2,1) models suggested that MSPEs from these
models are comparable or worse than the two we chose to study.

We also studied two autoregressive models, both of which were estimated by
OLS. One autoregression used e (line 4). It is included because GARCH
models imply ARMA processes for e (see Bollerslev, 1986); OLS estimation of
such autoregressions therefore might perform comparably to more complicated
GARCH estimation (although under the GARCH null, such OLS estimation is
asymptotically inefficient). As in Schwert (1989a, b), whose work is based on that
of Davidian and Carroll (1987), the other autoregression used |e| (line 4).
Schwert suggests the factor of (m/2) because the variance of a zero mean
normally distributed random variable is (n/2) times the square of the expected
value of its absolute value. For both autoregressions, the lag length of 12 was
chosen because for all countries in-sample results indicated that such a lag
length was more than sufficient to produce a Q-statistic that implied white noise
residuals.
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Finally, we also tried a nonparametric estimator (line 6). It can be interpreted
as working off the basic definition

E(e12+j|et) = :ezz+jf(ezz+j|ex) derzﬂ,

where f(e?, ;|e,) is the density of e?, ;j conditional on e,. See Pagan and Ullah
(1990a, b) for an excellent exposition. As in Pagan and Schwert (1990a) we used
a Gaussian kernel, defined in column 2, with the bandwidth b = ¢(R — j)~ '/,
6 the sample standard deviation of e,z = 1, ... ,R —j, j = 1,12,24. We did not
try any other kernel. We did a little experimentation with some alternative fixed
bandwidths and information sets, comparing MSPEs, but found that these
yielded similar results.

There remain two questions before we can begin our model evaluation. The
first is where to begin the out of sample exercise. We arbitrarily began our
forecasts at the midpoint of the sample, and the first sample for which we fit any
models included the 432 observations from March 14, 1973 to June 17, 1981.
Because the final 24 weeks of the sample (April 12, 1989 to September 20, 1989)
were used only for forecast evaluation, the last observation of our final estima-
tion sample was April 5, 1989. [In the notation of (1d), R = 432 and T = 839.]
For our one-week horizon, the predictions and realizations of e spanned the
408-weeks from June 24, 1981 to April 12, 1989; the comparable 408-week
period for the 12- and 24-week horizons may be obtained by shifting the
one-week dates forward by 11 and 23 weeks, respectively.

The other question concerned what sample should be used for estimation as
additional observations were added beyond the June 17, 1981 date at which our
first sample ended. In our initial work, we estimated each of our models on both
(1) rolling samples, in which the sample size used for estimation was fixed at 432
and what had been the initial observation as each additional observation was
added, and (2) expanding samples, in which the sample size grew as additional
observations were added. RM SPEs were quite similar for rolling and expanding
samples, with those for rolling samples perhaps showing a slight tendency to be
smaller (rolling RMSPEs were smaller in 63 of the 90 experiments [90 = 5
countries times 6 models times 3 horizons]). To keep the project manageable, we
therefore decided to subject only the rolling estimators to detailed analysis.

2.3. Procedures for asymptotic inference

Most of our inference is based on asymptotic approximations described
below. In addition to the usual reasons to be concerned about the finite sample
accuracy of such approximations, there are grounds to be concerned about the
applicability of regularity conditions typically underlying such approximations:
exchange rate data may lack suitable higher-order moments (e.g., Loretan and
Phillips, 1992); one of our models uses a nonparametric estimator; more
generally, the previous paragraph’s observation that forecast quality did not
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deteriorate when we used rolling rather than expanding samples suggests that
the usual conditions may not hold. Nevertheless, we conduct most of our
inference using such theory, for two reasons. First, a small Monte Carlo
experiment to double-check one piece of our asymptotic analysis suggested that
the asymptotic approximation is unlikely to be very misleading if some minimal
conditions do hold, and second, the computational cost of using bootstrap
methods throughout is enormous, given the nonlinear search required to esti-
mate GARCH and IGARCH models.

To explain the asymptotic procedures that we used: Let P be the sample
size. Under suitable regularity conditions, it is well-known that if g, is a zero
mean, covariance stationary random vector, P~'2Y7_, g, A N(0,S), where
S=Y_,T;, I''=Egg;-; (eg., Hannan, 1973); White (1984) summarizes
some parallel results that apply when data satisfy some mixing conditions but
possibly are not stationary. Suppose that g, is a function of an underlying vector
of parameters of interest, say, 0, and that 0 is estimated by setting
P 'Y? 1 g(0)=0. A straightforward Taylor series argument yields
PY2(B — 0)AN(0, V), V = (Edg,/d8)” 1S (Edg,/00)™V'; see Hansen (1982) for
a formal argument in the stationary case, Gallant and White (1988) for the
parallel argument, and more complicated formulas, under conditions that allow
for the possibility that g, is not stationary.

In our applications of this result, Og,/0f does not depend on # and so Edg,/00
is a matrix of known constants. The estimator of S that we used was that
suggested by Newey and West (1987):

-~ -~

k
S="To+ Z 1—j/(k + DI(F; + [, (3)

where T is the jth sample autocovariance of g,, o = P~ 'Y/~ ;4 4:gi—;. The
value of k in (3) was determined by a data-dependent automatic rule that has
certain asymptotic optimality properties (Newey and West, 1994): Let n be the
integer part of 4(P/100)*’°, so that n = 6 for estimates based on the 863 observa-
tions in the whole sample (e.g., Table 1), n =5 for estimates based on 408
observations in the forecasting sample (e.g., Table 4). Also, let w be a vector of
ones of the same dimension as g, &;=wil,w, §9=d,+ 221_101
§M =2%"%_,jé;. Then k was set to the integer part of 1.1447{3()/3@}273
x {sample size}!/3. The resulting values for k in Table 1, for example, were
Canada — 4, France — 1, Germany — 6, Japan — 7, and the UK. — 11. The
values for the remaining tables are available on request.
Some details may be helpful in understanding how we used this framework. In
Table 1, lines 1-4, 13, and 14, begin by defining the (4 x 1) vector X, = (e,, e, e, ,
etY. Let 0 = (Ee,, Ee?, Eel, EelY, 0= (P 'S P_1e, P7IY P12, PT'Y P el
P NP ey, g.=X,—0, and §, =X, — 6. Then PI'Z(O 0) R N(O,S),
S= ZF - I';,I'; = Eg,g, ;. Given the estimate of §, standard errors on the
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relevant entries in Table 1 can be computed using the delta method. A similar
method was used in panel A of Table 6 below.

In the modified Ljung-Box statistic, Table 1, lines 5-7, 0 = (Ee,e,_, ...,
Eee,_,), r = 10,50,90, § the corresponding sample moments, X, = (e,e,_y, ...,
ee—.), 9. = X, — 0,4, = X, — 0. We assume that the conditional first moment
of e, is zero, which implies that g, is serially uncorrelated, and that
Ee,ze,ﬂie,yj = for i # j, which implies that EX, X, is diagonal. With a little
algebra, this validates the following: Forj =0, ... ,r, let 6; be the jth element of
0,6;=P 'S0 ;. ee_jandleti;=P 'Y 7 . elel , p;=6;/6,. Then for
any fixed r,

P(P+2)65 Y, (P—j) "(pi/k) A (0. 4
i=1
If the data are conditionally homoskedastic, so that Ee?e? ; = Eele?. =0},
k;%.0% and this statistic is asymptotically equivalent to the standard
Ljung-Box statistic.®
In Tables 4 and 5 below, which report inference about forecasts or forecast
errors, the conceptual experiment that underlies our asymptotic approximation
is one in which both the number of observations used in estimation (R in the
notation of (1d)) and the number used for forecasting (T — R+ 1 = P) go to
infinity, with (T — R + 1)/R approaching a finite constant (possibly zero).
Consider, for example, the one-period-ahead MSPE. For notational simpli-
city, assume stationarity (rather than, say, just mixing). Let h,, be model m’s
population prediction of eZ,; at time ¢ (ie., the prediction it would make if
an infinite-sized sample had been used in estimation). Let é be the vector of
the entire set of regression parameters, across all models (the constant for
the homoskedastic model, the constant and coefficients on e? and h, ,
for the GARCH(1,1) model, ... ). Let tps1 =e€fr1 — Hp» 05 = Eulery =
E(erz«l = B, O+ 1 = 9z2+1 - i:lmt’ 6'r2n =(T-R+ 1)~121T=R(312+1 - Eml)zr 0=
(&%’ ,6’%4)', 0= (O’%, ’0'12\4),’ gir1(0 — 3) = (u%z+1 - 0'%, sees ui{r+1 -
64),g:10,8) =%, — &%, ... i3 +1 — 6%). It may be shown that under
suitable conditions, sampling error in § is irrelevant for asymptotic inference on
6 (West, 1993), and we apply the logic above to (T —R+1)7!
S rgi1(0,8) = P~'Y._gdi+1. The implication is that PY2(D — 6) LN(0,S),
where the (i,q) element of the MxM matrix S is Y ;- Eui —o7})
(uZ—; — ol). Atest statistic for the equality of the MSPEs across all M models is
constructed as follows. Let B be the (M — 1) x M matrix whose first column is
(=1, —1, ..., —1) and whose (M — 1) other columns contain the identity

¢ Diebold and Mariano (1993) have independently suggested conducting inference on forecast errors
using similar techniques, and Diebold (1988) suggested our modification of the Ljung—Box statistic
in the specific case of a GARCH data-generating process.



K.D. West, D. Cho/Journal of Econometrics 69 (1995) 367-391 379

matrix; the null is that B# = 0. Then for S constructed as in (3),
(T — R+ 1)[0'B(BSB) 'Bi]=P[0'B(BSB) 'BO] A y*(M —1), (5
R N k R R . T
S=To+ Y [N —jitk+ O)I(;+T),  Fi=P 'Y 4.4
j=1 t=R+j
Note that since we select k as described and do not constrain k to be zero, we
allow the forecast errors to be serially correlated. Similar formulas apply for the
12- and 24-period-ahead predictions, with, e.8., ty 4+ 12 = €2+ 12 — Mpm.i+ 12 and
2 2 2
Om12=E(e[1 12— Mmiv12)".

3. Basic empirical results

To frame our discussion, Table 3a presents estimates of the GARCH(1,1)
model for the first of our rolling samples. The Appendix available on request has
parallel estimates for the other models;we present GARCHY(1,1) here because of
its simplicity and because, as we shall see, it worked relatively well in forecasting.
For the benefit of those familiar with GARCH, we briefly note that the estimates
suggest, as usual, considerable persistence, since « + f§ is estimated to be above
0.80 in all five countries, above 0.90 in France, Germany, and Japan; the null
that o + = 1 could not be rejected at the 5% percent level for France and
Japan (not reported in the table).

What is of particular interest to us is how such parameters translate into for
RMSPEs at various horizons. Suppose el is stationary (x + f < 1, under
a GARCH(1,1) parameterization). With the exception of IGARCH, all our
estimators will then yield essentially the same predictions in population for
a sufficiently long horizon, since all will predict that the e will be near its
unconditional mean. Accordingly, the RMSPEs will also be essentially the same.
We use the GARCHY(1,1) estimates in Table 3a to get an idea of how long
a horizon is needed for this to occur.

Table 3b reports the ratio of the population RMSPEs of a homoskedastic
model to that of a GARCH(1,1) model, for each of our three horizons and for
each of the five sets of estimates of « and f8 reported in Table 3a.” According to
columns 1 and 5 in Table 3b, the Table 3a estimates for Canada and the U.K.

" These population figures ignore the effects of sampling error in the estimation of model parameters.
Reinsel (1980) and Ericcson and Marquez (1989), among others, have suggested a refinement to the
computation of the RMSPE that accounts for sampling error in such estimation. But inspection of
their formulae and simulation results indicates that the refinement has a noticeable effect only when
the following ratio is much larger than in our application: (number of regressors)/(sample size).
While neither of these papers considers data that are conditionally heteroskedastic, we take the
message to be that such a refinement is unlikely to much affect the Table 3b figures.
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Table 3a
GARCH (1.1) estimates, sample period: 3/14/73 to 6/17/81

(% 10%) « B
1. Canada 0.5 0.26 0.54
0.1 (0.02) (0.06)
2. France 1.3 0.35 0.61
0.2) (0.05) (0.04)
3. Germany 2.0 0.30 0.61
(0.4) (0.05) (0.04)
4. Japan 0.07 0.05 094
(0.03) (0.01) (0.01)
5. UK. 1.9 0.11 0.73
0.7) (0.05) (0.10)

Table 3b
Population root mean square prediction errors, homoskedastic relative to GARCH (1, 1)

Column 1 Column 2 Column 3 Column 4 Column 5
Horizon x =026 a=1035 a =030 a =0.05 a=0.11
B =054 B =061 B =061 B =094 =073
1 1.09 1.60 1.23 1.06 1.02
i2 1.00 1.15 1.02 1.05 1.00
24 1.00 1.05 1.00 1.04 1.00

1) The numbers in parentheses in panel A are asymptotic standard errors.

2) Panel B presents the ratio of RMSPEs for the indicated horizons, computed assuming that the
data are driven by a GARCH (1, 1) model with the indicated parameters, and abstracting from
sampling error in estimation of the model parameters. The ratio is invariant to w. The RMSPE for
the homoskedastic model is constant for all horizons. The ratio asymptotes to 1 as the horizon
approaches infinity, for each pair of « and §.

suggest sufficiently rapid mean reversion that our proposed comparisons of 12-
and 24-week horizons are probably not of interest. On the other hand, columns
2 to 4 indicate that other Table 3a estimates imply as sharp a difference in
RMSPEs at one or both of these longer horizons as occurs at a one-period
horizon for the U.K. parameters in column 5.

We will not attempt to squeeze an interpretation of the results of our out-of-
sample comparison into the Tables 3 figures. Even under a GARCH(1,1) null the
Tables 3 figures will be misleading insofar as sampling error has affected the
point estimates of « and . Rather, we interpret Tables 3 as presenting in-sample
evidence that it may be possible to distinguish different estimators at horizons of
as long as 24 weeks.
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Table 4 presents our attempts to do so, for forecasts of 1 and 12 weeks as well
as 24 weeks ahead, in panels A, B, and C, respectively. In each panel, under each
country are two columns. The second, labelled ‘RMSPE’ gives the root mean
squared prediction error, computed according to Eq. (2). The other column,
labelled ‘Rank’, indicates the relative size of that model’s RMSPE, 1 indicating
the best (smallest) RMSPE and 6 the worst (largest). The rows labelled ‘Hy’, ‘Hy’,
and ‘H¢ (at the bottom of each panel) will be discussed below.

We begin with two general comments, before beginning a comparison of the
models. First, as one would expect, given the noisiness of exchange rate data,
these out-of-sample RMSEs generally are larger than the in-sample RMSEs
reported in line 14 of Table 1. That is, the out-of-sample predictions using the
estimated conditional variances are usually less accurate than an in-sample
prediction using the in-sample unconditional variance. Second, and somewhat
surprisingly, there does not appear to be a tendency for RMSPEs to increase at
longer horizons; the median Table 4 values for the 1-, 12-, and 24-week horizons
are 4.746, 4.791, and 4.503, for example. In the context of GARCH(1,1) models,
the implication is that mean reversion occurs as rapidly as in, say, column 5 of
Table 3b. The figures in columns 2 to 4 of that table suggest otherwise, so there is
a clear conflict between the out-of-sample and in-sample evidence.

Turn now to comparing the models. At the one week horizon, panel A of
Table 4 indicates that one of the two GARCH models had the smallest RMSPE
for all five countries. The IGARCH model was probably the most consistent
performer overall, being best in three countries (France, Germany, and U.K.),
second and third best in the other two (Japan and Canada). At the 12-week
horizon (panel B), the best model was either the homoskedastic (Canada,
France, and Germany) or autoregression in absolute values (Japan and U.K.).
At the 24-weck horizon (panel C), depending on the country, one of four
different models had the lowest RMSPE, GARCH(1,1) being the only model
that was best in two countries (Germany and U.K.). But the most consistent
performer at 24 weeks was probably the autoregression in exchange rate
squares, which was second in four countries and first in one (Japan).

Which model performs best, then, varies from country to country and horizon
to horizon; if there i1s an underlying pattern, it is difficult for us to discern, and, at
least superficially, Table 1 suggests that it might be largely a matter of chance
which model produces the smallest RMSPE.® That performance is quite similar
across models is also suggested by casual inspection of the point estimates of the
RMSPEs; even at a one-period horizon, in only one case is the worst model’s

8 Consistent with this statement, and with the literature surveyed in Clemen (1989), a prediction
formed by averaging the six forecasts typically performs better than any of the individual forecasts,
at least at the longer horizons. Of the 15 comparisons, the ranking of the average forecast was:
1 -7 times (two of the seven occur for a one-period horizon; IGARCH performs roughly comparably
here); 2 — 6 times; 3 — once; 4 - once. Details are in the Appendix that is available on request.
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Table 4
Root mean squared prediction errors

Canada France Germany Japan U.K.

Rank RMSPE Rank RMSPE Rank RMSPE Rank RMSPE Rank RMSPE

Panel A: One-week horizon

homo § 0.714 2 5.167 2 4.704 3 4.380 4 5.745
(L 1 0.702 6 5.351 5 4.783 1 4.323 2 5.632
ig 3 0.706 1 5.161 1 4.695 2 4.343 1 5.563
e2AR 4 0.712 5 5.273 6 4.925 5 4.411 5 6.033
|el[AR 2 0.704 3 5.200 4 4.767 4 4.388 3 5.726
nonp 6 0.737 4 5.201 3 4.724 6 4.442 6 6.537

H, 9.70  [0.084] 891 [0.113] 823 [0.144] 642 [0.268] 376  [0.584]
Hy 1.24  [0.265] 0.0l [0.918] 001 [0912] 077 [0380] 1.52 [0.217]
Hc 424  [0237] 899 [0.029] 413 [0247] 286 [0413] 359 [0.310]

Panel B: Twelve-week horizon

homo 1 0.695 1 5219 1 4.754 3 4.435 5 5.794
(L 2 0.697 6 5.696 6 4.831 5 4.451 4 5.756
ig 6 0.731 5 5.268 5 4.817 6 4.454 2 5.692
e2AR 3 0.700 3 5.251 4 4.796 2 4433 3 5.726
le]AR 4 0.701 4 5.267 3 4.785 1 4.430 t 5.674
nonp 5 0.704 2 5.250 2 4.762 4 4.447 6 5.841
Ha 16.71  [0.005] 1506 [0010] 732  [0.198] 1.08 [0956] 849  [0.131]
Hg n.a. n.a. na. 0.01 [0.921] 129  [0.256]

He 596  [0.114] 13.60 [0004] 583 [0.120] 039 [0943] 566 [0.129]

Panel C: Twenty-four-week horizon

homo 1 0.695 3 5.094 3 4.500 2 4.424 4 5.770
(Ly 5 0.703 6 5.694 1 4.490 6 4.498 ! 5.708
ig 6 0.743 1 5.060 5 4.509 5 4.483 5 5.834
e2AR 2 0.695 2 5.087 2 4.498 1 4.422 2 5.721
[e|[AR 3 0.697 4 5.109 4 4.505 4 4441 3 5.729
nonp 4 0.702 5 5.131 6 4.535 3 4.436 6 5.943
H, 1895 [0.002] 1808 [0.003] 380 [0.578] 6.05 [0.301] 582 [0.324]
Hp n.a. 025 [0619] 0.11 [0.741]7 012 [0.7283 007 [0.789]

Hc 335 [0340] 17.64 [0001] 107 [0.785] 582 [0.121] 195  [0.583]

1) The ‘RMSPE’ columns present the out of sample root mean squared error in predicting ef“. for horizon
j (j=1,12,24) and the indicated country and model. The ‘Rank’ columns index the relative size of the
RMSPEs for a given country and horizon, 1 indicating the smallest RMSPE and 6 the largest.

2) The Hu, Hg, and He rows present z? statistics (asymptotic p-values in brackets) for the following
hypotheses: A — equality of MSPEs of all six models (3%(5)); B — equality of MSPEs of best and homo
models (y*(1)): C — equality of MSPEs from homo, (1, 1), €2AR, and |¢|AR models (x2(3)). The statistics are
computed as in Eq. (5).
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RMSPE more than 5% larger than the best model’s (U.K.); once again, such
point estimates are surprising in light of Table 3b.

For an additional measure of similarity of RMSPEs, we turn to formal
statistical testing of the hypothesis that these are the same across various
models, for a given horizon. In Table 4, the ‘H,’, ‘Hy’, and ‘H¢ rows at the
bottom of each panel give statistics and, in brackets, p-values assuming an
asymptotic chi-squared distribution, for the following three hypotheses:

Ha: MSPE:s for all six models are equal (3*(5)).

Hg: MSPEs for the best model and the homoskedastic
model are equal (x2(1)). (6)

He: MSPEs for the homoskedastic, GARCH(1,1), and
two autoregressive models are the same (x%(3)).

Hypothesis A is an obvious one.® Tests of hypothesis B were performed because
the homoskedastic model is the simplest one, and therefore probably the model
of most appeal if, in fact, performance is similar across models. Tests of
hypothesis C were performed because the formal asymptotic theory that under-
lies the test makes assumptions that rule out our nonparametric estimator and
possibly the IGARCH estimator as well.

Table 4 indicates that the H, test of the null of equal RMSPEs across all
models is rejected at the 0.05 level in four of our fifteen experiments (Canada and
France, 12- and 24-week horizons) and once at the 0.10 but not 0.05 level
(Canada, l-week horizon). This suggests that the seeming similarity of point
estimates of RMSPEs might be misleading, at least for Canada and France. In
no case, however, can one reject at conventional significance levels the null that
the homoskedastic model’s RMSPE is the same as that of the best model: the
lowest of p-value for Hg is 0.217 (U.K., 1-week horizon). The H¢ test of equal
RMSPE:s for the homoskedastic, GARCH(1,1), and two AR models rejects at
the 0.05 level for France for all three horizons, again suggesting that the seeming
similarity of point estimates of RMSPEs might be misleading for France.

These asymptotic tests may well be deceptive in finite samples, even if the
asymptotic theory eventually yields a good approximation. One indication that
this may be the case is that of the four rejections at the 0.05 level of equality of all
six models, three occur in experiments in which the homoskedastic model is the
best (Canada, 12- and 24-week; France, 24-week). If, indeed, a homoskedastic
model were generating the data, at least four of the other five models would

? For computational convenience, we computed tests for equality of the MSPEs rather than the
asymptotically equivalent tests for the RMSPEs; for expositional convenience, in all discussion apart
from the statement of the tests in the preceding paragraph in the text, we refer to these as tests on the
RMSPEs.
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produce exactly the homoskedastic forecast in an infinitely large sample (the
possible exception is IGARCH, whose asymptotic behavior under these condi-
tions is unclear to us). But this suggests a tendency to reject too much, not too
little, a result that we have found in related Monte Carlo studies using data
generated by GARCH processes (Newey and West, 1994).

But to double-check the possibility that our asymptotic tests are instead
rejecting too infrequently, we undertook two exercises. First, we examined
a seventh model, which set 4, = ¢? — the conditional variance in week ¢ is equal
to the realized square of the exchange rate. (Reminder to readers familiar with
the GARCH literature: what we call h, here is usually called h,_;.) To our
knowledge, this has not been seriously proposed as a model for exchange rate
volatility, for the good reason that it is not an appealing one: the RMSPEs for
the one-week horizon, for example, are: Canada — 0.933; France — 7.119;
Germany — 6.574; Japan — 5.593; U.K. — 7.466. These are a good 25% above the
panel A figures of Table 4 for the other models. We use it here to see if our
asymptotic tests have enough power to recognize the substantial difference
between this model and the others. And they do, as is indicated by the following
summary of test results. Of fifteen y?(6) tests of the equality of RMSPESs across
all seven models, eleven reject at the 0.05 level, thirteen at the 0.10 level. Of
fifteen x2(1) tests of the equality of the RMSPE from this additional model and
that of the worst of the six models reported in Table 4, thirteen reject at the 0.05
level, fourteen at the 0.10 level (the exception was U K., one-week horizon, which
rejects at the 0.15 level). It seems, then, that whatever the problems with our
asymptotic tests, these tests do have enough power to reject an egregiously poor
model at conventional significance levels.

The second exercise we undertook to check the validity of our asymptotic
tests was a small Monte Carlo experiment. Because of space constraints, we limit
ourselves to the succinct statement that the experiment suggested that if our
asymptotic procedures have a small sample bias, that bias is towards rejecting
too much, not too little. A detailed discussion of the experiment is available in
the Appendix that is available on request.

4. Additional empirical results

It seems that to a first approximation ail our models are equally good as
predictors of exchange rates squares. To compare them from a slightly different
perspective, we conducted a standard efficiency test (e.g., Pagan and Schwert,
1990a), estimating by OLS the regression

etz+1=b0+bl”:lmt+5r+l' (7

If, indeed, E,e 2, | = h,,, one should get by = 0, b; = 1. One should also find that
&+ is serially uncorrelated. But a quick look at the autocorrelations of the
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residuals suggested that this was rarely, if ever, the case. So we do not for-
mally test for the absence of serial correlation, and instead correct the
variance—covariance matrix of the estimated parameter vector for conditional
heteroskedasticity as well as serial correlation, using the techniques described
above.

Results are in Table 5. Asymptotic standard errors for by and b; are given in
parentheses beneath the point estimates. For all five countries, the ¥%(2) column
gives the point estimate and asymptotic p-value for Hy: by = 0, by = 1. The **
and * after the estimates of b, indicate significant differences from zero, not one.

We note first that the rankings by R* are quite similar to those by RMSPE.
This indicates that models with relatively low RMSPEs also have RMSPEs
whose variance component is relatively low, since R? reflects the variance but
not bias-squared comronent of MSPE. Some new information is yielded by the
other estimates. Of the thirty y?(2) tests of Hy: by = 0, b, = 1, twenty-seven
reject at the 0.10 level (the exceptions are GARCH(1,1) for Japan, IGARCH for
Japan and U.K)), twenty-five at the 0.05 level (the additional exceptions are the
two autoregressions for Canada). The standard errors on b, and b, yield
compatible conclusions.

Perhaps unsurprisingly, then, none of the models pass this efficiency test: the
Monte Carlo simulation indicates that this test has good power, being very
likely to reject the null (not reported in the table). More encouraging is that
seven of the estimates of b, are significantly different from zero at the 0.05 level,
five of these being for GARCH models (see the ** entries). This shows that there
1s some predictive power in the estimated conditional variances. For future
reference, note the marked tendency of the models to have predictive power for
Canadian data.

We also performed the efficiency test in Table 5 for the 12- and 24-week
horizons. For these horizons, the results did not help discriminate between
models, and we therefore limit ourselves to a summary of the results. Of the sixty
12(2) tests, fifty-eight reject at the 0.10 level (the exceptions are GARCH(1,1) for
Canada 12-week and U.K. 24-week), fifty-six at the 0.05 level (the additional
exceptions are homoskedastic for Canada 12- and 24-week). More troubling is
that while b, was different from zero at the 0.05 level seven times, only two of
those estimates were positive (GARCH(1,1) and IGARCH for U.K., 12-week).

Overall, then, it seems that at the one-period horizon there is some evidence
favoring GARCH models: while Table 4 cannot reject the null that the RMSPEs
are the same for all models, GARCH models do tend to produce lower
RMSPEs, and Table 5 suggests that they have markedly more predictive power
for next period’s e7,;. On the other hand, at longer horizons, we find little
grounds for preferring one model over another.

This is a disappointing, and surprising, result. It seems that mean reversion in
the conditional variance occurs rapidly enough that no model dominates the
others at 12-week or longer horizons. This suggests that the in-sample fits
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overstate the conditional predictability of exchange rate squares. Lamoureux
and Lastrapes (1990) have shown that occasional discrete shifts in the mean level
of volatility cause substantial upward bias in estimates of the persistence of
volatility. We close this section with some evidence that such shifts may have
occurred here, and thus may help account for our inability to sharply distinguish
one model from another.

Panel A of Table 6 reports split sample estimates of the standard deviation of
e,. As one can see, the point estimate is markedly higher in the second half of the
sample for all countries except perhaps Canada.'® In addition, line 3 of the table
indicates that the null of equality is rejected at the 0.05 level for France, Japan,
and the U.K., and at the 0.10 level for Germany.

Given that we began forecasting at the sample midpoint, the choice of
the midpoint as a date to test for a shift is natural, but nonetheless still
arbitrary. In panel B we report a Pagan and Schwert (1990b) test for the
constancy of the unconditional variance of e, that does not require a priori
specification of a date. The details of the test are described in the notes to the
table. As indicated in the table, the null of constancy is rejected at the 0.05 level
for all countries but Canada, for which it is not rejected at even the 0.20 level. See
row 1 of panel B.

Rows 2 to 4 of Table 6 report the results of applying this test on three
subsamples for each country: the first half of our total sample (March 14, 1973 to
June 17, 1981), the middle two-fourths (April 24, 1977 to July 31, 1985), and the
last half (June 24, 1981 to September 20, 1989). Of the fifteen tests for constant
variances (15 = 3 subsamples times 5 countries), only two tests rejected at the
0.05 level (Japan, beginning and middle subsamples).

Now, if the data were driven by a stationary model that allows time-varying
conditional variances, it would not be surprising if tests such as those in Table
6 found evidence of shifts in variance at short but not long horizons. We,
however, find the converse. And, as briefly noted in Section 2, forecast quality
was no better for expanding than for rolling samples, which also seems to
suggest a failure of the stationarity assumption.

In this study, we followed many others (e.g., Engle et al., 1990) and implicitly
allowed for a failure of stationarity by using rolling samples. We conjecture that
it will be productive to explore models that explicitly allow for seeming or actual

'* This raises the question of whether our exercise would produce different results if applied to split
samples, a question also raised by a referee who noted that in the mid-1980s central banks attempted
to drive down the dollar. We computed one-week-ahead RMSPEs for samples running from (1)
6/17/81 to 9/18/85 (number of predictions = 223) and (2} 9/18/85 to 4/5/89 (number of predic-
tions = 185); the split date was chosen because the Plaza Accord was announced on 9/22/85. The
RMSPEs were generally higher in the later sample. But GARCH or IGARCH still fared relatively
well: one or the other was best in all five comparisons in the early sample, in three of the five
comparisons in the later sample. Details are in the Appendix that is available on request.
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Table 6
Subsample statistics on e,

Canada France Germany Japan UK.

Panel A: Standard deviation

1. Standard deviation 0.499 1.185 1.309 1.174 1.093
3/14/73-6/17/81 (0.049) (0.097) (0.117) (0.102) (0.076)

2. Standard deviation 0.600 1.603 1.609 1.526 1.663
6/24/81-9/20/89 (0.050) (0.153) (0.149) (0.146) (0.159)

3. Row2—row 1l 0.101 0.418 0.299 0.352 0.570
(0.070) (0.181) (0.190) (0.178) (0.177)

Panel B: Modified range scale tests for constancy of unconditional variance

1. 3/14/73-9/20/89 1.428 2.238%* 1.901** 1.874** 1.753%*
No. of obs. = 863

2. 3/14/73-6/17/81 1.413 1.659* 1.540 1.892%* 1.046
No. of obs. =432

3. 4/24/77-7/31/85 1.242 1.725* 1.365 1.852%* 1.317
No. of obs. =432

4. 6/24/81-9/20/89 1.260 1.226 1.326 1.561 1.667

No. of obs. = 431

1) In panel A, heteroskedasticity and autocorrelation consistent asymptotic standard errors are in
parentheses.

2) In panel B, let x, = (e, — €)%, where e is the mean of e, in the sample in question, and let
% be the corresponding mean of x,. Let y(r)=[Y r=1(x, — X)]/(T$)'% where 1<r<T, T =
431,432, 863 is the sample size, and § is an estimate of the asymptotic variance of
T 25| [(e, — Ee)? — E(e, — Ee,)*]. The table reports the difference between the maximum
and minimum of ¥ (r).

3) ** means significant at the 5% level, * at the 10% level, according to Table la in Haubrich and Lo
(1989).

movement in the unconditional variance of e,. The sort of movement that one
wants to capture appears to be slow enough that it might not be detectable in
samples that are eight years long, but rapid enough that it is marked in samples
sixteen years long.

Canadian data were unusual in that Table 4’s tests of equality of RMSPEs
tended to find differences across models, and Table 5’s efficiency tests were
unusually likely to be able to find predictive power in the estimated conditional
variances. Perhaps the distinctive results for Canada are no accident, but instead
are linked to the stationary behavior of its exchange rates.
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5. Conclusions

The in-sample evidence summarized in Tables 1 and 3 strongly suggests that
a homoskedastic model should be dominated by the other models that we
studied. This did not turn out to be the case. We speculate that models that
allow for seeming or actual drift in unconditional moments may result in
superior performance. Possibilities include processes that allow occasional dis-
crete jumps (Jorion, 1988) and models with time-varying parameters (Chou et
al., 1990).
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