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We develop regression-based tests of hypotheses about out of sample predic-
tion errors. Representative tests include ones for zero mean and zero correla-
tion between a prediction error and a vector of predictors. The relevant
environments are ones in which predictions depend on estimated parameters.
We show that standard regression statistics generally fail to account for errors
introduced by estimation of these parameters. We propose computationally
convenient test statistics that properly account for such errors. Simulations
indicate that the procedures can work well in samples of size typically availible,
although there sometimes are substantial size distortions.

1. INTRODUCTION

In this paper, we develop and simulate regression tests for properties of out of
sample prediction errors. Examples of such properties are: zero mean, zero serial
correlation (if the prediction is one-step ahead), zero correlation with the prediction,
and zero correlation with the prediction from another, non-nested model. Empirical
papers that examine these or related properties include Mincer and Zarnowitz
(1969), Nelson (1972), Howrey et al. (1974), Berger and Krane (1985), Meese and
Rogoff (1983, 1988), Akgiray (1989), Diebold and Nason (1990), Fair and Shiller
(1990), Pagan and Schwert (1990), West and Cho (1995) and some of the participants
in the Makridakis et al. (1982) competition.

If the predictions do not depend on estimated parameters, it follows from Diebold
and Mariano (1995) that under mild conditions standard regression statistics may be
used. For zero serial correlation in one step ahead prediction errors, for example,
one can simply regress the period ¢+ 1 prediction error on the period ¢ prediction
error, and use a standard z-test to test the null that the coefficient is zero.

But if the predictions do depend on estimated parameters, the results of Diebold
and Mariano (1995) need not apply. The usual tests do account for uncertainty that
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would be present if (counterfactually) the underlying parameter vector were known
rather than estimated, but ignore uncertainty resulting from error in estimation of
that parameter vector. Using a conventional set of assumptions, we establish
conditions under which this second type of uncertainty is asymptotically negligible,
thereby validating the Diebold and Mariano (1995) procedure. More importantly, we
show that such uncertainty sometimes is asymptotically nonnegligible, and then
suggest computationally convenient ways to obtain test statistics that account for
both types of uncertainty. Simulations indicate that failure to account for the second
type of uncertainty sometimes results in poorly sized hypothesis tests, while our own
adjusted tests usually but not always yield more accurately sized tests.

A vast literature has considered predictive accuracy. A distinguishing element of
our work is explicit consideration of the role of estimation of parameters needed for
prediction. We focus on test statistics produced by regression packages. These have
appeared in a number of applied papers (e.g., Fair and Shiller 1990, and Pagan and
Schwert 1990), and, we hope, may appear in still more papers upon development of
techniques such as those proposed here.? We build on earlier work (especially West
1996) not only by developing computationally convenient procedures, but also by
allowing additional sampling schemes (additional ways of dividing available data into
estimation and prediction components), relaxing certain technical conditions that
implicitly ruled out certain important tests (including zero correlation between a
prediction error and a prediction), and supplying new simulation evidence.

Section 2 of the paper describes the environment. Sections 3 and 4 present
technical assumptions and basic asymptotic results. Section 5 presents our computa-
tionally convenient adjustments to standard regression statistics. Sections 6 and 7
specialize on the discussions in Sections 3—5 to consider some common tests, when
the underlying models are linear and exactly identified. Section 8 presents simula-
tion evidence and concludes. The Appendix presents proofs. An additional Appendix
available on request from the authors presents details of proofs and simulation
results omitted from the paper to save space.

2. DESCRIPTION OF ENVIRONMENT

Let 7> 1 be the prediction horizon of interest. There are P Predictions in all,
which rely on estimates of a (k X 1) unknown parameter vector 8*. To avoid certain
singularities we assume k>0 and merely note that our results specialize in the
obvious way when regression estimates are not required to make predictions.

The first prediction uses data from period R or earlier to predict a period R + 7
event, the second from period R+ 1 or earlier to predict a period R+ 1+ 7
event,..., the last from period R+P —1=T or earlier to predict a period T+ 7

2 We hope our work will be useful even for the interpretation of completed papers. With the
exception of one paper that came to our attention after this paper was written (Hoffman and Pagan
1989), to our knowledge all such papers have used standard regression statistics, without adjusting
for dependence of predictions on estimated parameters. We establish conditions for the asymptotic
validity of such statistics, and in some cases we are able to propose adjustments for such dependence
that can be made even without access to the data. See Sections 4, 5 and 7.
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event. The total sample size is R+P—1+7=T+ 7:

| | L]

Observation: 1 R R+~ R+P—-1=T T+

In estimating B*, three different schemes to use available data are prominent in
the forecasting literature. We consider the three explicitly because results vary for
the three. The first scheme, which we call recursive, was used by, for example, Fair
and Shiller (1990). This scheme uses all available data, estimating B* first with data
from 1 to R, next with data from 1 to R+ 1,..., and finally with data from 1 to T.
The second scheme, which we call rolling, was used by, for example, Akgiray (1989).
This scheme fixes the sample size, say at R, and drops distant observations as recent
ones are added. Thus, B* is estimated first with data from 1 to R, next with data
from 2 to R+ 1,..., and finally with data from P to T. The third and final scheme,
which we call fixed, was used by, for example, Pagan and Schwert (1990). This
scheme estimates * just once, say on data from 1 to R, and uses the estimate in
forming all P predictions; data realized subsequent to R are, however, used in
forming predictions, as described in the previous paragraph and below.

For t=R,...,T, let é, be the regression vector used for prediction when data
from period ¢ and earlier are used. In the least squares model y, = X;B* + u,, for
example, [§t is estimated using i

(2.1) datafrom 1 to ¢ in the recursive scheme,

t -1 t
- ( » xsxg) ¥ Xy,
N

=1 s=1

data from ¢ — R + 1 to ¢ in the rolling scheme,

t -1 t
Bt = ( Z XA‘XS/) Z Xsys’
s=t—R+1 s=t—R+1

data from 1 to R in the fixed scheme,
. R -1 R
Bt=( ZXSX;) EXSyS'
s=1 s=1

Note that for the fixed scheme, ﬁ, is the same for all ¢, and depends only on R and
not ¢, while in the recursive and rolling schemes a different regression estimate is
used for each ¢. In addition, for the rolling and fixed schemes, ét should properly be
subscripted BAt’ r; the dependence on R is suppressed for notational simplicity. The
asymptotic approximation assumes that both P and R are large (formally, P, R — ),
with 7 fixed.

One is interested in the relationship between a scalar prediction error and a
vector of variables—say, whether the prediction error is correlated with the vector
of variables. As illustrated in example 2 below, we can limit the formal discussion to
prediction errors and still yield results applicable to inference about predictions as
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well; given the linearity of the procedures we analyze, results for predictions
(= observed data point — prediction error) follow immediately. We limit the formal
analysis to a scalar dependent variable to economize on notation; we comment
occasionally on vector generalizations of our results.

Let v, ,(B*)=v,,, be the scalar prediction error of interest, with v,, (8, =
0,1+, (0,41 =0,,,,) the corresponding random variable evaluated at ét. As the
dating suggests, v,, . typically relies on data realized in period ¢+ 7. One is
interested in the linear relationship between v,, . and a vector function of period ¢
data. Let g,,,(B*)=g,,, denote this (I X 1) vector function, with g, (B)=8,.,
the sample counterpart evaluated at ,[§t. In most applications / is small, say /=1 or
I=2. Here, g,,,(B*) depends on data observed in period ¢ and earlier; the dating
convention is used because g,,; often depends on the predetermined variables
available at time ¢ + 1. See the examples below.

The aim is to use a least squares regression to test the null hypothesis that
Ev,, .8+, =0. The obvious regression is one of 9,,,, on &, for t=R,...,R+
P — 1, obtaining

T -1
A A oA a ~_ A A A A
(2'2) U 147=8+14F Ny srs a= Zgr+lgr+1 th+1vr,r+-r’
t=R t=R

s _ A A oA
Miv 7= Vtivr — 81419

One then uses the estimate of & and a suitable variance-covariance matrix to test
the null.

To illustrate, here are four examples, illustrated with the simple zero mean AR(1)
model y, = B*y,_, +u,, |B*<1.

1. Mean Prediction Error. Here, g, =1is a scalar. If v, is a 7 step ahead
forecast error in the AR(1) model, then 5, ,, .=y, ,— By,

2. Efficiency. Here, one regresses y,, . on the period ¢ prediction (= é[y,, in
the AR(1) model) and perhaps a constant and other possible predictors as well. The
null is that the coefficient on the prediction is unity, and on any other included
variables is zero. To analyze this regression using our framework, which presumes
that the dependent variable is a prediction error, note that if one uses the prediction
error (=y,, . — B7y, in the AR(1) model) as the dependent variable the regression
results are algebraically identical to those with y,, . on the left-hand side, except
that the estimated coefficient on the prediction will be smaller by unity. Hence, for
say 7=1, if §,,, is (2x 1) and includes a constant term as well as B,y,, H, is
a=(0,0)'. Note the dating convention: ¢ is dated ¢+ 1, but depends on y,, the
regressor available for prediction at time ¢ + 1.

3. Encompassing. Here, v, is a one step ahead forecast error from a puta-
tively encompassing model. The right-hand side variable §,, ; is the scalar prediction
from a putatively encompassed model, and the null is @ =0. More generally, the
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right-hand side might include a constant, in which case §,,; and « are (2 X 1) and
the null is a=(0,0)".

4. Serial Correlation. 1If v, is the one step ahead forecast error in a model
presumed to have serially uncorrelated errors (=u,,; in the AR(1) model), then
8:+1 =", is the previous period’s forecast error. So « is a scalar, @ an estimate of
the first-order serial correlation coefficient, and H, is a = 0.3

One of our major aims is to develop computationally convenient procedures,
which in our regression context means using standard errors produced by standard
computer programs, or perhaps simple adjustments to those standard errors. As we
shall see, conventional test statistics are not always asymptotically valid, even when
=1 and v,,,=v,,,(B* is a zero mean i.i.d. variable that is independent of
8i+1=8,.1(B*). The reason is that in some applications, two sources of uncertainty
affect asymptotic interence about «. The first is uncertainty that would be present
even if (counterfactually) B* were known and one could regress v,,, on g, ;. The
second results from use of ﬁ, rather than the unknown B*. According to our
asymptotic approximation, standard regression statistics properly account for the
first source of uncertainty but not necessarily the second. We show below that in
some important examples, properly accounting for both sorts of uncertainty requires
merely rescaling the least squares variance-covariance matrix by a certain function
of P/R.

When such a simple adjustment does not suffice, one can sometimes obtain
asymptotically valid test statistics by augmenting the regression (2.2) with a judi-
ciously chosen set of variables §,,, ;. In this case, one runs the regression

(2.3) Dy v, =810+ 85,4 a, + disturbance =§!. &+ disturbance,

where §,,., is a (rX1) set of extra variables included so that conventionally
computed hypothesis tests on « are correctly sized according to our asymptotic
theory; §=(g/, 1,851 is U+1X1; §,1=8 (B =(8 (B, 82:1(BYY
=(g,,1,8%+1) and & are also (I +r) X 1.

3. ASSUMPTIONS

This section presents assumptions relevant for the basic regression (2.2); Section 5
will present an extension for analysis of the augmented regression (2.3). Our
assumptions are ‘high level’ ones. We use relatively abstract assumptions for two
reasons. First, they allow us or others to verify that our results apply to tests and
models other than the ones we consider in detail in Sections 6 and 7 below. Second,

* This test is most naturally run by regressing y,, — ﬁ, y,ony,— ﬁ,g 1Y _ 1. Strictly speaking, our
notation implies that y,., — B,_,y, rather than Vi1~ B,y, is on the left: we assume that both left-
and right-hand side variables are constructed from the same estimate of 8*, and a rank condition
presented below rules out simply defining parameters so that the population parameter of interest is
2 X 1 without a 2 X 1 period ¢ estimate of ( /§,, /§,_1)’. But this rank condition is easily relaxed, and
results may be generalized to allow the natural version of this test. To economize on notation, we do
not explicitly do so in this paper.
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they can be presented compactly. In the interest of concision and clarity, we also do
not attempt to state each theorem using a minimal set of assumptions. For example,
a weaker version of Assumption 3 applies in applications with parametric covariance
matrix estimators.

Some notation: for any differentiable function n,: R™ — R® and for x in the
domain of n,, dn,/dx denotes the (s X m) matrix of partial derivatives of n,; for any
function 7, whose domain is in R¥, n,, = dn,(B*)/3pB; for any matrix A =[a,;], let
| Al = max; ; ]a,»jl; summations of variables indexed by ¢ or ¢+ 7 run from #=R to
t=T=R+P—1: for any variable x, Lx(1) =X x(¢), X x,, , =X r x,,,; sum-
mations of variables indexed by s run from (a) 1 to ¢, for the recursive scheme,
(b) t— R+ 1 to t, for the rolling scheme, and (c) 1 to R, for the fixed scheme: for
any variable x, (a) Lx,=X!_;x, (recursive), (b) Lx,=X!_,_r,,x, (rolling), or
(©) X, x,= Xk | x, (fixed). Finally, let

_ 6ft+*r

G1) fir(B) =8 (B0 (B Srnp= (B F=Bli, .

Here, f,, .: R* > R/; the (I X k) matrix F is not subscripted by ¢ in accordance with
a stationarity assumption about to be made.

AssUMPTION 1. (a) In some neighborhood N around B*, and with probability 1,
v,(B) and g B) are measurable and twice continuously differentiable; (b) Ev,, .g,.1
=0; (¢) Evw,g=0;(d) Ev,, .81 5=0; (e) Eg,g, is of rank I.

ASSUMPTION 2. The estimate é, satisfies é, — B* =B()H(¢), where B(¢) is (kX q)
and H(t) is (g x 1), with (a) B(t)—>,, B, B a matrix of rank k; (b) H(t)=
718, h(B*) (recursive) or H(t)=R 'L h(B*) (rolling or fixed) for a (gx1)
orthogonality condition h(B*); (¢) Eh(B*)=0; (d) in the neighborhood N of
assumption 1, h, is measurable and continuously differentiable.

ASSUMPTION 3. In the neighborhood N of Assumption 1, there is a constant D <
such that for all t, supg . y10*v(B)/dBIB'| <m, for a measurable m, for which
Em? < D. The same holds when v, is replaced by an arbitrary element of g,.

ASSUMPTION 4. Let  w, = (v;g,vec(g,p),v,, 8, h,)'. (a) For some d>1,
sup, E ||w,|l8d < oo, where ||-|| denotes Euclidean norm. (b) w, is strong mixing, with
mixing coefficients of size —3d/(d —1). (¢) w, is fourth-order stationary. (d) Let
() = Ef f/_ ;s Spp=27_ _ T (j). Then Sy, is positive definite.

ASSUMPTION 5. R,P—>® as T—>», and lim;_,,P/R=m, (a) 0<m< for
recursive (m= o < limy_,,, R/P=0), (b) 0 < 7 < o for rolling and fixed.

Note that from Assumptions 1(b) and 1(d),

ﬁvt+7
(32) Eft=0, F=Egt+1 07—[3 .
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In allowing not only for recursive but also rolling and fixed sampling schemes,
Assumptions 2-5 generalize similar assumptions in West (1996), where some discus-
sion of the assumptions may be found. To illustrate briefly here: The moment
conditions in Assumptions 3 and 4 rule out unit autoregressive roots, but otherwise
do not seem restrictive. Assumption 2 allows standard estimation techniques, includ-
ing GMM and maximum likelihood. In the AR(1) model of Section 2, for example,
B=(Ey2 )Y, h,=y,_,u,. Assumption 5 says that both P and R are large; in
particular, they are large relative to the forecast horizon 7.

Throughout, we maintain Assumptions 1-5.

4. BASIC ASYMPTOTIC RESULTS
Let

(4-1) th(j) =Efthlz—j7 th = A Z th(j)’ th(f) =Ehth,t—j’

Jj=—®

=)

Spn = Z th(j), Vﬁ=BSth'-

Vj is the asymptotic variance-covariance matrix of TV?( éT — B.
Define Ag,, Ay, and A=1—2Xp + Ay, all of which are scalar functions of
7=lim;_, ., P/R, as follows:

(4.2)  Sampling scheme At M A
recursive 1—7'm(+7) 21—a!In(+ 7)] 1
1l 1 T ™ o
< R— — — — —
rolling, 7 < > 3 3
1li 1 1 ! 1 ! 2
, T> - - —
rotung, 27 3 3
fixed 0 T 1+7

Lemma 4.1. (&) P Y22 8,10, , =P '*L g, 10, + FBIP™'?L H®)] +
o,(. (b) P V2L g, .., ~4 NO,S;). () E[PT'E HOL H1)'] -
NS ELPT'E 80410, , Z H(0)'] = Apy, Sy

The results for the recursive scheme follow from West (1996), and are repeated here
for completeness. The results for the rolling and fixed schemes are new.

LEMMA 42. P28 8,10, . ~4 N(O,Q), where Q is the (I X 1) matrix

(43) Q=58+ Ay (FBS}, + Sy B'F') + Ny FV, F'.
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LeMMA 43. P7'E g, 181, -, Eg,8:

THEOREM 4.1. Let & be the least squares estimator of a (=0). Then P'/% ~,
NV, V= (Eg,g) ™ QEg,g) ™"

For inference, an estimate of V' is required. To discuss this, we introduce some
more notation. Let %, . =0, ,,,— £/, & be the least squares regression residual, &
the usual scalar estimate of the standard error of the regression disturbance, and
I';(j) the (I X 1) j’th sample autocovariance of g, 17,

A - A A A2
(44) O'ZE P-1) Znt+1'—(P_l) IE(Ut,t+7—gr+1a) >

T
Fff(]) EP71 Z [(g\t-%-lﬁtJrf)(gAtJrlfjﬁtJr‘rfj),] forjz 0’

t=R+j
Iy (j) =Ty (=j) forj<o.

THEOREM 4.2. (a) -, O'ZEEUtz, &Z(P 1Zg,+1g,+1) -, Uz(Eg,g,) ',

(b) F (]) ~p F (]) (P7'E 18141 I‘f )P~ 'Y gt+1gz+1) ~p
(Egtgt) l"ff(O)(Egtgt) L (¢) Let K(x) be a kernel such that for all x, |K(x)| <1,
K(x)=K(—x), K(0)=1, K(x) is continuous for all x, and [ |K(x)|dx <. For
some bandwidth M and some constant a, 0<a <1/2, suppose (M/P*) -0
and, if w= o, (M/R")—>0 Then S —ZJ__P+1K(]/M)Fff(])—> Sy, and
(P~ IEgt+1gt+1) Sff(P 12g1+1gt+1) (Egtgt) Sff(Egtgt) !

Note that Theorem 4.2 assumes that the least squares residual 7),,, is used in
estimating 62 and fff( j)- Since « = 0 the asymptotic results are unchanged if one
replaces 7)., with the left-hand side variable o, ;. ,; our formal analysis and our
simulation results below both use 7, , because that is what will be used by standard
computer programs.

Part (a) of Theorem 4.2 considers the textbook estimator of the least squares
covariance matrix, and part (b) a heteroskedasticity consistent estimator that is
sometimes referred to as the White (1980) covariance matrix estimator. In part (c); a
nonparametric estimator is described, under conditions similar to those in Andrews
(1991) or Newey and West (1994). So one can use kernels such as the Bartlett, in
which Sff Fff(O) + Z - (]/M)][Fff(]) + Fff(]) ] with M — « at a suitable
rate, or the Quadratic Spectral From part (b), if I';;(j) =0 for j > 7, as will typically
be the case, another estimator that is consistent for Sy is the truncated estimator;
here, Sff Fff(O) +X7C [Fff(]) + Fff(]) ].

Theorem 4.2 says that some sample moments are consistent for the analogous
population moments. But inspection of Theorem 4.1 indicates that use of these
estimators may not produce a consistent estimate of V. To illustrate, consider a
simple setup in which 7=1 and v,,, is i.i.d. and independent of current and past
8:+1- Then E(Ut+1 18415V 815 Vi—15-- .)=0, and E(U,2+1g,+1g;+ 1) = EUt2+ 1E8 418141
=Sy The least squares estimator of the regression covariance matrix is
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U P ' g, .8 . L. From Theorem 4.2, this estimator converges in probability to
o*(Eg,g)) ' =FEv}(Eg,g)~'. From Lemma 4.1(b) and the proof of Lemma 4.3, this
is the covariance matrix that is applicable in the counterfactual case in which B* is
known, and one regresses v,, .( %) on g, ,( 8%). But since B* is not known, we see
from Theorem 4.2 that the asymptotic variance of P'/% is not Ev?(Eg,g,)~" but
(Eg,8)" 'O (Eg,g)~" = Ev}(Eg,g)™" + {(Eg,8) [ A;(FBS}, + Sp,B'F') +
M FV, F'NEg,g)~"). The additional terms in braces are omes that result from
uncertainty about B*. In this example and more generally, use of the usual
regression formulas may result in asymptotically invalid tests.

If these formulas are instead to result in asymptotically valid tests, we must have
S=1. This condition implies that the asymptotic distribution of & does not
depend on uncertainty about B*: the distribution of P/% is identical to that of the
estimator obtained by regressing v,, (%) on g,.,( 8*) in the hypothetical case in
which B* is known. Two simple conditions are sufficient to imply S;-=€). One is
F=Eif(B*)/dB=Elg,.(B*v,, ,(B*)/dB]=0. This is essentially a condition
that there is block diagonality in the asymptotic variance-covariance matrix for the
estimators of B* and Ef,, . =Eg,, v,.,. This condition occasionally applies in
practice, for example in testing for first-order serial correlation with strictly exoge-
nous predictors. But since such examples are uncommon, we do not further discuss
this condition.*

A second condition sufficient for Q= Sy is m=limy_, P/R =0, because this
implies Ag, = A, =0. When =0, the limiting ratio of the size of the prediction
sample to that of the regression sample is zero. As noted informally by Chong and
Hendry (1986) in the context of encompassing tests, one can then act as if B8* is
known. The practical implication is that if P/R is small, it may be safe to use the
usual regression statistics. How small P/R must be depends on the data and the
tests; in our simple Monte Carlo experiment, the lowest value of P/R was 1/7, and
that was not sufficiently small to always make it harmless to ignore error in
estimation of B*.

The next section discusses ways to obtain asymptotically valid test statistics, even
when S, # ().

5. OBTAINING ASYMPTOTICALLY VALID TEST STATISTICS

Throughout this section, we assume that we have an estimator of Sy, that satisfies
S 7 S - Theorem 4.2 describes how to obtain such an estimator. In addition, for
A = A7) defined in (4.2), define

A=\N#), #=P/R.

For the recurswe scheme, A =1 for all 7, for the fixed scheme A=1+ (P/R), and
so on. Clearly, A=A

*See West (1996) and McCracken (1998) for further discussion of the conditions under which
F=0.
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COROLLARY 5.1.  Suppose that
1 ’ ’ ’ ’
(5.1) Spr= —E(FBth+thBF)=FVﬁF .

Then MP7'L &, 18, 'Sy (PTIE §i18li) ™" =, V= MEg,g) 'S (Eg,8) ™",
where P/ ~, N(0,V).

Condition (5.1) implies that () (defined in (4.3)) is equal to ASj, and Corollary 5.1
then follows directly from Theorem 4.1. Condition (5.1) might seem unlikely. But in
fact, as detailed below, in certain linear models it holds for tests for: (1) mean
prediction error and for efficiency, under general conditions, and (2) tests for
encompassing and zero first-order serial correlation when the sampling scheme is
recursive and the forecast error is conditionally homoskedastic.

Upon comparing Corollary 5.1 and Lemma 4.1(b), we see that when the conditions
of Corollary 5.1 hold, uncertainty about B* simply introduces a factor of A into the
asymptotic variance of P/%. For the recursive sampling scheme, A =1, so error in
estimation of B* is asymptotically irrelevant: the variance of such estimation error
(= A, FVF') is exactly offset by — A, (FBS}, + Sy, B'F'), which is the covariance
between (1) such error, and (2) error that would be present even if (counterfactually)
B* were known. For the fixed scheme, A>1, so failure to adjust will result
asymptotically in #- and chi-squared statistics that are too small and thus in too many
rejections at any specified significance level. For the rolling scheme, A < 1, so failure
to adjust will result asymptotically in too few rejections at any specified significance
level. Further, in any finite sample, the adjustment by A by construction increases ¢-
and chi-squared statistics for the fixed scheme, and decreases them for the rolling
scheme.

When condition (5.1) does not hold, uncertainty about B* usually results in
greater complications. To handle these, we propose the augmented regression (2.3),
which we repeat here for convenience:

(2.3) Dy s =81+ 10+ £ 410, + disturbance =2, a, + disturbance,

THEOREM 5.1. Let g, (B*) =(gl.1,85+1) fora (rxX1) vector g,,,, defined as
either (a) gy,,1=00,,,(B*)/3B (=r=k) or (b) gy.1=2Z,.1 for a vector of
variables Z, ., that satisfies dv,, (B*)/dB=G,(B*)Z,,,, G,(B*) a (kXr) non-
stochastic matrix. Define f,, =g, v, .. Suppose that for one of the definitions of
82141, Assumptions 1, 2, and 4 are satisfied when f, +rand g, replacef,,  andg,. .
Continue to maintain Assumptions 3 and S as well. Let Ss; and Sy, be deﬁned as in
equation @1, F as in equation (3.2), with fHT replaczng ft+7 Let Q=
)\fh(FBth +thB F)+ )\,hFV F'. Let a= (Zg,+1g,+1) Y &uiDyrsr) be the re-
sult of a regression of 0,,,, on g,H, with & the first | elements of &. Then
PY% ~, N,V), V the (I X1) matrix in the upper-left-hand corner of
(Egzg’;)_lsff‘( Eg,g) "
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For in-sample tests, similar augmentation is proposed by Pagan and Hall (1983),
Davidson and MacKinnon (1984, 1989), and Wooldridge (1990, 1991).

Theorem 5.1 states that conventional regression output can be used. From
Theorem 4.2, conventional regression programs consistently estimate Sz So, for
example, if 7=1 and v, is a textbook error—conditionally homoskedastic and
serially uncorrelated—for inference one can use the / X/ matrix in the upper-left-
hand corner of ¢%(P~'L§,,,4/,,)"!, & the usual least squares estimate of the
standard error of the regression disturbance that is defined in Theorem 4.2(a). More
generally, if 7> 1 or there is conditional heteroskedasticity, heteroskedasticity and
autocorrelation consistent covariance matrix estimators may be used.

It should be noted that one of the assumptions of the theorem, that Eg,g; is of
full rank (this is Assumption 1(e)) is not always innocuous. With tests of mean
prediction error or of efficiency in linear models, for example, the rank condition
will fail for either definition of g,. For these tests, the computationally convenient
test that we propose is the one described in Corollary 5.1.

On the other hand, the condition typically is satisfied in tests for zero serial
correlation of one step ahead prediction errors and for encompassing tests. For
univariate ARMA models, one will augment with dv,,./JdB evaluated at ,é,, for
linear simultaneous equations models with the vector of predetermined variables.

To prevent confusion, we emphasize that Theorem 5.1 does not say that one can
use the usual regression output for inference about «,, the coefficients on g,,, ;. It
is true that &, converges in probability to zero. But in general the usual regression
output will not consistently estimate the asymptotic variance-covariance matrix, as
discussed in Section 4.

6. FOUR COMMON TESTS

In this section and the next, we consider the four common tests listed in Section 2:
mean prediction error, efficiency, first-order serial correlation, and encompassing.
For conciseness and clarity, we limit our formal statements to one step ahead
prediction errors (r=1) in a model estimated by least squares. We comment in
Section 7 on generalizations to predictions from the reduced form of linear simulta-
neous equations models or from univariate ARMA models, and to multiperiod
predictions. This section lays out the setup. The next section presents results.

The model is

(6.1) ye=x;B*+u,

where y, and v, are scalars, x, and B* are (k X 1). The sample counterpart of v,,
is computed as

(6.2) ﬁt+l=yt+1_x;+lét‘

For the encompassing test, we need to describe as well the encompassed model.
This will require redefining B*. Model ‘1’ is the encompassing model, and ‘2’ the
encompassed model. Let B* =(B;¥, BF'Y, where B* is (k; X 1), k=k, +k,, with
the model i prediction dependent only on B*. Let x,, be the vector of predeter-



828 WEST AND MCCRACKEN

mined variables in model 2, y, =x}, B + v,,. The null is that v,,, is uncorrelated
with x%, , B, the forecast from model 2.
Along with Assumption 5 (i.e., P = ©, R — ©), we assume

AssumpTION (*). (a) x, includes a constant. (b) E(U,1X;,X,_ 15+ sU;_1,V;_g5---)
=0 (for the encompassing test, E(v,|X,, Xp; X,_15 Xoy_ 15«5 Us_1, Ugy_ 15 Us_ 2,
Uy_p--.)=0).(c) Forg, and g, defined in Table 1, Eg? > 0 and Eg,§, is of full rank.
(d) Let h( B*¥) =xp, (for the encompassing text, h, = (x.v,, X3,0,,)). The estimate 3,
satisfies b, — B* = B(t)H(t), where B(t) is (k X k) and H(1) is (k X 1), with B(t) and
H(t) defined as follows. (i) B(t) = (t7'%, x,x')~! (recursive), B(t)=(R™ 1L, x,x\)~!
(rolling or fixed). For the encompassing test, B(t) is block diagonal with analogously
defined B{t) on the diagonals. (i) H(t)=t"'L h(B*) (recursive) or H(t)=
RS, h(B*) (rolling or fixed). (iii) Ev?>0, and Ex,x, and Ex,x,v} are positive
definite (for the encompassing test, the same holds for model 2). (e) (i) Let w, = (x},v,)".
For some d > 1, sup, E|lw,|I* < . (ii) w, is strong mixing, with mixing coefficients of
size —3d/(d —1). (iii) w, is fourth-order stationary. For the encompassing test, the
same holds for w, = (x}, v, x5,,0,,)'.

The ‘low level’ assumption (*) may be shown to imply the ‘high level’ Assumptions
1-4, as well as the validity of the null hypotheses of zero mean prediction error, zero
serial correlation, and so forth. As well, part (c) of Assumption (*) follows from the
other parts for mean prediction error and serial correlation; as long as B* # 0 part
(c) follows as well for efficiency. For encompassing tests, part (c) follows from the
mild additional condition that the prediction from the encompassed model does not
lie in the linear span of the regressors from the encompassing model.>

7. OBTAINING REGRESSION-BASED TEST STATISTICS FOR THE
FOUR COMMON TESTS

Column (2) of Table 1 lists the scalar right-hand side variable in the simplest
version of these tests.

THEOREM 7.1. (a) For g, defined as in one of the rows of Table 1, let &=
(X824 )" N8, 0,.1) (O) For mean prediction error or efficiency, P'/%a ~, N(0,V),
V= NEg?) *Ev2g?. (ii) Let the sampling scheme be recursive, and suppose that the
underlying disturbance v, is conditionally homoskedastic, E(v? |x,) = Ev}? (for encom-
passing, assume E(v}|x,, x,,) = Ev? and E(v3,x,,x,,) = Ev3,). Then for any one of
the four tests in the table, P/’ ~, N(0,V), V=0*Eg})~', o*=Ev? (b) For
encompassing or first-order serial correlation, augment the regression as indicated in
Table 1, and regress 0,,, on &, and §,,,,. Let & be the first element of the resulting
coefficient vector. Then PV/% ~, N(0,V), V the (1,1) element in (Eg,§) 'Ev?g, g,
(Eg.gn~".

5 Note that this last condition rules out tests of nested (rather than nonnested) models. Such tests
are in Ashley et al., (1980) and Clark (1997). An insightful referee has pointed out that some of our
results do extend to nonnested models; to conserve space, we do not consider such models here.
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TABLE 1
REGRESSORS FOR FOUR COMMON TESTS, LINEAR MODEL*

(¢} 2 (©)] “)
Test 841 82141 841
(1) Mean Prediction Error 1 n.a. n.a.
(2) Efficiency X1 B, n.a. n.a.
(3) Encompassing Xore1 By Xt+1 (X541 Bars X1 1)
(4) First Order Serial b, Xei1 Dy, x4 11)

Correlation

*The model is y,, ; =x,,,; B* +v,,, where y,, ; and v, ; are scalars, x,, is a vector, and B*
is the unknown parameter vector. In the AR(1) example of Section 2, this specializes to y,, ; =y, B*
+ 0, 1. The left-hand side variable is a one step ahead prediction error, 0, ; =y,,; —x;,; B;. The
simpler regression analyzed in Sections 6 and 7 is one in which §,, ; =g,, (B, (column (2)) is the
sole regressor; the more complicated regression is one in which g (column (4)) is the vector of
regressors. See Sections 6 and 7 of the paper for more detail.

Table 2 summarizes when and how to adjust.

Comments. 1. In part (a)(i), asymptotically valid test statistics require scaling the
usual covariance matrix by A (which means no adjustment for the recursive scheme,
for which A = 1). In parts (a)(ii) and (b), no special adjustment is needed.

2. For the recursive scheme, the difference between the assumptions in (a)(i) and
(a)(ii) is that (a)(i) allows conditional heteroskedasticity of the prediction error,
(a)(ii) does not. The covariance matrix in part (i) reduces to that in part (ii) if there is
no conditional heteroskedasticity. If there is conditional heteroskedasticity, tests for
encompassing and first-order serial correlation will be missized if the inference is
based on the covariance matrix given in part (a)@).

3. While not stated formally, the results in part (a) continue to apply when a
constant is included in the regression. Valid ¢- and chi-squared tests require merely
rescaling the usual covariance matrix.

4. For mean prediction error, the formula for V' in part (a) (i) simplifies to AEv?2.
For encompassing and serial correlation, under conditional homoskedasticity the
formula for V in part (b) reduces to Ev*(Eg,g,) "

5. Zero mean prediction error seems to be the only one of these tests that is often
done for multistep horizons (e.g., Meese and Rogoff 1983). For a reduced form
which is a first-order VAR, we have established that the results in part (a) still apply,
with AX7ZL . Evp,_; replacing AEv/ as the asymptotic variance covariance
matrix.

6. A vector of sample mean prediction errors is also asymptotically normal with
the variance-covariance matrix being the usual one, multiplied by A.

7. Suppose that B* is estimated from the structural equations of a linear
simultaneous equations model, with the reduced form used for predictions and
prediction errors. Under some additional conditions, the results in Theorem 7.1 still
obtain.

8. Suppose predictions are- made from a univariate ARMA model that is esti-
mated by nonlinear least squares or an asymptotically equivalent technique. Then
condition (5.1), which underlies Theorem 7.1(a), continues to hold for mean predic-
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TABLE 2

ADJUSTMENTS FOR FOUR COMMON TESTS, LINEAR MODEL*

Sampling Scheme Correction Needed?

How to Correct
the ¢-statistic

A. Zero Mean Prediction Error

1. Recursive no
2. Rolling yes
3. Fixed yes
B. Efficiency

1. Recursive no
2. Rolling yes
3. Fixed yes

C. Encompassing
1. Recursive no: v, ; conditionally homoskedastic
yes: v, ; conditionally heteroskedastic
2. Rolling yes

3. Fixed yes

D. Zero First-Order Serial Correlation

1. Recursive no: v, ; conditionally homoskedastic
yes: v, conditionally heteroskedastic

2. Rolling yes

3. Fixed yes

n.a.
divide -statistic by Al/2
divide r-statistic by A'/2

n.a.
divide -statistic by A!/2
divide #-statistic by A!/2

n.a.
augmented regression
augmented regression
augmented regression

n.a.

augmented regression
augmented regression
augmented regression

*(i) The model is y,,; =x,,1 B* + v, 1, With v, ; serially uncorrelated. The prediction horizon
is one period (7= 1). The regression run is one with 9, ; on the left-hand side, as described in Table
1. This table describes how and when to adjust the usual least squares standard errors to account for
uncertainty about B*.

(i) The table assumes 7> 0. 7 is the limiting value of P/R, where P is the number of
predictions, R the size of the smallest regression sample. When 7 = 0, no adjustment is needed, for
any of the tests in the table.

(111) In panels C and D, ‘v,,; conditionally homoskedastic means Ev? X, X, =
Ev} Ex,,1X,.1; ‘U, conditionally heteroskedastic’ allows the possibility that EvZ, x,, X, #
Ev}  Ex 1 Xy

(iv) Panel D allows Ev,x,.; # 0, as is typically the case in time series applications. If Ev,x,, ; =0,
no correction is needed, for any of the schemes, and whether or not v,,; is conditionally
heteroskedastic.

tion error. So under suitable conditions the result in Theorem 7.1(a) will continue to
hold as well.®

8. MONTE CARLO EVIDENCE

Here we present a simple Monte Carlo experiment. Our aim is to get a feel for
whether our proposed adjustments to the usual least squares statistics are likely to
be useful in practice, and, more generally, whether our asymptotic approximation

S It is, however, possible to construct examples in which the results of Theorem 7.1 fail. Let ¢
and u, be independent standard normals, v, = €?u,, x, = (Ex,) + €, with Ex, # 0, where all variables
are scalars Let a regress1on model be y, —x, B* +v,, with estimation by OLS. Then S, —Eu, (=
Ee!Eu?), Stp=Ex 2 Ex,Ev, , Syn = Ex?v?, F = Ex,. This violates Theorem 7.1’s assumption that
there is a constant term in the equation. C0n51der mean prediction error. Theorem 4.1 indicates that
PY% =P V2%(y,, —x,.1B) is asymptot1cally normal with asymptotic variance [Ev? —
2\py Ex(Ex?) lEx,EU, + Ay, (Ex)*(Ex}v2)(Ex?)~%]. This does not reduce to AEv? = ASj; since
Ex,# 0 and Ex?v?+# Ex?Ev}.
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might yield well-sized test statistics. It turns out that while our approximation does
usually work well, the rolling sampling scheme does sometimes require unusually
large samples sizes to generate accurate test statistics.

The experiment we present involved 5000 repetitions. Each repetition required
generating 201 data points (200 excluding an initial condition). (Some additional
experiments reported briefly in Table 6 and in detail in the additional Appendix
involved 1000 repetitions of samples of size 1601.) Each of these 5000 artificial
samples of size 200 were split into 15 different regression (R) and prediction (P)
samples. The values of P and R were: R =25, P =125,50,100,150,175; R=50,
P =125,50,100,150; R =100, P =25,50,100; R=150,P =25,50; R=175,P=
25—15 combinations in all. This range for P/R (from 1/7 to 7), as well as the
values of T=P+ R — 1, seem broad enough to include most relevant empirical
work. For a given (P, R) pair, the (P X 1) vector of prediction errors used on the
left-hand side of the regression tests was {0, .}, t=R,...,R+P—1.

For each pair of R and P, the first R + P observations of each sample of size 200
were used. So R =50/P =100 and R = 100/P = 50, for example, used the same 150
observations, but began the out-of-sample exercise at different points. This means,
for example, that for the recursive scheme the 50 prediction errors used in the
R =100/P = 50 sample were identical to the last 50 in the R =50/P = 100 sample.

A recent literature has emphasized the inaccuracy of conventional asymptotic
approximations in some time series environments. Examples from our own work
include Newey and West (1994) and West and Wilcox (1996). We suspect that our
out-of-sample procedures will also work poorly in such environments. To give as
clear as possible a sense for whether our procedures might work well, we consider a
data generating process and regression that to our knowledge has in-sample behav-
ior that is reasonably well approximated by conventional asymptotic theory. This
process is a zero-mean AR(1) with i.i.d. normal disturbances and an autoregressive
parameter that is not close to the unit circle,

(8.1) Y, =B*y,_1+0,, B*=0.5, v,~N(0,1).

In each of the 5000 samples, y, was drawn from its unconditional N(0,(1 — g**)~!)
distribution, and yy,..., y,0, Were generated recursively using (8.1) and pseudo-ran-
dom draws of v,.

In each sample, and for each P and R, four hypothesis tests were conducted for
one step ahead (r=1) predictions: mean prediction error, efficiency, zero serial
correlation, and encompassing. For the last test the alternative model was y, =
B,Y,_, + v,,. This was estimated by least squares, so 8,=(Ey?,) 'Ey,_,y,. The
introduction of the second lag meant that some regression samples were one
observation smaller than the ‘R’ reported in the table.

We report tests of nominal size 0.05. Tests of nominal size 0.01 and 0.10 worked
equally well, and tests with larger sample sizes worked better; see the additional
Appendix. All regression tests included a constant term, since these typically would
be included in practice. Apart from adjustment by a factor of A in regressions in
which our theory calls for such an adjustment, the usual least squares covariance
matrix was used—that is, we did not use a heteroskedasticity consistent covariance
matrix estimator.
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TABLE 3
SIZE OF NOMINAL 0.05 TESTS, MEAN PREDICTION ERROR*

A. Accounting for Error in Estimation of B*

Sampling R P
Scheme 25 50 100 150 175
1. Recursive 25 0.054 0.052 0.053 0.056 0.056
50 0.053 0.057 0.051 0.057
100 0.046 0.049 0.054
150 0.056 0.056
175 0.052
2. Rolling 25 0.063 0.074 0.105 0.133 0.145
50 0.053 0.063 0.063 0.072
100 0.048 0.051 0.058
150 0.054 0.055
175 0.053
3. Fixed 25 0.091 0.090 0.096 0.097 0.099
50 0.069 0.074 0.075 0.077
100 0.058 0.060 0.064
150 0.062 0.050
175 0.058
B. Ignoring Error in Estimation of *
Sampling R P
Scheme 25 50 100 150 175
1. Rolling 25 0.025 0.003 0.000 0.000 0.000
50 0.043 0.021 0.002 0.000
100 0.046 0.044 0.021
150 0.054 0.052
175 0.052
2. Fixed 25 0.220 0.297 0.421 0.498 0.523
50 0.129 0.195 0.293 0.354
100 0.081 0.121 0.186
150 0.078 0.106
175 0.073

*The DGP is a univariate AR(1); see text for details. For the indicated values of P and R, §,,
(the one step ahead prediction error) was regressed on a constant for 1 =R,..., R+ P — 1. Panels
Bl and B2 report the fraction of the 5000 simulations in which the conventionally computed
t-statistic on the coefficient on the constant term was greater than 1.96 in absolute value. Panels
Al1-A3 report the same, when the conventionally computed ¢-statistic is divided by the square root
of A

Table 3A presents results for mean prediction error. Tests for the recursive
scheme work quite well, with nominal 0.05 tests having actual sizes between 0.046
and 0.057. Our approximation does not work as well for the rolling and fixed
schemes, although performance is perhaps tolerable for P/R < 1, and is quite good
for P/R<0.5.

Table 3B presents results when the least squares f-statistic is used, without
dividing as we suggest by ‘/)A\. Recall that by construction: (1) the rolling scheme must
have lower actual size and the fixed scheme higher actual size when our adjustment
for error in estimation of B* is ignored; (2) the adjustment is smaller the smaller is
P/R. Panels A3 and B2 indicate that for the fixed scheme, our adjustment improves
the size for all P/R. The difference is perhaps not large for small P/R (e.g., for
P =125, R=100, our test statistic yields a size of 0.058, the unadjusted a size of
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0.081), but it is dramatic for large P/R (for P =175, R = 25, our test statistic has a
size of 0.099 versus 0.523 for the unadjusted test statistic).

For the rolling scheme, the comparison is not as clear cut, since our test statistic
typically rejects too infrequently (actual size > 0.05), while the unadjusted typically
rejects too often (actual size < 0.05). While we do not have a precise loss function
for under- versus over-rejection, our own gut feeling is that we would rather have a
nominal 0.05 test have a probability of rejecting of say 7.4 per cent (P =50, R = 25,
. our test statistic) than of 0.3 per cent (unadjusted test statistic), all other things being
equal. In this sense, our test statistics perform better for the rolling scheme as well.
But we recognize that other researchers may have different loss functions, at least in
some applications.

Table 4 has the results for the efficiency test. For the recursive and fixed schemes,
our procedure seems to be a little more accurately sized than it was for mean

TABLE 4
SIZE OF NOMINAL 0.05 TESTS, EFFICIENCY TEST*

A. Accounting for Error in Estimation of g*

Sampling R P
Scheme 25 50 100 150 175
1. Recursive 25 0.052 0.051 0.055 0.055 0.053
50 0.038 0.043 0.043 0.046
100 0.038 0.040 0.045
150 0.041 0.047
175 0.042
2. Rolling 25 0.124 0.430 0.939 0.997 0.999
50 0.045 0.070 0.232 0.468
100 0.036 0.043 0.059
150 0.042 0.045
175 0.041
3. Fixed 25 0.058 0.055 0.056 0.055 0.053
50 0.040 0.038 0.035 0.031
100 0.039 0.041 0.042
150 0.041 0.036
175 0.042
B. Ignoring Error in Estimation of 8*
Sampling R P
Scheme 25 50 100 150 175
1. Rolling 25 0.059 0.072 0.152 0.331 0.450
50 0.037 0.030 0.016 0.013
100 0.034 0.034 0.021
150 0.042 0.041
175 0.040
2. Fixed 25 0.158 0.234 0.355 0.434 0.456
50 0.087 0.135 0.220 0.286
100 0.063 0.097 0.152
150 0.060 0.083
175 0.057

*The DGP is a univariate AR(1); see text for details. For the indicated values of P and R, 0,
(the one step ahead prediction) was regressed on a constant and y, 3, (the one step ahead
prediction) for 1 =R,..., R+ P = 1. Panels B1 and B2 report the fraction of the 5000 simulations in
which the conventionally computed ¢-statistic on the coefficient on y, 3, was greater than 1.96 in
absolute value. Panels A1-A3 report the same, when the conventionally computed ¢-statistic is
divided by the square root of A.
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TABLE 5
SIZE OF NOMINAL 0.05 TESTS, ENCOMPASSING TEST*

A. Accounting for Error in Estimation of B*

Sampling R P
Scheme 25 50 100 150 175
1. Recursive 25 0.113 0.148 0.185 0.201 0.196
50 0.077 0.100 0.125 0.135
100 0.054 0.070 0.084
150 0.045 0.055
175 0.046
2. Rolling 25 0.244 0.388 0.634 0.796 0.861
50 0.151 0.232 0.346 0.450
100 0.090 0.122 0.171
150 0.075 0.088
175 0.071
3. Fixed 25 0.044 0.050 0.049 0.048 0.050
50 0.049 0.049 0.053 0.049
100 0.049 0.048 0.048
150 0.049 0.051
175 0.054
B. Ignoring Error in Estimation of *
Sampling R P
Scheme 25 50 100 150 175
1. Rolling 25 0.130 0.250 0.508 0.713 0.790
50 0.084 0.122 0.211 0.312
100 0.059 0.078 0.105
150 0.044 0.057
175 0.047
2. Fixed 25 0.191 0.270 0.399 0.486 0.508
50 0.103 0.160 0.240 0.300
100 0.063 0.093 0.133
150 0.055 0.068
175 0.052

*The DGP is a univariate AR(1); see text for details. Let B}, denote the least squares estimate
of a regression of y, on y,_, using the same sample as that used to obtain B,. For the indicated
values of P and R, §,,, (the one step ahead prediction error) was regressed on a constant and
Yi—1By, for t=R,..., R+ P—1. Panels Al, Bl, and B2 report the fraction of the 5000 simulations
in which the conventionally computed z-statistic on the coefficient on y,_, ,, was greater than 1.96
in absolute value. Panels A2 and A3 report the same, when y, was included as a third regressor.

prediction error. But for these two schemes the remarks made in connection with
Table 3 generally apply here as well.

The rolling scheme, however, performs quite poorly for P/R > 1. In fact, for
P/R > 1, the over-rejection is so extreme that failure to adjust generally improves
the test statistic. For example, for P =50, R =25, panel A2 indicates that our
procedure had an actual size of 43 per cent, while panel B1 indicates that use of the
usual least squares test statistic yielded a size of 7.2 per cent.

Tables 5 and 6 indicate that for the encompassing test and the test for zero
first-order serial correlation, the Table 4 results apply qualitatively: For the recursive
and the fixed schemes, our test statistics work adequately, and dominate the
unadjusted test statistic. But for the rolling scheme our test statistic works poorly.

In Tables 4-6, the rolling scheme worked quite poorly for P/R > 1. To see how
large a sample is required for tolerable accuracy of the asymptotic approximation,
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TABLE 6
SIZE OF NOMINAL 0.05 TESTS, TEST FOR ZERO FIRST-ORDER SERIAL CORRELATION*

A. Accounting for Error in Estimation of B*

Sampling R P
Scheme 25 50 100 150 175
1. Recursive 25 0.059 0.060 0.061 0.061 0.061
50 0.043 0.052 0.057 0.053
100 0.040 0.048 0.051
150 0.045 0.054
175 0.045
2. Rolling 25 0.119 0.209 0.405 0.584 0.663
50 0.069 0.094 0.143 0.183
100 0.058 0.066 0.071
150 0.054 0.058
175 0.057
3. Fixed 25 0.044 0.050 0.049 0.048 0.050
50 0.049 0.049 0.053 0.049
100 0.049 0.048 0.048
150 0.049 0.051
175 0.053
B. Ignoring Error in Estimation of B*
1. Rolling 25 0.034 0.022 0.027 0.052 0.067
50 0.040 0.029 0.014 0.013
100 0.039 0.044 0.026
150 0.045 0.048
175 0.045
2. Fixed 25 0.214 0.319 0.447 0.512 0.546
50 0.111 0.177 0.269 0.335
100 0.066 0.105 0.156
150 0.062 0.086
175 0.058

*The DGP is a univariate AR(1); se¢ text for details. In panel B, 7,,, was regressed on a
constant and o, for t =R, ..., R+ P — 1, for the indicated values of P and R. Panels Al, B1, and B2
report the fraction of the 5000 simulations in which the conventionally computed ¢-statistic on the
coefficient on 9, was greater than 1.96 in absolute value. Panels A2 and A3 report the same, when y,
was included as a third regressor.

we generated 1000 samples of size 1601; we report here certain results with samples
of size up to 1201 (full details are in the additional Appendix). We controlled the
seed to the random number generator so that the first 201 observations in each
sample were the same as in Tables 3—-6. We then conducted the efficiency test for
some larger sample sizes, holding P/R fixed at 2 and at 4. The results are in Table
7. As may be seen, by the time the sample size hits 1200, the result for P/R =2 is

TABLE 7
SIZE OF NOMINAL 0.05 TESTS, EFFICIENCY TEST, LARGER SAMPLE SIZES*
A.(P/R)=2
P=50,R=25 P=100,R=50 P=200,R=100 P=400,R=200 P =800, R=400
0.430 0.232 0.108 0.091 0.069
B.(P/R)=4

P=100,R=25 P=400,R=100 P =800, R =200
0.939 0.409 0.229

*See notes to Table 4. The tests account for error in estimation of B*. The figures for
P + R <200 are repeated from Table 4.
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reasonably accurate (actual size of 0.069), at least by the standards of Tables 3—6
and much other work on hypothesis testing in time series models. For P/R =4,
however, substantial missizing still remains.

We conclude that our asymptotic approximation usually works reasonably well,
but that for the rolling sampling scheme relatively large sample size sometimes are
required.

APPENDIX

Notation: ‘sup,” means ‘supp_,.; ‘var, and ‘cov’ denote variance and covari-
ance; all limits are taken as the sample size T' goes to infinity; the summation ‘Y’
means ‘L!_p’; For notational simplicity, we consider throughout the case in which
k=1and [=1,so that 8%, g, and f,, , are scalars, and we let ‘f,, Bﬁ(B,) mean
“9%f,, (B)/ &B2’ To save space, proofs of Lemmas Al to A4 and parts of other
proofs are put in an additional Appendix available on request from the authors.

LEMMA Al. Suppose m<®. For 0<a<.5 (a) sup,|P°H(t)~,0; (b)
sup, |Pa( Bt - B*)l ~p 0.

Lemma A2. (a) P7'EIf,, 12 =0,1), (b) P71 LIf,,, z1*=0,(1), (c) For B,
satisfying | B, — B*| <| B, — B*| fort=R,...,T, P’12|ﬁ+7’ﬁ3([§t)|2=0p(1).

LEMMA A3. Let F (])_P Zt R+j [C-PT AP ¢ RPN L ;)]
P~ Zt R+]ft+1(Bt)ft+T ](Bt ]) Then 1—‘ff(])—) Fff(J)

LEMMA A4.  Under the assumptions of Theorem 4.2, and with I‘ff( ) defined as in
Lemma A3, $py=XE71 0 KGi /M) >, Sy

PROOF OF LEMMA 4.1. (a) For the recursive scheme, this follows from Lemma 4.1
of West (1996). The relatively simple argument for the fixed scheme is in the
additional Appendix. For the rolling scheme, expand f,, ,( 8,) around f,, .( B*) for
t=R,...,R+P—1, and sum the results, yielding

(A1) PTV2Yf . (B)
=P V2 Y fi, P72 th+f,ﬁB(t)H(t) +PTV2 Y W,
for w,, =5, se( BX B — B*)2. We have |P™V2Lw,, < 5(P*sup,|B,—

B*D*(P'LIf,, .. AL B —, 0 by Lemmas A1 and A2. The second term in (A1) can
be written

P V2FBY H(t) + P V2 {F[B(t) = BIH(¢)} + P> ¥ [(fisr, s — F)BH(1)]
+P 2 Y {(frsr, g = F)[B(t) =BIH(1)}

and hence we need show that the last three terms in the above expression are o,(1).
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We will show the result for P~'/*L[(f,,, ,— F)BH(1)}; the others follow from
arguments similar to those for the recursive scheme (West 1996).

For notational simplicity, let x,=(f,,, ;—F), redefine Bh, as h,, and let
y;=Exh,_;. For P<R (the P>R case is similar) we have |EP~'/*Y x,H(t)| =
(PY?/Rlyg+ - +yg_1| < (P/R)'?R™V2E7_; |yl =0 since 7 <o and T7_; vl
<, Then since it can be shown that Assumption 4 bounds the fourth moments of
(x,,h,)" in such a way that limvar[P~'/?L x,H(¢)] =0, the result follows from
Chebyshev’s inequality. (b) Follows from Theorem 3.1 of Wooldridge and White
(1989). (¢) For the recursive scheme the results are in West (1996). For the fixed
scheme, EP~'Y H(R)L H(R) = (P/R)E(R™V? LR h X R V2R [ h)]1— 7S,
To show that Apy, =0, let vy =Ef, A, ; Then |ER'YLf,, (ZX W)=
IR™! [(VR—I + o +'Yo) + o +(7R+P—2 + .- +’yP_1)]| <R7! ZT: ﬁw'ﬂ ijl — 0 since
Assumption 4 implies X7_ __, |/l !yjl < o (Andrews 1991).

For the rolling scheme, we will sketch the result that E[P~'Y H(:)L H(t)'] -
NSy = [m = (w2/3)1S,, for m < 1. The proofs for 7 > 1, and for
E[P7'E g, 104, L H(t)'1— Ay, S, are conceptually similar.

With P <R, ¥ H(t) may be written as the sum of three terms, ¥ H(t) = A4, + A4,
+A;, A, =R Yh; +2hy+ - +(P=Dhp_,], Ay=PR [hp+ - +hy], As=
RM(P—Dhg, + - +2hg,p_o+hg,p_ ). It is easy to see that limvar(P~1/24,)
=lmP(R—P+ DR L. g_ps1 ERH,_;+0Q1) = (7= 72)S,,. We will sketch
the argument that shows limvar(P~/24,) = (7?/3)S,,. That limvar(P~1/%4,) =
(7?%/3)S,,, follows from a nearly identical argument. Since, finally, it can be shown
that lim cov(P~'/%4,, P~'/?4;) = 0 for i # j, the result will follow.

For simplicity, assume g =1. Redefine vy, as y;=Eh,h and for |jl<P—2
define d;= X7 "VI[i(i +1;D]. Then

t—j

P-2
var(4;) =R™* Y dyy;=R%dyY.v;—R >} (dy—d,)y;.
j=—P+2

We have P 'R %d, ~[P3/(BPR%»)] — mw?/3, and the result will follow if
P~'R™?¥(d, — d;)y;— 0. This result may be established using d, < [ x*dx, d; =
Jia (e =pxdx=|dy—d| <|[§ x* dx — [57" (x — j)xdx|, solving the integrals and
manipulating the result to obtain P~'R™?[X(d, — d))y;l < (1/3P)EIjlly;| + o(1) - 0.

PrROOF OF LEMMA 4.2. Let X(7)=X[g,,,,,+ FBH()]. From Lemma 4.1,
PTV2E 8.0, i, =P /2X(T) + 0,(1), with limvar[ P~'/>X(T)] = Q. Asymptotic
normality then follows from Theorem 3.1 of Wooldridge and White (1989). Details
are in the additional Appendix.

PROOF OF LEMMA 4.3. Follows from a mean value expansion of g,,,(8,) around
&+1( B*). Details are in the additional Appendix.

PROOF OF THEOREM 4.1. Follows immediately from Lemmas 4.1, 4.2 and 4.3.

PROOF OF THEOREM 4.2. (a) That P™'L g7, , -, Eg/,, follows from Lemma 4.3.
Hence we need only show that (P~ 1D""2(D,,,,—&,,&)*—, Ev/, .. We have
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(P-D7! Z(ﬁttJr-r gz+1a) =(P-D" 12Utt+‘r+[(P_1)412g’\t+1]&2_2&[(P_
1)~ 1Egtﬂu,,h] That (P—1"'20?,,,—, Ev},, follows from Lemma A3. By
Theorem 4.1, @=o0,(1); by Lemmas 4.2 and 4.3, (P—1)"'L g, =0,(1), (P—
D'Eg 0, .=0 (1) The desired result now follows. (b) That P~'L g7, —
Eg? 41 follows from Lemma 43 Hence we need only show that T f(j)—

P v R+1gt+1gt+1 “iMes Mg rej = p B8y 18141- Vs Vs om ]—Fff(J) for all j. For
Fff( J) defined in Lemma A3, we have

T
Fff(j)=rff(j)+P_l ZR: gAt+1g\t+1—j(?’t+T?’t+f—j_ﬁt,t+'r0t—j,t+7'—j)‘
t=R+j

Lemma A3 shows that the first term converges in probability to I';,(j); the addi-
tional Appendix shows that the second term converges in probability to zero. (c)
That P~ Y82, -, Eg, ;1 follows from Lemma 4.3. Hence we need only show that
SJ =Xl K(j/M)l"f (j) =, Sy For S defined in Lemma A4, we have Sff
Sppt+ Zf:_ p1 KCG /M (j) — Fff( DI Lemma A4 shows that the first term con-
verges in probability to S,.; the additional Appendix shows that the second term
converges in probability to zero.

PROOF OF COROLLARY 5.1. Follows immediately from Theorem 4.1.

PROOF OF THEOREM 5.1. By definition, the (I + r) X k matrix F =Eg,, v, .. gs if

82+1= Ut+1 B> then F (Eg2t+lgt+1?Eth+lg2t+l) while if 82t+1 _Zt+17 F=
(Eg2,+lg,+1, Eg,,.185:+1) G5. From Lemmas 4.1 and 4.3 and Theorem 4.1,

PV (P T d) (P2 T
= (&) (P2 X iiDrier) +0,(1)
= (Eg181) (P72 X80 01ss)
+(E118141) FB(P"V2YL H(1)) +0,(1),

Upon partitioning Eg,, £}, conformably with g, and g,,.; and using the
formula for the inverse of a partitioned matrix, we find that the first / rows of the
(I+r) X k matrix (Eg,,1£/+1)" 'F are identically zero. Since & consists of the first /
components of &, P'/% equals the first / rows of (Eg,,,&., ) (P~ Y?L &, w,,.)
+0,(1), and the proof is complete.

PROOF OF THEOREM 7.1. (a) (i) From Corollary 5.1, condition (5.1) is sufficient to
guarantee the result. From Assumption (*), we have B =(Ex,x,))”' and S,,=
Ev?x,x,. For mean prediction error, recall that x, contains a constant. Without loss
of generality define x, = (1, x,) where ¥, is a vector of nonconstant regressors. Then
F = —(1, Ex}), which implies FB= —(1 0 --- 0); the result follows since the (1,1)
elements of both Sy, and S,,, are S;= Ev?. For efficiency, note that F = —g*'B~"
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and hence FB= —p*'. The result then follows since S;=p*'S,, f* and S;, =
B * ,Shh‘

(a) (i) For mean prediction error or efficiency, the conditional homoskedasticity
assumption implies Ev’g? = Ev?Eg? and the result follows from part (i). For the
other two tests, recall that for the recursive scheme A,,=2A;, and thus Q=
Sse+ Ap(FBSYy, + Sp,B'F') +2A, FV, F'. Hence it suffices to show —FBS}, =
FV,F'. For serial correlation, this follows since F = —Eu,_,x;, B=(Ex,x)"",
S,»=Ev?B~!, and S;, = —Ev’F. For encompassing this follows since F =
(= BS'Ex,,x,,0"), B = diag[(Ex,x,) ™", (Ex,,x5,)" '], the (k; X k,) block in the upper
left hand corner of S, is Ev?Ex,x), and S, = BF'(Ev}Ex,,x;, Evv, Ex,x},). (b)
Follows from Theorem 5.1

REFERENCES

AKGIRAY, V., “Conditional Heteroskedasticity in Time Series of Stock Returns: Evidence and
Forecasts,” Journal of Business 62 (1989), 55-80.

ANDREWS, D.W.K., “Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estima-
tion,” Econometrica 59 (1991), 1465-1471.

ASHLEY, R., GRANGER, C.W.J. AND R. SCHMALANSEE, “Advertising and Aggregate Consumption: An
Analysis of Causality,” Econometrica 48 (1980), 1149-1167.

BERGER, A. AND S. KRANE, “The Informational Efficiency of Econometric Model Forecasts,” Review
of Economics and Statistics 67 (1985), 128-134.

CHONG, Y.Y. aND D.F. HENDRY, “Econometric Evaluation of Linear Macro-Economic Models,”
Review of Economic Studies 53 (1986), 671-690.

CLARK, T., “Finite-Sample Properties of Tests for Forecast Equivalence,” manuscript, Federal
Reserve Bank of Kansas City, 1997.

DavipsoN, R. aND J.G. MAcKINNON, “Model Specification Tests Based on Artificial Linear
Regressions,” International Economic Review 25 (1984), 485-502.

AND , “Testing for Consistency Using Artificial Regressions,” Econometric Theory 5
(1989), 363-384.

DiesoLp, F.X. AND R.S. MARIANO, “Comparing Predictive Accuracy,” Journal of Business and
Economic Statistics 13 (1995), 253-263.

AND J. NAsoN, “Nonparametric Exchange Rate Prediction?,” Journal of International Eco-
nomics 28 (1990), 315-322.

FaIR, R.C. AND R. SHILLER, “Comparing Information in Forecasts from Econometric Models,”
American Economic Review 80 (1990), 375-389.

HoreMAN, D. AND A. PAGAN, “Practitioners Corner: Post-Sample Prediction Tests for Generalized
Method of Moments Estimators,” Oxford Bulletin of Economics and Statistics 51 (1989),
333-343,

HowrEy, P.E., L.R. KLEIN AND M.D. McCARTHY, “Notes on Testing the Predictive Performance of
Econometric Models,” International Economic Review 15 (1974), 366—383.

MAKRIDAKIS, S. ET AL., “The Accuracy of Time Series Methods: The Results from a Forecasting
Competition,” Journal of Forecasting 1 (1982), 111-153.

MCcCRACKEN, M.W., “Out of Sample Inference for Moments of Non-Differentiable Functions,”
manuscript, University of Wisconsin, 1998.

MEESE, R.A. AND K. RoGOFF, “Empirical Exchange Rate Models of the Seventies: Do they Fit Out
of Sample?” Journal of International Economics 14 (1983), 3-24.

AND , “Was It Real? The Exchange Rate-Interest Differential Relation Over the
Modern Floating-Rate Period,” Journal of Finance 43 (1988), 933-948.

MINCER, J. AND V. ZARNOWITZ, “The Evaluation of Economic Forecasts,” in J. Mincer, ed.,
Economic Forecasts and Expectations (New York: National Bureau of Economic Research, 1969,
pp. 3-46).




840 WEST AND MCCRACKEN

NELSON, C.R., “The Predictive Performance of the FRB-MIT-PENN Model of the U.S. Economy,”
American Economic Review 62 (1972), 902-917.

NEWEY, W.K. AND K.D. WEST, “Automatic Lag Selection in Covariance Matrix Estimation,” Review
of Economic Studies 61 (1994), 631-654.

PagaN, A.R. AND A.D. HaLL, “Diagnostic Tests as Residual Analysis,” Econometric Reviews 2
(1983), 159-218.

AND G.W. ScHWERT, “Alternative Models for Conditional Stock Volatility,” Journal of
Econometrics 45 (1990), 267-290.

WEsT, K.D., “Asymptotic Inference About Predictive Ability,” Econometrica 64 (1996), 1067-1084.

AND D. Cno, “The Predictive Ability of Several Models of Exchange Rate Volatility,”

Journal of Econometrics 69 (1995), 367-391.
AND D.W. WiLcox, “A Comparison of Alternative Instrumental Variables Estimators of a
Dynamic Linear Model,” Journal of Business and Economic Statistics 14 (1996), 281-293.
WHITE, H., “A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for
Heteroskedasticity,” Econometrica 48 (1980), 817-838.

WOOLDRIDGE, J.M., “A Unified Approach to Robust, Regression-Based Specification Tests,” Econo-
metric Theory 6 (1990), 17-43.

———, “On the Application of Robust, Regression-Based Diagnostics to Models of Conditional
Means and Conditional Variances,” Journal of Econometrics 47 (1991), 5-46.

AND H. WHITE, “Central Limit Theorems for Dependent, Heterogeneous Processes with

Trending Moments,” manuscript, Michigan State University, 1989.






