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Inventory Models: The Estimation of
Euler Equations

Kenneth D. West

1 Introduction

After a period of dormancy in the 1960s and 1970s, empirical work on inventories
has enjoyed a resurgence in the 1980s and 1990s. In this chapter, I discuss some
of the econometric issues raised by this recent work, and survey results from some
recent empirical papers. For reasons of comparative advantage, and to avoid
overlap with other chapters in this volume, I focus on a rational expectations
version of the linear quadratic inventory model of Holt et al. (1960).

My aim is to illustrate recent developments in time series econometrics by
showing how such developments have or might be applied to this often used
inventory model. Some of these developments, such as the optimal linear
combination of a given vector of instruments in the presence of serial
correlation, are relatively well known, and appear in standard regression
packages such as RATS. Others are not as well known, and, as far as I know,
do not appear in standard software packages. The intended reader is one who
nonetheless is willing to consider use of these techniques, but finds it difficult
or tedious to plow through theoretical papers. From a theoretical econometric
point of view, the discussion is informal; the interested reader may consult the
cited references for discussion of underlying technical considerations.

Because of space constraints, the discussion is by no means self-contained,
in that some issues that are likely to be encountered in empirical work are not
discussed. Prominent among these is the question of how to model trends (unit
roots and all that). I simply take as given that the researcher has somehow
decided whether or not a unit root is appropriate, without asking how the
decision was made or whether the testing procedure (if any) used in making
the decision should -be taken into account when conducting subsequent
inference. Other relevant econometric issues that are not discussed here
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include those raised by continuous time models (¢.g. Mosser, 1988; Christiano
and Eichenbaum, 1989) and by aggregation (e.g. Blinder, 1981; Lovell, 1993;
Schuh, 1993). As well, economic models other than the linear quadratic model
are given short shrift, with only passing discussion of the flexible accelerator
model (Lovell, 1961), and not a single mention of, for example, models that
put inventories in the production function (e.g. Christiano, 1988; Ramey,
1989). See Blinder and Maccini (1991a; 1991b) for fine reviews that discuss
these models as well as a broader array of economic (as opposed to econome-
tric) aspects of recent inventory research.

Section 2 presents the linear quadratic model. Sections 3 to 6 discuss
instrumental variables estimation of a first order condition of this model, and
section 7 provides the solution and estimation of a decision rule implied by
the model. Section 8 compares the approach analyzed in sections 3 to 6 with
that of section 7. Section 9 surveys some recent estimates of the model.
Readers uninterested in the econometric discussion may proceed directly to
section 9 after familiarizing themselves with the notation defined in section 2.

2 The Linear Quadratic Model

A number of papers have followed Holt et al. (1960) and used a model in
which a representative firm maximizes the expected present discounted value
of future cash flows, with a cost function that includes linear and quadratic
costs of production and of holding inventories. In some papers, sales and
revenue are exogenous, in which case an equivalent objective is to minimize
the expected present discounted value of future costs.

To state the problem formally, let p, be real price (say, ratio of output price
to the wage), S, real sales, Q, real production, H, real end of period
inventories, C, real period costs, b a discount factor, 0 < b < 1, and E,
mathematical expectations conditional on information known at time ¢,
assumed equivalent to linear projections. The objective function, then, is

maxH,ElimT_,xE,ij(p”jsnj—Cuj) 4.1

j=0
subjectto Q, =S8, +H,-H,_|,
Ci=0.5a0407 + 0.5a, 07 +0.5a2(H,_ 1 — a;S)* + uy,Q, + uy H,.

For the moment, @, and @, are assumed positive, ao and a; nonnegative. The
terms in a¢ and a, capture increasing costs of changing production and of
production. The terms in a, and a; capture inventory holding and backlog
costs. Section 9 discusses the role the a;s play in determining inventory behavior.

The scalars u), and u,, are unobservable cost shocks that have zero mean and
may be serially correlated, possibly with unit autoregressive roots. In this
stripped down model, they capture any stochastic variation in costs. Some
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190 Kenneth D. West

richer models surveyed briefly below include observable cost variables such as
wages, raw materials prices, and interest rates.' Constant, trend, and seasonal
terms, which also typically are included in estimation, or are removed prior to
estimation, are omitted for simplicity.

An optimizing firm will not be able to cut costs by increasing production by
one unit this period, storing the unit in inventory, and producing one less unit
next period, holding revenue p,S, unchanged throughout. Formally, differen-
tiating costs with respect to H, gives’

E{ao(AQ, - 2bAQ, .\ + b’40Q,.2) + a1(Q, — bQr . 1)
+bar(Hy— a3Si+\) + u} =0, (4.2)
ur=uy—bEw o+ uy.

Note that ay, a;, and a, are identified only up to scale: doubling all of these
leaves the first order condition unchanged, apart from rescaling the unobserv-
able disturbance u,. Thus from this first order condition one can only aim to
estimate ratios of these parameters.’

There are four independent unknowns to be estimated: b, ay and the ratios
of (i) two of ay, a,, and a, to (i) some linear combination of aq, ¢, and a..
Estimation of the discount rate b is, however, problematical. Analytical
arguments, simulations, and empirical experience in estimating this and related
models (Blanchard, 1983; West, 1986b; Gregory et al., 1992) indicate that the
data are unlikely to yield sharp inferences about the value of b. Almost all the
relevant literature has therefore imposed rather than estimated a value for b,
which yields the additional benefit that the remaining three parameters (a; and
two of ag, a, and a,, the latter two identified only up to scale) may be estimated
linearly. A reasonable value of b comes from noting that with, say, monthly
data, values for b of about 0.995 to 0.998 imply annual rates of discount of
about 2% to 6%. In practice, estimates of the remaining parameters tend to be
insensitive to exact choice of b (Blanchard, 1983; West, 1986a). Through the
remainder of the discussion, therefore, I assume that a value of b is imposed,
and there are three parameters to be estimated.

Two approaches have been used in estimating and testing this model. A
limited information approach works off the first order condition (4.2), which,
it should be noted, was derived without making a parametric assumption
about the demand curve (e.g. does it depend on the price of competing
products?) or market structure (competitive, monopolist, etc.). Econometric
issues raised in this approach are discussed in sections 3 to 6. Section 3
discusses choice of instruments, section 4 covariance matrix estimation,
section 5 methods for testing, and section 6 implications of unit root nonsta-
tionarity.* In sections 3-5, I assume that S, is 1(0), possibly around a trend
that is not explicitly discussed, and that u, is I(0) as well.

Section 7 discusses a second, full information approach, which makes a
parametric assumption about demand and then solves for the firm’s equilib-
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ium decision rule. Section 8 compares the limited and full information
tpproaches.

3 Limited Information Estimation: Instrumental
Variables

3.1 Introduction

This approach transforms (4.2) into an estimable equation and then uses
nstrumental variables to obtain parameter estimates and test statistics. As is
itandard in instrumental variables estimation, a choice of left hand side
sariable (a normalization) is required. Asymptotically, all normalizations are
:quivalent, provided the linear combination of aq, @, and a, that multiplies
he left hand side variable is nonzero.

For concreteness, put —(3*IL/QH) H, = [ao(] + 4b + b*) + a\(1 + b) + ba))H,
: cH, on the left hand side;’ the Legendre-Clebsch condition (a dynamic
inalog of the usual second order necessary condition; Stengel, 1986, p. 213)
itates that —9°I1/d H; > 0 and thus that this particular linear combination is
wnzero. Then (4.2) may be rewritten

H( = (ao/(')X()“,] + ((1|/C)X11*] + (ba:(lj/(')S(+| + U042 (43)

=X/ B+,
Xor+2==(AS1—=2H, -+ H/_2) + 2b(AS o+ Hion + Hi_))
— b ASiva+ Hivr = 2H, ).
Xy1==-S+H, _+b(S;.1+ Hi ).

Ursa=udc+ e,

€= —(a Y Xorsa~ EXos ) = (@) (X1 — E/ Xy 40)
- (ba:a;/c)(SH] - E(S/H)*
Xl = (X0I+Zs Xll+|- Sl¢ I),«

B= (B, B B3) = (ad/c, arlc, baraslc),
c=ao(l +4b+ b)) +ai(l + b) + ba-.

From an estimate of 8, one can recover estimates of ay/c and a,/c¢ directly, and
of as/c¢ and a; using

arie={1-Bi(l +4b +bY) = B(1 + BY/b, a5 = Bi/(bailc).

The idea 1s to use a vector of instruments that is uncorrelated with v, ,, but
correlated with X,, taking account of serial correlation of vy, ,.
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192 Kenneth D. West

3.2 Optimal Linear Combination of Given Vector of
Instruments

Suppose we are given a vector of instruments Z; of finite dimension g; since
three parameters are to be estimated, an order condition is that ¢ = 3. Let
Z, satisfy EZ,v,;4,=0, EX,Z: of rank 3. In West (1986a), for example, Z,
consisted of lags of H, and S; Kashyap and Wilcox (1993) included lags of
stock prices as well. Which (3 x ¢) matrix selects the optimal linear combina-
tion of instruments? The answer depends on the serial correlation properties
of Z,v,.,, the vector of cross-products of the instruments, and the unobserved
disturbance. In particular, since, as illustrated below, Z,v,.» is serially corre-
lated, the conventional two stage least squares (2SLS) estimator is not the
most etﬁcient."
Let £2 be a consistent estimate of the (¢ X ¢) matrix

_()EZ EZ,Z;—jUI+2UI+2-j

Jj=-=

=h+ 3, (G+1)), L =EZZ{_jvi0ia:-; (4.9)
j=1

Qis sometimes called the “long run” covariance matrix of Z,v, . procedures
to obtain £ are discussed in section 4.

Let Z be a T x ¢ matrix whose rth row is Z;, and similarly let X = [X7] be
Tx3, H=[H] be Tx1. Hansen (1982) shows that given the vector of
instruments Z,, the 3 X ¢ matrix that selects the optimal linear combination is
EX,Z;s2"', with finite sample counterpart T™'X’ZQ'. Once offsetting factors
of T7' and T are dropped to keep the algebra uncluttered, the resulting
estimator is

B=(X'ZQ'Z’X)'X'Z'Z’H, B-B=N@O,V), V=TXZX'Z'X)"

asymptotic ¥ = plim TV = plim T (X'Z2'Z" x)™". (4.3)
Thus this estimator differs from the usual 2SLS one in that €' replaces
(Z’Z)"', although if g = 3, so that the equation is exactly identified and X’Z is
square and invertible, (4.5) and the 2SLS estimators are identical. Whether or
not g = 3, 2SLS is consistent. But if ¢ > 3, 2SLS is inefficient (larger asymp-
totic variance-covariance matrix), and, because of the serial correlation in
Zv,+, the usual 2SLS variance-covariance matrix is inappropriate for in-
ference whether or not g > 3.

The rather forbidding formula in (4.4) simplifies under assumptions often
made in practice. If 4, = 0, so that there are no unobservable cost disturbances
(e.g. Kashyap and Wilcox, 1993), v,,, =e,.2, and the regression disturbance
is a sum of expectational errors. Now, as is well known, under rational
expectations the expectational errors Xy, — E;Xy,+, and S,;,, - E,S,., are
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serially uncorrelated. But Xo ., — E; Xy . > depends on period ¢ + 1 and period
t + 2 information, and Xy .3 — E/+Xor+3 on period ¢+ 2 and period ¢+ 3
information. This implies an MA(1) structure to Xo;.2> — £;Xo+» and thus to
v,.> as well. Since Eww,,,=0, the vector Zv,,, 1s also MA(1): for j > I,
E(Zwi12Zi jvior- )=E[Z,Zi 122 jE@AZiZi 0icr D)= E[Z.Z1jv14a 0]
= 0. So in this case, 2= Z,L_ IEZ,Z;_jv,Mng_j: Lo+ (N + ).

If the unobservable cost shock u, is present, Q;, A, and, in general, S, will
depend on that shock. But considerable simplification of (4.4) may nonetheless
occur. If uy, and ws and thus u, are white noise (West and Wilcox, 1993b),
Xor+2— EiXor+ 2 will depend in part on u, ., and u, . », implying that v, ., which
depends on u, as well, will be MA(2). The vector Z,u,, ,» will be MA(2) as well,
so 2= Z}=_3EZ,Z:_1'U,+1U,43_J= I+ (F. + I“.') + (1“3+ 1“3')

More generally, if v, has an autoregressive component, so too will v, . If
u, follows a particular parametric process, such as an AR(1), one can estimate
the AR(1) parameter simultaneously with the cost parameters (Kollintzas,
1992).

3.3 Comparison with Two Stage Least Squares

What are the efficiency gains from using (4.5) rather than two stage least
squares (2SLS)? Here, the 2SLS estimator 8 1s

B=(X'Z2Z'2)"'Z’X)'X'2Z2'2)'Z'H, (4.6)
asymptotic V = plim T’ (X' Z(Z'Z2) ' 2’ X1 'X'Z(Z' Z) 'z’ Z)""
Z’X(x'zz'z)y'zx1".

Plainly, the answer to this question depends on the data generating processes

(DGPs) for the Z and X variables, as well as those of the unobservable shocks.

To illustrate what the gains might be, I have worked them out in a simple

case. Sales are forecast from an exogenous AR(2), the cost shock u, i1s serially

uncorrelated, and two lags each of sales and inventories are used as instru-
ments:

Si=¢:S -+ ¢S24+ v,

Euw,_;= Euwwy_-j=0 forj=#0, (4.7)
Zi=(H .\, Hio2, S0, SIAZ)’-

Given ¢, ¢, ao, a1, a2, as, b, and the variance-covariance matrix of (u,, v) one
may then solve for the data generating process for inventories and sales, using
methods outlined in section 7 on full information estimation.

I tried three data generating processes, each corresponding to a different set
of cost parameters, but all using a common set of parameters for the sales
processes and shocks. These sets of cost parameters are summarized in table
4.1. They are intended to correspond to parameters found in some studies of
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Table 4.1 Cost parameters for data generating processes

Mnemonic ao a a as

' E 0.01 0.25 0.50 0.70
R 0.20 -1.00 2.00 0.35
W 0.10 0.40 0.01 2.00

(a) aq, a1, a2 and as are defined in (4.1).

(b) For all three data generating processes, the discount rate
was set at b = 0.995. The sales process was assumed to follow an
exogenous AR(2), S;=0.7S,_, + 0.255,_, + vy, with var(uy) =
0.128033 corr(u,, vy) =-0.5, var(u,)=0.5 with u, the cost
shock as defined in (4.1).

two digit manufacturing industries in the United States: Eichenbaum (1989,
p. 862; top panel: mnemonic E), Ramey (1991, p. 323: R), and West (1986a,
p. 393, top panel: W).” (The problem (4.1) is well posed for the R DGP despite
the negative sign on a;: see Killintzas, 1989; Ramey, 1991.)

I set the variance-covariance matrix of (u;, vy) so that for the W DGP the
unconditional variance-covariance matrix of (H,, S,;) was approximately pro-
portional to that of US monthly nondurables manufacturing, 1967-90; H,
are finished goods inventories, with var(S;) =1 (a harmless normalization).
The exact parameters are given in the notes to table 4.1. It should be noted
that the implied reduced forms for DGPs E and R (not given in the table) are
implausible in that H, displays little serial correlation; both Eichenbaum
(1989) and Ramey (1991) implicitly accounted for the serial correlation that is
empirically present in H, by allowing for serially correlated cost shocks, which
I omit for simplicity.

Table 4.2 compares some standard errors implied by the asymptotic vari-
ance-covariance matrices V (defined in (4.5)) and V (defined in (4.6)). Define

Cy Ez E1C1+j

Jj=0

as the expected present discounted value of costs. Then the quantity in column
2 of table 4.2, (1 + b)ay + a, = 3’¢,/9Q;, is the slope of marginal production
cost, which Ramey (1991) has argued is of central economic interest. To my
surprise, the optimal estimator yields little efficiency gains, for any of the
DGPs: column 4, for example, indicates that the asymptotic variance of
T'"*(a; - as) is at best (0.998)° times smaller for the optimal than for the 2SLS
estimator. Similar ratios apply for (1 + b)ao + a; and a; (columns 2 and 3).
No doubt there are other data generating processes for which the gains from
the optimal estimator are quite large. But even for the data generating
processes assumed here, the small efficiency gains do not argue that it is a
matter of indifference which estimator one uses, if one is interested in




Inventory Models: The Estimation of Euler Equations 195

Table 4.2 Comparison of asymptotic variance-covariance matrices resulting
from optimal and 2SLS linear combinations of instruments

1 2 3 4

DGP Ratio of SEs on Ratio of SEs Ratio of SEs
[(1 + b)ao + ai]/c on ail/c on as

E 0.990 0.982 0.976

R 0.999 0.999 0.998

w 0.992 0.962 1.000

(a) ao, a1, and a; are defined in (4.1); ¢ is defined in (4.3).

(b) In the ratios referenced in columns 2-4, the numerator is the standard error
computed from the variance-covariance matrix of the estimator (4,5), which optimally
combines a given set of instruments; the denominator is the standard error from that
of the two stage least squares estimator (4.6). Both estimators were assumed to use a
(3 x 4) linear combination of a (4 x 1) instrument vector consisting of two lags each of
H; and S;. The ratios must lie between 0 and 1, smaller numbers indicating a greater
efficiency gain from using the optimal estimator.

(c) These asymptotic comparisons may not accurately predict the actual finite sample
performance of the two estimators.

performing inference on the estimated parameters. If one estimates by 2SLS,
the appropriate covariance matrix is given in (4.6). Suppose one instead uses
the traditional (and, in the present example, incorrect) covariance matrix

V=Evl.,plim T(X'Z(Z’'2)"' 2’ X]"". (4.8)

How accurate are hypothesis tests?
Table 4.3 considers this question (asymptotically) for tests of three simple
hypothesis tests. Interpretation of the tests is given at the foot of the table. By

Table 4.3 Asymptotic sizes of nominal 0.05 tests, when an
inconsistent estimator of the 2SLS covariance matrix is used

DGP [(1 + b)ao + ar]/c alc as

E 0.107 0.143 0.249
R 0.053 0.051 0.011
w 0.100 0.533 0.500

(a) This table presents the asymptotic size of a nominal 0.05 test of
the null that the indicated parameter equals its population value, as
given in table 4.2. For example, in the row E, column a;/c, the null
is that a,/c = 0.5. [t is assumed that the covariance matrix given in
(4.8) is used in calculating the relevant standard error.

(b) These asymptotic calculations may not accurately predict the
actual finite sample performance of such tests.
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and large there are dramatic distortions. The a; entry for DGP W, for
example, indicates that a test that should reject only 5% of the time in fact will
reject 50% of the time. The implication is that it is important to use a
consistent estimate of the covariance matrix. Since such a matrix requires
estimation of €2 (see (4.7) ), use of 2SLS in the end will be no simpler than use
of the optimal estimator (4.5).

How accurately does the asymptotic theory underlying tables 4.2 and 4.3
apply in the finite samples used in practice? The answer to this question is not
well known. Preliminary simulation results in West and Wilcox (1993a; 1993b)
indicate that while the asymptotic theory often provides a good guide to finite
sample performance, the estimator usually displays slightly more variability
than is predicted by the asymptotic theory, and sometimes displays some bias
as well; on occasion, test statistics are very poorly sized. In empirical work,
the limited applicability of asymptotic theory is perhaps suggested by the
sensitivity of estimates of the model to choice of left hand side variable (Krane
and Braun, 1991; Ramey, 1991; Kashyap and Wilcox, 1993), a sensitivity not
displayed by the asymptotic theory.

3.4 Alternative Instrumental Variables Techniques

What are the implications for empirical work of such inaccuracy in asymptotic
approximations? For inference, one might want to use simulation or bootstrap
techniques, although such techniques, which typically require specification of
a data generating process for all the variables in the system, seem more natural
in systems estimated by full rather than limited information techniques. See
West (1992) for an illustration of the use of bootstrap techniques in a full
information environment.

Alternatively, for estimation as well as inference one might want to consider
estimators that have better asymptotic or finite sample properties. Full
information estimators are discussed below. To motivate alternative limited
information estimators, begin by considering how one chooses an instrument
vector, a decision that so far has been taken as given. Obvious candidates for
instruments include lags of S; and H, (equivalently, lags of H, and Q,, given
the inventory identity Q, = S; + 4H,). This is, indeed, done in many studies,
with Z,=[H; S, H,_1, Si-1,...]" if cost shocks are assumed absent,
Z=[Hi-1\, Si-1, Hi-y, Si-, ...] if cost shocks are assumed present but ser-
ially uncorrelated. Hansen (1985) shows that given the serial correlation in
Z0,.», an increased number of lags used (i.e. an increase in the dimension of
Z,) yields a strict increase in the asymptotic efficiency of the estimator. This
applies even if, as in the example in section 7, there is a finite number of lags
of H,and S; in the reduced form for (H,, S;)’. Since this result by itself gives
little practical guidance on the number of lags to use, it is advisable to
experiment with various lag lengths to see if results are sensitive to the exact
number of lags used (e.g. Eichenbaum, 1989).
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Alternatively. if one is willing to specify and estimate a finite parameter
ARMA model for H,, S, and v,.,, one can apply the formulas in Hansen
(1985) to obtain a 3 x 1 instrument vector Z; (say) that is optimal in the space
of instrument vectors that rely on lagged H;s and S;s. Suppose for concrete-
ness that the environment is as in section 3.3: the cost shock u, is iid, so that
Urv2~MA(2) and EH,_v,;,2=ES;_jv;.2=0 for j= 1. Then Z} is a linear
combination of past H,s and S;s, with nonzero weights on all lags:
H.,S,...,H,_,, and S,_, are all used to construct Z;. See West and Wilcox
(1993a), who show how to make this estimator operational, and indicate that
for some but not all plausible DGPs there are large asymptotic efficiency gains
from using (a) Z7 rather than (b) section 3.2’s conventional GMM estimator
with Z, the set of lags of H, and S, in the reduced form for (H,, Sy)’.

Ramey (1991), however, notes that any lags of H, will be correlated with the
disturbance v,. if unobservable cost shocks have an autoregressive compo-
nent, implicitly argues that we do not have a priori evidence about the
parametric structure of such a component, and explicitly calls for using
instruments that she describes as “truly exogenous.” These include oil prices,
military spending, and dummies for the political party of the president.

It is difficult to evaluate Ramey’s suggested instruments. On the one hand,
there is some Monte Carlo evidence that instruments that are only weakly
correlated with the vector of right hand side variables may perform poorly in
finite samples, even if they are uncorrelated with the disturbance (Nelson and
Startz, 1990); on the other hand, it is well known that instruments that are
correlated with the disturbance will perform poorly even in large samples, no
matter how strongly correlated with the vector of right hand side variables.
Monte Carlo evidence on what Shea (1993) calls the tradeoff between “exo-
geneity” and “relevance” would be very useful.

4 Limited Information Estimation: Covariance
Matrix Estimation

As (4.5) indicates, one must compute Q for inference and (if the efficient
estimator is used) estimation. To_discuss how to do so, let v, be the 2SLS
residual, v,,.=H, - X,'ﬂ, where f is defined in (4.6). Consider estimating [
(defined in (4.4) ) by

T
=T"'Y Z.Z] 5,.20:.,; forj=0. (4.9)

r=j+1

For concreteness, focus initially on the case where the cost shock u, is absent,
so that Z,v,,, ~ MA(1) and Q= Iy + (I + I}). The simplest technique used to
estimate £ is the obvious one, Q=T+ (f, + I:,') . This is, indeed, consistent.
But it is not guaranteed to be positive definite, and, indeed, in practice is not
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always positive definite (e.g. Cumby and Huizanga, 1990). In such a case, the
variance-covariance matrix V (defined in (4.5)) will also fail to be positive
definite, and there will be some linear combinations of parameters whose
estimated standard errors will be negative.

While Iy + (I + I7) will be positive definite asymptotically, if the model is
right, there is an evident need for an estimator that will be positive definite by
construction. Early proposals include Cumby, Huizanga, and Obstfeld (1983)
and Eichenbaum, Hansen, and Singleton (1988). Since 2 is proportional to the
spectral density of Z,v,, ; at frequency zero (e.g. Granger and Newbold, 1977),
recent research has built on the well developed literature on estimators of
spectral densities.

One part of this literature suggests constructing £2 as

m
Q=T+ Y kj;+ 1)), (4.10)

j=1
for weights k; chosen to insure that Qis positive definite, and a suitably chosen
bound m. A simple choice of weights are what are called the “Bartlett” ones,

ki=1-[jim+ D]=>ki=m/m+ 1), ka=m—-D/m+1),... kn=1m+1).
4.11)

The formal asymptotic theory underlying use of the estimator (4.10) requires
that as the sample size T becomes arbitrarily large, then so too does m, but in
such a fashion that m/T"?> - 0 (Newey and West, 1987a). This theory is
applicable not only when the vector Z,v,., is MA(l), as in the simple case
used to motivate the present discussion, but for any ARMA process for
Z1U, ., even when the order of the ARMA process is not known a priori.

It should be emphasized that even in the simple case that Z,v,., is known to
be MA(1), the theory requires that m increase with T even though one knows
a priori that the population value of I is zero for j > 1, for sufficiently large
T one will want to be using estimates of the form Q=T+ [m/(m+ 1)
(nh+ I+ ... +[1/m+ DT+ I'w) for m > 1. The reason is that one wants
2 to well approximate Io+ (I + I‘{) in a large sample; if m is fixed at |
independent of T, then Q will instead approximate I + (1/2)(I7 + I).

But just how large should m be for a given sized sample, in the simple MA(1)
example or more generally? While it seems unlikely that a fully automatic rule
for selecting m will be satisfactory in all attempts to estimate (4.3), Andrews
(1991) and Andrews and Monahan (1992) have developed procedures that may
be used to produce an initial choice of m that (1) is asymptotically optimal in
a certain sense, and (ii)) can be used as a starting point in subsequent
experimentation.

I will illustrate this using Newey and West’s (1993) extension of those
procedures, since it is simpler to explain (in my totally unbiased opinion). Let
[.] denote “integer part of.” An asymptotically optimal choice of m satisfies
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m=[yT"", (4.12)

y=1.1447({sV/sNH'3, sV =2 Zjoy, s9=060+2 Z g,
j=1 j=1
oj=wTw, w=(1,1,...,1, 1),

where w is (g x 1).
Suppose first that cost shocks are absent, so that Zwv,., ~ MA(l),
o;=1Ij=0forj>1,s" =20, and s = 0y + 20,. Then one could set

m=[3T"), (4.13)
7= L1447({5V5M D" 59 =26, $9=6+26, & =wiw

An alternative procedure for selecting m, applicable both when cost shocks
are absent and when cost shocks follow any stationary process, i1s to choose
m by

m=[yT""?], 4.14)

n n
7= 114475059, 59 =23 j&, §%=6+2Y, 4,
j=1 Jj=1
n = [4(T/100)*°).
Thus, if T=100, n=4; if T =300, n=5°
Andrews and Monahan (1992) emphasize the possible benefits of combining
what is called “prewhitening” with a procedure such as that just described. To
illustrate Newey and West’s (1993) prewhitened estimator, let
-~ T 7’ T B l ~
é1=2101+2, A=2élél—l ér—lél—l ) grEér‘Aét—l, (4~15)
1=2 (=2

n = [4(T/100)*"],

T
&:T—IZ{(W’gl)(W'é’I—j)a j:()’--'ans

t=j+1

n n
V=236 $9=&+2) 6  y= 11447550
j=1 ' j=1

Thus, 4 is the (g x g) matrix of VAR(1) regression coefficients obtained by
regressing cross-products of instruments and residuals on their first lag, and
g is the resulting (g x 1) vector of period ¢ residuals. The idea is to apply a
procedure such as that just described to the VAR residuals g, and then use
A4 to adjust the result. Specifically, one sets

Q=(-A"'QI- A", (4.16)
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m T
Q=A{L+Y (1 —jim+ )W+ )Y, F=T"'Yg&-;, j=0,....m,

j=1 t=j+1
m= [?T”}].

When cost shocks are absent, (4.13) and (4.14) are asymptotically equivalent;
whether the prewhitened estimator (4.16) is asymptotically preferable to (4.13)
and (4.14) depends on the underlying data generating process. The argument
for prewhitening is not so much that it yields great asymptotic gains as that it
seems to work well in simulations.

But with or without cost shocks, (4.13), (4.14), and (4.16) might yield
different values of m in a given application. This illustrates the general point
that regardless of the process followed by cost shocks, there are a number of
reasonable rules to choose m. For the data generating processes considered in
Newey and West (1993), the rules (4.14) and (4.16) worked relatively well. But
since asymptotic theory does not yield a single value of m for a given data set
and sample size, it is advisable to do some experimentation with a range of
values, computing at least some test statistics using different Vs, each V relying
on a 2 computed with a different m and/or n; the hope is that results will not
be sensitive to the exact values of n chosen. Further theoretical and simulation
evidence on alternative rules are of great interest.

How do the rules developed to date compare with longer established testing
procedures? The Monte Carlo evidence in Andrews (1991), Andrews and
Monahan (1992), and Newey and West (1993) indicates that their recom-
mended procedures are preferable to more traditional ones. This evidence
indicates as well, however, that when data are highly serially correlated, tests
may suffer serious size distortions even in sample sizes larger than those
typically used in inventory studies: nominal 0.05 tests may have actual sizes of
0.20 or higher.

S Limited Information Estimation: Testing

Let ﬂ be defined as in (4.5). Given a hypothesis Hy: g(f) =0, where g(f) is
sx | and dg/dB is of row rank s < 3, the usual Wald statistic is appropriate,

g(BY0g/3p) Vdg/dyT 'g(B) = £ (s), (4.17)

where ag/aé denotes the (s x 3) matrix dg/df evaluated at B. If the null is
simply Hy: B; = 0, then (4.17) is of course just the square of the usual ¢-statistic.

Let 6,,,=H,- X/B, ¥ =[U,.,]. If the number of instruments g exceeds the
number of regressors 3, one can test the model by computing

T '6'Z@'Z'6 ~ ¥ (q - 3). (4.18)
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This is sometimes referred to as Hansen’s (1982) “J-test,” or a test of ‘
instrument residual orthogonality. One interpretation of this is as a test of '
whether the coefficients of an arbitrarily chosen set of ¢ — 3 instruments would
all be zero if one added these instruments to the regression equation (4.3) il
(Newey and West, 1987b). In practice, it has been difficult to turn a rejection 3
by (4.18) into a constructive suggestion about how the first order condition g
(4.3) or underlying model (4.1) should be modified, at least in my experience. ;
An easier to interpret, although perhaps less powerful, test was suggested by |
West (1986a), applied by Krane and Braun (1991) and Dimelis and Ghali i
(1992), and extended by Kollintzas (1992). It may be shown that the model g
(4.1) implies that certain weighted sums of the variances, auto- and cross- { j
g

i

33

|

1

i

covariances of H,, S,, Q,, and the cost shocks are nonnegative. If u, =0 as in
West (1986a), for example, we have

ao[var(AS) — var(4Q)] + a\[var(S) — var(Q)] — aavar(H) + 2asascov(H, S.\) = 0,
(4.19)

where “var” denotes variance and “cov” denotes covariance. To compute the
left hand side of (4.19), one may use estimates of the a;s from the Euler
equation and of the indicated second moments from the obvious sample N
counterparts. A standard error may be computed from the joint variance- g
covariance matrix of the estimated a;s and second moments. See West (1986a) 8
for details.
The left hand side of (4.19) is the difference in average per period costs {
between the policy actually followed and that of an alternative feasible policy '
that leaves sales unchanged but sets Q, = S; and H, to zero. If ap = a3 =0, and i
ai, a; > 0, for example, (4.19) reduces to a;[var(S) — var(Q)] — axvar(H) = 0: ¥
the average per period reduction in production costs allowed by inventory h ‘
holdings had better be bigger than the average costs of holding inventories ':
themselves — or why would a firm hold inventories? See West (1986a),
Kollintzas (1992), and section & for further discussion and interpretation. g

6 Limited Information Estimation: Unit Roots

6.1 H, S, Cointegrated

Assume now that S, ~ /(1), but u, ~ I(0). Kashyap and Wilcox (1993) emphas-
ize that H, and S, are then cointegrated. Specifically, with a little bit of i
algebra, the first order condition (4.2) can be rewritten as (g

Efao[AS,+ A’H, = 2b(AS ) + A’H 1) + b2(AS .2 + A’ H,.)»))
- bal(AH,H + ASH, 1) + (1|AH/ + baz(H, - }’S,)} = — Uy, (420)
y=a; -~ [a(1 - b)/aj].
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Let {.} denote the expression in braces. It may be shown that {.} — I(0), and,
since AS, ~ I(0) by assumption, H, — ¥, ~ I(0): H, and S, are cointegrated with
cointegrating parameter ¥’

Consider first the case where EAH, # 0(= EAS, # 0), as is probably appro-
priate when one has a long time series from a growing industry. It follows
from West (1988a) that the discussion in section 3 still applies: the optimal
linear combination of instruments is as given in that discussion, and the
resulting coefficient vector is asymptotically normal. The discussions in sec-
tions 4 and 5 are applicable as well: (4.18) is asymptotically chi-squared (West,
1988a) and certain variance bounds tests (not the one described in section 5)
may be performed as well (West, 1988b; 1990). Andrews and Monahan (1992)
indicate that data dependent procedures to select m (defined in (4.10) ) still are
appropriate.

It sometimes will be more reasonable to assume that EAH, =0, however.
There is little secular movement of the Depression era data in Kashyap and
Wilcox (1993), for example. To my knowledge, no one has directly sum-
marized the implications for estimation of equations such as (4.3) under such
circumstances. Park and Phillips (1988) and Sims, Stock, and Watson (1990)
emphasize that in the related contexts that they consider, the entire coefficient
vector will not be asymptotically normal with a full rank variance-covariance
matrix.

But as Kashyap and Wilcox (1993) illustrate, inference about many objects
of interest may be done in a conventional fashion. Individual coefficients will
be asymptotically normal, and inference about such coefficients may proceed
as usual if procedures described in section 4 are used to estimate the
variance-covariance matrix (Park and Phillips, 1988; West, 1988a; Sims, Stock,
and Watson, 1990; Andrews and Monahan, 1992; Hansen, 1992); Kashyap
and Wilcox (1993) conjecture that the equation (4.18) statistic will still be
asymptotically chi-squared, which seems reasonable given that the statistic can
be interpreted as testing the joint significance of (¢ — 3) of the instruments.

For some other linear rational expectations models, Stock and West (1988)
and West (1988a) present Monte Carlo evidence indicating that the asymptotic
normal approximation is adequate in sample sizes typically encountered.

6.2 H, S; Not Cointegrated

Now suppose that u, ~ I(1). Then H, and S, obviously may not be cointe-
grated. For inference to proceed along standard lines, one must difference
equation (4.3). The discussion in sections 4 and 5 now applies, with some
obvious modifications. Differences of H, and S, are now prominent candidates
for instruments, for example. And if «, is a pure random walk, the disturbance
of the differenced equation is MA(2).

Lack of cointegration between H, and S, may at first blush seem surprising.
But note that the model under consideration in fact rationalizes such an
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occurrence if cost shocks are I(1), as indeed is typically maintained in the
literature on real business cycles. And standard tests applied to US data at the
two digit SIC code and more aggregate levels generally do not reject the null
of no cointegration (Granger and Lee, 1989; West, 1990; Rossana, 1992).

7 Full Information Estimation

7.1 Solution of the Model

For algebraic simplicity, assume that the firm views revenue p,S, as exogenous,
so that the objective function becomes one of cost minimization. (The
assumption of exogenous revenue over an infinite horizon obviously is silly.
But it makes discussion of the relevant econometric issues relatively straight-
forward. Below I comment briefly on some implications of sales being
endogenous: see Eichenbaum, 1984; Blanchard and Melino, 1986; Dimelis and
Kollintzas, 1989; and West, 1990 for completely worked out examples of
solution and estimation when sales are endogenous.) Also for simplicity,
assume that both the firm and the econometrician forecast future sales from a
univariate autoregression in S,

S,=¢;S,_|+...+¢pS,_p+v2,,
¢p¢0, EUZ(S(-/'ZEUyH[_j:O forj>0,
l—¢iz—...—¢p" =02 [2] = 1, 4.21)

where |z| denotes the modulus of a complex number z. Note that (4.21) allows
S: to have a unit autoregressive root. The innovation v, is assumed uncorre-
lated with lagged H,_j, in accord with the assumption that sales are exogenous.
For the moment, assume a, # 0. Let L be the lag operator. Use the identity

Q:=S,+ AH, to rewrite the Euler equation (4.2) as
E{f(LYH,.2= D}, 4.22)

(L) =1-b"2a;'[ba) + 2aob(1 + B L + b 2aj '[ao(1 + 4b + b)) + ay(1 + b) + bas] L*
— b %ag'[a) + 2a0(1 + B)L> + b 2L°,
Di=~-bAS; = 2bAS; .\ + bAS;.2) — b *as'ai(Si = bSi.1) + b 'ag'aza3 S .

-2 -1
- b aoy U;.

Let A, be the roots of the fourth order lag polynomial f(L), |4 < ... < |44 It
may be shown that A, =1/(bA)) and ;= 1/(bA;), so that at |4, A < 1/b.
Suppose further that [4i], |42 < 1, and, for expositional convenience, that
A1 # ;. (See Kollintzas, 1989 on the relationship between the cost parameters,
the discount rate, and the modulus of these roots.) If we are to obtain a
nonexplosive solution, we must solve the stable roots 4, and A, backwards, and
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the unstable roots 1; and A, forwards: indeed, a transversality condition forces
the firm to do so (Kollintzas, 1989). One may verify that the following then
satisfies the Euler equation (4.22):

Hi=(A +A)H -\ = M H 2+ b7 'L A(A - A)7! (4.23)

X 3 ALBAY T = (bAY T NEDis ).

j=0

Note that if A, and A, are complex, they are complex conjugates, so that
A+ 4; and A4, are real.

Suppose finally, for simplicity, that the unobservable shock u; is serially
uncorrelated. Then one can use techniques such as those in Blanchard (1983)
to solve for the reduced form, which expresses H, in terms of lagged H;s and
S and u,, and for the decision rule, which expresses H; in terms of lagged
Hs, current and lagged S, and current u,. Define the scalars pi, p2, wi, wy,
wi, and w, the (/ X p) vector ¢’ and the (p x p) matrices @ and D as

pr=A+ 2 p2=— Ay

wi=b"p,, wy = — pa[b® + 2b + b(a/ao) + (bayas/ap)), (4.24)
wi = pa[2b + 1 + (ai/ao))], Wa=— p,

e=(10...0),

(0 ¢2 ... dp-1 9p)

¢=(l 0 ... 0 0)

(0 0 ... 1 0),
D=[I-bp®- bzpzdi2 -
Then the reduced form is
Hi=pH _1+pH 2 +mS_1+...+mSi_p+vy, (4.25)
(T1y .., ) = €D(W D + Wy @ + Wi+ wyl),
Vit = (7] @p)V2r + Vit (p=2),
vie=[(m + p)/gilva + v (p=1),
Ui = (palao)u.
The underlying decision rule is

c=piHi o+ poHi 3+ 818+ ...+ 8,8y tum (p=2), (4.26)

c=pHi_ i+ ppHio2+ 818+ 6821+ vm (p=1),
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where for p = 2,
81 = Myl Pp, Si=mi_1—&igi-y (i=2,..,p),
and for p =1,
6 =—p, 8 = (m — &)/ ¢

7.2 Estimation and Inference

One aims to estimate the pair of equations (4.25) and (4.21) jointly. Given
estimates of the coefficients of (4.25) and an imposed value of b, one can
retrieve estimates of the underlying parameters of the cost function (the a;s)
using (Blanchard, 1983)

ai/ag=pi(b-p2') - 2b -2, (4.27)
aslag=—-b""[p3'(1 + bp}) + b2p, + (1 + b)(a/as) — (1 + 4b + bY)].

Given estimates of the sales process (4.21) as well, estimates of a; can be
disentangled from =, (or, for that matter, from any of the other x;s as well, if
p=2).

There are p + 3 parameters to be estimated: ¢y, ..., ¢, a3, and, relative to
some linear combination of the a;s, the values of two of ay, a,, or a;. There
are 2p + 2 right hand side variables in the bivariate system (4.21), (4.25). If
(@) p = 1, the system is exactly identified. One can estimate by OLS. Inference
may proceed in standard fashion even if S, has a unit root, so that H, and
S; are cointegrated (West, 1988a; Sims, Stock, and Watson, 1990), subject to
caveats discussed in section 6.

If (b) p > 1, the system 1s overidentified. Consider first (b)(i) a stationary
model (S,~ /(0) = H,~ I0)). Estimation may proceed by maximum likeli-
hood, imposing the nonlinear overidentifying restrictions (Blanchard, 1983).
Since the variance-covariance matrix of the disturbances in (4.21), (4.25) is
unrestricted, an asymptotically equivalent procedure is nonlinear three stage
least squares, which may be computationally simpler (Amemiya, 1977).

To my knowledge, the formal asymptotic theory has not been completely
worked out for restricted estimates of the model in the case that (b)(i1)
S = I1) (= H, S, cointegrated) and p > 1 so that the system is overidentified
(the complication results from the nonlinear cross-equation restrictions). See
Gregory, Pagan, and Smith (1992) for discussion of estimation in a related
model.

For stationary models, Hansen and Sargent (1982) suggest another estima-
tor that is applicable if there are variables observed by the firm but not the
economist that help predict S, (say, reports from sales representatives about
deals likely to close the next period). The idea is to estimate simultaneously
the first order condition (4.3), the time series process for predicting S, (the
analogue to (4.21))," and the reduced form for H,. (In the example above, in
which there is no such private information, this appears to yield no gains
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relative to conventional full information estimation as just described.) As far
as I know, this estimator has yet to be applied.

For the discussion of empirical work below, it is useful to note the decision
rules implied by two other specifications. First, if we generalize the assumption
maintained so far that u, is serially uncorrelated in favor of the assumption
that it follows an exogenous AR(1),

u = 9“1—[ + Eut, (428)
then the reduced form and decision rule are as above, but with
Vur = (pa/ag)(1 — b6p, - b*6py) ' u,.

If =1, u, is a random walk. If S, ~ I(1) as well, one can difference (4.21) and
(4.26) and proceed as described above.
Second, if ao =0, a, # 0, the reduced forms and decision rules are

H=pH, 1 +mS, . +...+m,Si-,+vy, (4.29)
p is the smaller root of ba,x* - (a) + ba, + ba>)x + a, = 0,
(m,..,m)=€- bp(b)"[bp(l + a7 'aa) @’ - PP,
Vi = (p/ p)V2 + Uit

v =— (pla))(1 — b6p) 'uy,

Hl=pH1_|+5|S1+...+5pS,_p+|+UH1 (430)
5l=”p/¢pa 5i=’ti—|_5l¢i—| (i=21-'-$p)'

8 Comparison of Full and Limited Information
Estimation

The limited information techniques described in sections 3-6 are less efficient
but more robust than are the techniques described in section 7. That they are
more robust is illustrated by the following example. Suppose that sales are not
exogenous but are determined by the intersection of a demand curve and
supply. The demand curve might be

S;=- (l/a&)p; + demand shock, 4.31)

where a > 0 and p, is defined in (4.1); a supply curve is obtained from a first
order condition obtained by differentiating (4.1) with respect to S; and/or p..
The assumption maintained above that sales are exogenous is a special case of
(4.31) resulting when a — =, so that S, = demand shock (Kollintzas, 1989).
We have seen in (4.25) and (4.26) that when a = =, the reduced form of
the model is a bivariate vector autoregression in S; and H,, and it may be
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shown that this holds even when a < «. But if @ < o, §, will be Granger-
caused by H, The intuition in, say, a competitive market is that decisions
about a firm’s sales and inventories will be influenced by a comparison of this
period’s and next period’s expected price, with the firm putting more in
inventories the higher it expects next period’s price to be (ceteris paribus). In
equilibrium, then, industry wide H, will help predict next period’s price and
thus next period’s sales as well.

As a result, when the present value on the right hand side of (4.23) is
projected onto past H,s and S;s, the H,s will get nonzero coefficients. This
means that the coefficients on the lagged Hs in the reduced form or decision
rule will not be related to the underlying cost parameters in the fashion given
in (4.27), because these coefficients will reflect in part the ability of the H, to
predict future Sis.!" Thus, use of (4.27) will result in inconsistent estimates,
while the instrumental variables estimation described in previous sections will
still be consistent.

To see whether this might be a substantial problem in practice, I solved for
the population values of p; and p, for a given set of values of ao/c, a/c, a)/c,
and a,, and for a range of as; for each value of a, [ then computed the values
of ao/c, ai/c, and as/c that are implied by (4.27). Since use of (4.27) is

Table 4.4 Asymptotic bias of full information estimator, when sales are
endogenous

1 2 3 4 5 6
Value implied by (4.27) of:
a P P (10/2 (1]/(‘ az/C
1 0.05 0.44 -0.09 0.07 0.11 0.36
2 0.19 0.73 -0.23 0.14 -0.01 0.16
3 0.32 0.81 -0.27 0.16 -0.02 0.12
True values: 0.17 -0.04 0.07

(a) ao, a;, and a, are defined in (4.1); ¢ is defined in (4.3); o 1s defined in (4.31).

(b) Columns 2 and 3 present the coefficients in the decision rule for A, when «a is as
indicated, ag/c, ai/c, and az/c are as given in the “True values” row, and a3 = -0.04.
These are the approximate values of the ajs estimated for aggregate inventories in
West (1990, table 1II, row 1), when the demand shock in equation (4.31) follows a
random walk. West’s (1990) estimated value for « is that given in row 2, with the values
in rows 1 and 3 being West’s upper and lower bounds of the 95% confidence interval
for a.

(c) Columns 4-6 give the values of a¢/c, ai/c, and ay/c that are implied by p; and p;
under the incorrect presumption that a = = and sales are exogenous.

(d) To facilitate reading the table, only two digits are given. The values of a and the
a;s actually used in the calculation are the three digit values given in West (1990).

(e) These asymptotic calculations may not accurately predict the actual finite sample
performance of the full information estimator.
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appropriate for a = o, the question is whether plausible values of « are large
enough that use of (4.27) results in little bias even though it is technically
inappropriate.

I chose a data generating process consistent with one of the sets of estimates
in West (1990)."> Table 4.4 lists the values used. The table indicates that in this
example, there is a plausible range of a for which one might be seriously
misled by assuming that sales are exogenous (@ = ) when in fact sales are
endogenous (@ < ©). Row 1 of the table indicates that if & = 0.05 (a value that
is plausible in the sense that it falls within the 95% confidence interval for a
given by West, 1990), use of estimates of H/s reduced form would yield a
value of a,/c that not only is positive but is larger than that of a¢/c, at least in
an arbitrarily large sample; in truth, however, a,/c is negative and smaller in
absolute value than ao/c. Other values of a (rows 2 and 3) yield smaller biases.

Of course, full information estimation is still viable when a < %; one must
simply estimate a along with the cost function parameters (see West, 1990 for
specifics). But then such information will yield inconsistent estimates if, say,
there are costs of adjustment so that lags of S, appear on the right hand side
of (4.31), or if prices of competing products appear in the demand curve. The
point is that limited information estimation is robust to possible misspecifica-
tion of the demand curve, whereas full information estimation is not.

On the other hand, the full information technique will be more efficient, if
the specification of demand is correct. For the three DGPs considered in tables
4.2 and 4.3, table 4.5 compares the full information technique with the limited
information one that optimally uses two lags each of H, and S, as instruments

Table 4.5 Comparison of asymptotic variance-covariance matrices of
limited and full information estimators

1 2 3 4

DGP Ratio of SEs on Ratio of SEs Ratio of SEs
[(1 + b)ao+ ail/c on as/c on a;

E 0.783 0.815 0.921

R 0.832 0.834 0.988

w 0.501 0.372 0.394

(a) In the ratios referenced in columns 2-4, the numerator is computed from the
variance-covariance matrix of the full information estimator that estimates (4.21) and
(4.25) jointly, and the denominator from that of the limited information estimator (4.5)
that uses as instruments the set of variables appearing in the reduced form (4.21) and
(4.25). The ratios must lie between 0 and 1, smaller numbers indicating a greater
efficiency gain from using the full information estimator. Limited information use of
lags of H; and S; beyond those in the reduced form would result in smaller efficiency
gains.

(b) These asymptotic comparisons may not accurately predict the actual finite sample
performance of the two estimators.
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(i.e. estimates as in (4.5), with Z, = [H,_,, S;-\, H,-, S;-]). Table 4.5 indicates
that the gains from using full information are modest for DGPs E and R, with
standard errors typically falling by less than 20%. The gains for the W DGP
are, however, dramatic. Recall that the W DGP is the only one that generates
substantial serial correlation in H,. These results are consistent with those of
West (1986b), who, using a different linear rational expectations model, found
that the gains for full information estimation were large only for highly serially
correlated data. Recall that the efficiency gains would be smaller if the limited
information estimator used more lags of H, and S;; preliminary calculations
in West and Wilcox (1993a) indicate that the use of additional lags sometimes
but not always results in an estimator nearly as efficient as full information.

In sum, there is a tradeoff familiar from the literature on the traditional
linear simultaneous equations models. While the full information method can
yield substantial efficiency gains, it requires specification of demand, and there
is much less consensus on the form of demand than of the cost function. In
contrast to the traditional literature, however, full information estimation is
much more complex computationally, since it requires nonlinear estimation.
Recent literature on the linear quadratic model has tended to emphasize use
of limited information techniques.

9 Empirical Evidence

9.1 Decision Rules Implied by the Linear
Quadratic Model

For the benefit of readers who skipped section 7, as well as those who tried
but could not stay awake through that section, I begin by summarizing the
decision rules implied by the model (4.1) when sales follow an exogenous
AR(p), p = 2, and the cost shock u, follows an AR(l) with parameter 6
(possibly with 6 =0, so that u, is serially uncorrelated):

Si=0Sici+ ...+ 9pSi-, + Uy, 4.21)

U= OBui_ + Eur. (4.28)

The equations are repeated from section 7, as are the following decision rules:
(=p Hii+poH 3+ 868+ ...+ 88 pitvm (ap 2 0), (4.26)
Hi=pH; 1+ &S+ ... +8Si-p+1 +Vus, (ao = 0). (4.30)

As detailed in section 7, the parameters p;, p;, and p are functions of b, aj,
a,, and a,; the §;s are functions of b, the a;s, and the ¢;s; the disturbance vy,
is AR(1) with parameter 8(8 = 0 = vy, is serially uncorrelated).

Note one implication of the cost shock being serially correlated (of 8 # 0).
If one multiplies (4.30) by (1 — L) and rearranges, H,_, appears on the right
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hand side (as does S;_, though that is not important): serially correlated cost
shocks, as well as nonzero costs of adjustment (ao # 0, see (4.26) ), put a
second lag of H, in the decision rule and reduced form.

9.2 Unrestricted Estimates of the Decision Rule

Since Lovell’s (1961) pioneering research, empirical work in inventories has
been dominated by unrestricted estimates of equations like (4.26) or (4.30)
(that is, estimates that are not restricted to accord with estimates of an
equation to forecast sales, such as (4.21)). For the sake of completeness, I
briefly sketch the “flexible accelerator” model that Lovell and others have used
to rationalize the equation estimated, and then note a couple of stylized facts
about estimation results.

The model supposes that the representative firm balances costs of adjusting
inventories against costs of having inventories deviate from their frictionless

target level H;:"

min 0.5(H, - H)*+ 0.5w(H, - H,_ )’ +wH;;, H =aESi.\. (4.32)

In (4.32), w > 0 is the weight of the second cost relative to the first, « > 0 is a
parameter, and u, is an unobservable disturbance that follows an AR(1) with
parameter 8, possibly with 8= 0 (as in (4.28) ). The first order condition is

Hi=pH,.«+ (1 - p)aE:Si.1 + Uy, (4.33)
vm=-(-pu; 0<p=w/(l+w)<l.

If, as in (4.21), S, is modeled as evolving according to an exogenous autore-
gression of order p, so that E:S;.1 = ¢S/ + ...+ ¢,S81-,+1, (4.33) may be put
in estimable form as

H,=pH,_|+¢5|S,+...+5,,S,_p+|+v”,, 6j=(l—p)a¢,‘. (434)

It will be recognized that (4.34) is the same as (4.30), although the two models
do predict different relationships between (1) the §s and the ¢;s, and (2)p and
underlying cost parameters.

Blinder and Maccini (1991a; 1991b) have discussed some stylized facts about
unrestricted estimates of (4.34), two of which bear repeating here. First, even
conditional on current and lagged S, there is considerable serial correlation in
H,, in that estimates of p and/or 8 (the serial correlation parameter of u,) tend
to be near one. Moreover, both p and @ tend to be significantly different from
zero. Second, the estimate of & tends to be positive. This regression result
reflects the business cycle fact that inventories move procyclically, tending to
be accumulated during business cycle expansions as S, and Q, rise, and to be
decumulated during recessions as S; and Q, fall. Given the inventory identity
Q.= S+ AH,, the positive correlation between S, and AH, produces the well
known result that Q, is more variable than S,.
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The next two sections consider how such facts might be explained by the

model (4.1), and briefly surveys the empirical evidence, focusing largely on
papers that have explicitly used (4.1).

9.3 Explaining Extreme Serial Correlation

The extreme serial correlation of H, that is typically observed can be ration-
alized in either of two ways. First, this fact will follow if u, is highly serially
correlated. Second, irrespective of the serial correlation of u,, it will follow if
pi and p, (see (4.26)) are such that the larger root of x’ — p;x — p, is near
unity, or, when ao = 0, if p (see (4.30)) is near unity.

The model will yield such a root, or yield p=1 when ao =0, when the
marginal inventory holding cost a; is small relative to the slopes of marginal
costs of production a; and of changing production a,. For example, when
ao=0, p— | as a,/a; — 0; more generally, the larger root of x* - p,x — p»
approaches 1 as a; — 0 for any fixed positive values of a; and a,.

Recent empirical estimates of (4.1) have given some support to both the cost
shock and cost parameter explanations. Using two digit US manufacturing
data, and estimating a Euler equation such as (4.3), Eichenbaum (1989) and
Ramey (1991) found a;s that by themselves implied little serial correlation, but
very high serial correlation of an unobservable cost shock, while West (1986a)
found a;s that implied high serial correlation (but did not test for serial
correlated cost shocks). Blanchard’s (1983) full information estimation, ap-
plied to automobile data, got results similar to West’s.

Distinguishing between the two explanations may be difficult. Recall from the
discussion in section 9.1 that if both p and 6 are nonzero, when (4.30) is
transformed to have a serially uncorrelated disturbance the resulting decision rule
will have H,_ on the right hand side. It will therefore look similar to the decision
rule (4.26), which was derived assuming a, # 0 and a serially uncorrelated cost
shock. What is involved, then, is distinguishing between costs of adjustment and
serial correlation, which is not easily done (Blinder, 1986b; McManus, Nankervis,
and Savin, 1992). Below I discuss these explanations further.

A final point to be made at present concerns the plausibility of explaining
the serial correlation with a relatively flat curve describing marginal inventory
holding costs. If a model such as (4.32) is used to interpret estimates of (4.30)
or (4.34), p = 1 implies that the percentage of the gap between H, and H; that
is closed each period is small (e.g. p = 0.8 = 20% closed). Following Carlson
and Wehrs (1974) and Feldstein and Auerbach (1976), many find this implaus-
ble on the grounds that monthly and even quarterly changes in inventory
stocks rarely amount to more than a few days production. But in the context
>f a model such as (4.1), a finding that p = I, or that x” — p;x — p, has a large
‘oot, does not seem to me to be prima facie implausible, at least in the absence
f any independent evidence about how fast marginal production costs
ncrease relative to marginal inventory holding costs.
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9.4 Explaining Procyclical Inventory Movements

The procyclical character of inventory movements may be rationalized by the
model in at least three ways, which are not mutually exclusive.'* Before
discussing empirical evidence, I sketch the logic of the three explanations.
Formal proofs using variance bounds inequalities such as (4.19) may be found
in West (1986a; 1988b; 1990).

The simplest (and, peculiarly, sometimes overlooked) explanation is simply that
this is a result of the accelerator term a,(H,_, — a;S;) This term captures a
tradeoff between inventory holding costs on the one hand and stockout or
backlog costs on the other. More inventories means higher holding costs but
lower probability of stocking out, with the level of H, that balances the two
competing costs increasing in expected sales. In an extreme case in which there
were no production costs (ap=a,=u,=0), the firm would simply set
H, = a;ES,,: the more customers expected to walk in the door next period, the
larger the inventory stock. In this case, positive serial correlation in S, will cause
H, and AH, to track actual as well as expected sales, and inventories clearly will
move procyclically. And even if nonzero ao(), ai(), and u, terms induce
countercyclical movements (see below), as long as the influence of such terms is
small enough relative to that of the accelerator term, H, will move procyclically.

To understand the other two explanations, it is useful to first consider a set
of circumstances under which H,; would not move procyclically. Suppose now
that ag = a3 = 4, = 0, ay, a; > 0. Then with increasing marginal costs of produc-
tion (a, > 0), no accelerator motive (a; = 0), and costs nonstochastic (u, = 0),
firms use inventories to smooth production in the face of randomly fluctuating
sales: they build up inventories when sales are low, draw them down when
sales are high.

One of the two remaining explanations for procyclical inventory movements
emphasizes the possible role of stochastic movements in costs. Now allow for
u; # 0, but, for clarity, continue to assume ao = a3 = 0. Firms will intertemporally
substitute production out of periods in which u, is high into periods in which
u, is low, drawing down H, when u, is high, building them up when u, is low."
This will produce a tendency for AH, and Q, to move in the same direction; if
this tendency is strong enough relative to the one described in the preceding
paragraph, inventories may move procyclically, and certainly will if movements
in S; are also driven by u, (as is suggested by real business cycle models).

The third explanation is that marginal production cost slopes down. For
simplicity, set u,=a;=0. Assume for the moment that 0 > 3%c/0Q7 =
(1 + b)ao + ai. Then, in contrast to the previous paragraph but one, firms will
use inventories not to smooth but to bunch production, producing high output
in periods when sales are high to exploit the diminished costs that come from
high output levels, and producing low output in periods when sales are low.
As Ramey (1991) has emphasized, inventories will move procyclically. If one
instead makes the milder assumption that a, < 0 but (1 + b)ae + a; > 0, so that
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marginal production cost slopes down only when one abstracts from costs of
adjusting production, there will still be a tendency for inventories to move
procyclically; whether they do or not depends on whether the motive to
smooth ((1 + b)ao + a; > 0) or bunch (a, < 0) is stronger.

In sum, the procyclical movement of inventories suggests a substantial role
for the a,(H,-, — a;S,)* term, or for cost shocks, or for downward sloping
marginal costs, or indeed for more than one of these. The evidence on each of
these is mixed. Blanchard (1983) and Ramey (1991) find estimates of a3 that
are positive and significant at conventional levels; West (1986a) and Krane and
Braun (1991) find estimates that usually are positive but rarely are significant;
Kashyap and Wilcox (1993) and West (1990) find estimates that are of mixed
sign and usually are insignificant.'® Perhaps an indirect indication of the
importance of the stockout or backlog costs underlying a; > 0 is that measures
of order backlogs often are significant in inventory regressions (e.g. Maccini
and Rossana, 1984; Blinder, 1986a).

Consider now the possibility that marginal production costs slope down, in
the sense that (1 + b)ao + a; < 0. Ramey (1991) vigorously argues that this is
the case. Most others, including some who have used similar data (Eichenbaum,

Table 4.6 Statistical significance of cost variables

Wage Materials FEnergy Interest Unobservable

prices prices  rate shock
1 Blinder (1986b) ? ? n ?
2 Durlauf and ? n n
Maccini (1992)
3 Eichenbaum (1989) y
4 Maccini and y ? n ?
Rossana (1981)
5 Maccini and n y n y
Rossana (1984)
6 Miron and n ? n n
Zeldes (1988)
7 Ramey (1991) n ? n y

(a) All the studies used two digit manufacturing data from the US. The exact data,
sample period, specification, and estimation technique vary from paper to paper.

(b) A “y” entry indicates that the variable in a given column was significantly different
from zero at the 5% level in at least three-fourths of the data sets in a given study; an
“n” that it was significant in at most one-fourth of the data sets; and a “?” that it was
significant in more than one-fourth but fewer than three-fourths of the data sets. A
blank indicates that the variable was not examined.

(c) Line by line sources: (1) table | (pp. 360-1) (2) table 3, inst. set 4 (3) table 2
(p. 861) (4) table 1 (p. 20) (5) table 3 (p. 231) and discussion on p. 227 (6) table II
(p- 892) (7) table 1 (p. 323).

T SR A A

AR DS i . -

SOOI




o s tear

i, ﬁkg 7

Sy s

214 Kenneth D. West

1989; West, 1986a) have come to the opposite conclusion; a possible exception
is Krane and Braun (1991, pp. 574-5), one of whose specifications yielded
insignificant but negative slopes in about half their data sets. However, a
number of authors have found the production cost a, insignificantly different
from zero (Blanchard, 1983; West, 1990; Kashyap and Wilcox, 1993); in at least
one study (West, 1990), the negative (but insignificant) point estimate of a, was
large enough in absolute value to imply procyclical inventory movements.
Finally, with reference to unobservable cost shocks, there is a persistent
tendency for unobservable cost shocks to be highly autocorrelated when one
allows for such a possibility, as do Eichenbaum (1989), West (1990), and
Ramey (1991) (but not, for example, Blanchard, 1983; or West, 1986b). One
would hope that such shocks are crude proxies for observable measures of
costs such as factor prices. Unfortunately, this seems not to be the case, since,
in practice, such factor prices rarely are significant. See table 4.6, which
summarizes some results from both flexible accelerator and linear quadratic
models that have been applied to two digit manufacturing data from the US.

9.5 Summary

Highly serially correlated cost shocks rationalize both the considerable serial
correlation in H, and the procyclical nature of movements in H, But as
Blinder and Maccini (1991b) note, one cannot be very confident that such
disturbances in fact capture stochastic variation in costs rather than model
misspecification, given that observable measures of costs do not seem to
influence inventory movements very much.

Alternatively, both stylized facts fall out of demand driven models if the
inventory holding cost a, is small relative to the production costs ao and/or
a,, and either (1) a, is slightly negative, or (2) the effects of the accelerator term
a»(H,_1 — a;S)* are large. Note that it is the product a,a; that determines the
strength of the accelerator term (see (4.3), (4.19), and the definition of the w,
in (4.24) ). So there may be a tension between arguing that a, is small (to
obtain extreme serial correlation) and that a,a; is large (to obtain procyclical
movements), although given arbitrarily small a, there is an a; sufficiently large
that the accelerator will yield arbitrarily strong effects. In any case, existing
estimates do not come to a tight consensus about the magnitudes of these
parameters. Perhaps microeconomic evidence from a more disaggregate level,
such as in Bresnahan and Ramey (1991), will help narrow the range of
plausible a;s, as well as help sharpen our understanding of the role of
stochastic variation in costs in determining inventory movements.

Notes

I thank an anonymous referee, participants in a seminar at the Federal Reserve Board
of Governors, Louis Maccini, Scott Schuh, and, especially, David Wilcox for helpful
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comments and discussions, and the National Science Foundation, the Sloan Founda-
tion, and the Graduate School at the University of Wisconsin for financial support. /
I Formally, one adds to the cost function terms of the form (l)c;w,Q,, where ¢ is a
parameter vector and w, is a vector of input prices, and/or (2) c,r H,, where r; is
the ex ante real interest rate. }
2 An implicit assumption made is that one can parameterize the problem so that
o(pr+jSt+)/oH; =0 for all j. Reasons why this might not be possible: (1) a
nonnegativity constraint on inventories sometimes prevents the firm from holding
revenue constant when it produces one fewer unit (Abel, 1985; Kahn, 1987); (2) in i
an imperfectly competitive industry, this period’s level of inventories affects future o 4
revenues, for strategic reasons (Rotemberg and Saloner, 1989). |
3 If data on output price p, are available, an additional first order condition allows i
one to identify the a;s relative to the units in which p, is measured (presumably, ¥
constant dollars, for US data) and not just relative to one another. But for 8
simplicity of exposition, and for conformity with much empirical work, I focus on
the case when such data are not used. N
4 Hall (1992), Ogaki (1992), and Pesaran (1987) provide general discussions of the ) g
issues raised in these sections. 8

5 This implicitly assumes that d(p,.;S,.)/dH,=0 for all j and that Q, is not a i
choice variable. This is a harmless assumption in that, in most of the literature, it ;
is a matter of convenience as to whether one makes (1) H, and Sy, or (2) H, and ]
Q: the two choice variables. But see note 2 for some conditions under which one ik
might not be able to set up the problem this way. 48
6 Nor is GLS correction for serial correlation generally desirable. The instruments
generally (although not always) include lags of H, and/or S, in which case
application of a standard GLS transformation to eliminate serial correlation may
yield inconsistent parameter estimates (Hayashi and Sims, 1983). 8§
7 Eichenbaum sets ap = 0 and reports parameters that he denotes A and . I mapped

his estimates into the present notation using a»/a; = A+ (1/A) — 1 — (1/b), with .
b =0.995 a;=2(1/a)/(a:/a)). For computational convenience, I then set ag to a ‘i 8 f.
small nonzero number rather than zero. Eichenbaum also assumes that C; includes ?1 : '
a term of the form (in my notation) (H, — a;S,)2 rather than (H,_, - a;S,)z; I slur

over this minor difference.

8 Just as Io+ (I + 1) might not be positive definite, §” may be negative (as, of
course, might 5" or even the underlying population quantity s (but not s(o)). But
the fact that the ratio /5" is squared in (4.13) means that m will be nonegative,
and the resulting 2 will be positive definite.

9 That {.} ~ I{0) follows since £,{.} = —u, ~ K{0) by assumption and {.} — E;{.} ~ /(0)
as well. Further, {.} ~ (0) = H,~ I(1): if H;~ I(d) for some d > 1, then the order
of integration of H; would be greater than that of any other variable and {.} could
not be /(0), while if H, ~ I(0), {.} ~ I(1). Incidentally, Q; and S, are “multicointe-
grated,” in the terminology of Granger and Lee (1989; 1991).

10 Under these circumstances, equation (4.21) will not describe the time series process
for S;. For in this case H, will Granger-cause S, relative to an information set
consisting of lagged H;s and Ss, and lagged H;s will appear on the right hand side i
of S;’s time series process. ‘ i N 4

11 Let £/ Y, = EXf-o{{(bA)Y "' = (b4 "D+ j} denote the present value on the right ¥
hand side of (4.23). Note that the problem described in the text is not trivially
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circumvented by simply projecting Y, onto past S;s, and absorbing the difference
between this projection and E;Y; in the error term: the error term would then be
correlated with the lagged Hs.

12 In this example, the model is exactly identified, so full information estimation
simply involves estimating the unrestricted reduced form. See West (1990). Over-
identification would result if the demand curve were e.g. S;=-(l/a)p,+
¢1Si-1 + ¢25:-2 + demand shock, with ¢, ¢2 # 0.

13 As a rule, flexible accelerator studies measure inventories and sales in logs rather
than levels. I ignore distinctions between logs and levels because results for the
linear quadratic model do not change much when one rids the data of exponential
growth before estimation (West, 1988b; 1990).

14 I consider here the unconditional relationship between inventories on the one hand
and sales and production on the other; 1 will be deliberately vague about whether
the analysis relates to levels or differences since I believe that neither the stylized
facts nor their interpretation turns on how stationarity is induced. See Blinder
(1986a) for discussion of a conditional relationship, specifically, an analysis of
what makes the regression coefficient §, positive; see Krane (1993) for evidence on
the similar pattern that applies in the deterministic seasonal relationship between
inventories and sales/production.

15 There is a sense in which inventories will move procyclically even if u, follows a
random walk and there are no possibilities for intertemporal substitution; see West
(1990).

16 One interpretation of the disparity in estimates is that stockout or backlog costs
indeed are central to explaining why inventories move procyclically, but are poorly
modeled by a simple quadratic term like a,(H,- | - a;S,)2 (Krane, 1991). See Kahn
(1987; 1992) for excellent work modeling such costs in a more sophisticated way.
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