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We propose a nonparametric method for automatically selecting the number of autocovari-
ances to use in computing a heteroskedasticity and autocorrelation consistent covariance matrix.
For a given kernel for weighting the autocovariances, we prove that our procedure is asymptotically
equivalent to one that is optimal under a mean-squared error loss function. Monte Carlo simula-
tions suggest that our procedure performs tolerably well, although it does result in size distortions.

I. INTRODUCTION

Variance-covariance matrices of estimators of time-series models often must be robust to
the presence of heteroskedasticity and autocorrelation of possibly unknown form. In an
earlier paper (Newey and West (1987)), we suggested a class of consistent estimators that
yielded positive semidefinite matrices by construction. This technique involved calculating
weighted sums of estimated autocovariances of cross-products of instruments and residu-
als. We showed that for a given kernel (a given rule for weighting the autocovariances) it
was necessary for consistency to let the bandwidth (the number of autocovariances
included) increase with the sample size at an appropriate rate, but otherwise left open the
question of how many autocovariances to include, for a given sample.

This is an important theoretical and practical question. An empirical researcher must
make a decision on a bandwidth for his chosen kernel not with a sample that is increasing
in size, as assumed in asymptotic theory, but with a sample of a specific fixed size. Many
rules that asymptotically lead to consistent estimates imply different bandwidths for a
given sized sample. While some ambiguity about appropriate choice of bandwidth is
inevitable, practitioners would likely find it useful to have a specific, complete rule that
could at least be used as a starting point for experimentation with alternative bandwidths.
We suggest such a rule, which is data dependent, and is based on both theoretical asymp-
totic and empirical Monte Carlo results.

As is well known, the matrix we are interested in estimating is proportional to the
spectral density of cross-products of instruments and disturbances at frequency zero, and
we draw on earlier research on nonparametric density estimation. Such research includes
Robinson (1991), who used an approach known as cross-validation to automatically select
parameters to smooth spectral density estimates in a non-parametric fashion. Research
that is more closely related to ours includes Andrews (1991) and Andrews and Monahan
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(1992), who considered the question that we consider (among others), under a similar set
of technical conditions, and used, as do we, what is known as a “plug-in” approach.
Among other results, they showed how to select a data-dependent bandwidth for a given
kernel and sample so as to satisfy an asymptotic mean squared error criterion similar to
the one that we use. We build on this work in three ways.

First, their procedures for selecting the bandwidth optimally require the researcher
to know the order of the ARMA model governing residual autocorrelation (although
misspecification of the order affects only optimality but not consistency). We show how
to select the bandwidth optimally when the form of autocorrelation is unknown. Second,
we perform Monte Carlo studies that are complementary to theirs. They tried a range of
values in some simple models, while we match the point estimates for our artificial data
to those from some data used in some actual applications that require a heteroskedasticity
and autocorrelation consistent estimator. Third, our procedure is in our opinion somewhat
more convenient computationally, since it does not require fitting of an ARMA model,
and, for most kernels, allows integer as well as real bandwidths."

Our experiments indicate that selection of bandwidth according to an asymptotically
optimal procedure tends to lead to more accurately sized test statistics than do traditional
procedures: in one of our two sets of experiments, use of our procedure results in a marked
improvement in size of test statistics relative to those of a procedure suggested by Schwert
(1987), a (very modest) improvement relative to those of a simple, and in our setup sub-
optimal, version of that suggested by Andrews (1991); in another set of experiments,
however, all procedures performed roughly comparably. As do Andrews and Monahan
(1992), we find that prewhitening with a first-order vector autoregression prior to applica-
tion of our procedure improves the size of test statistics. But in contrast to Andrews (1991)
and Andrews and Monahan (1992), who recommended a kernel called the quadratic
spectral, our experiments suggest no firm grounds for preferring this or any other specific
kernel. According to these simulations then, if the bandwidth is selected according to our
optimal procedure, choice of kernel is of secondary importance, and it may be reasonable
to base choice of kernel on grounds such as computational convenience. In our discussion
of our Monte Carlo experiments, we suggest a theoretical rationale for why choice of
kernel being of second importance is compatible with Andrew’s (1991) and Priestley’s
(1981) proofs of the asymptotic optimality of the quadratic spectral kernel.

We also find, however, that tests often have size distortions even when our procedure
is used, as did the tests using the procedures in Andrews (1991) and Andrews and Monahan
(1992) for data as serially correlated as are ours. Extensions or refinements to ours or
others’ procedures therefore remain a priority for future work.

Section II illustrates our procedure in the context of an informal discussion of the
relation of this procedure to the literature on estimation of covariance matrices, and is
intended to be accessible to the general reader. Section III lays out the theory, and may
be skipped without loss of continuity by readers whose main interest is in applying our
procedure. Section IV presents the Monte Carlo work. Section V has conclusions. All
proofs are in the Appendix. An additional appendix, available on request, contains some
proofs and some simulation results omitted from the published paper to save space.

II. INFORMAL OVERVIEW

Suppose that one wishes to estimate the model y,= X;0,+u,, where y, and u, are scalars
and X, and @, are vectors. One has available a (X 1) vector of instruments Z,, with

1. What is computationally convenient to us may not be to others, and some no doubt will find it preferable
to fit an ARMA model.
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EZu,=0 and Zu, having serial correlation and heteroskedasticity of unknown form. As
is well known (e.g., Hansen (1982)) for inference (and for optimal estimation as well, if
the number of instruments r is greater than the number of right-hand side variables) one
needs to estimate S=Y 7 _ o EZiZ1- = e oo H= QY 2o ().

Let T be the sample sxze, let @ be an estimate such that 7"/ 2(('5' 0y) is asymptotlcally
normal,? let 4,= y, -X (0 and define the j’'th sample autocovariance of Z,i, as Q T
Y1 ZdiZ— s, for j20, =0, for j<0.> As in Andrews (1991), the estimators of
S that we consider formally may be written as weighted sums of the €/s. In our Monte
Carlo work (but not in our formal analysis), we also consider such estimators applied to
the sample autocovariances of residuals from a first-order vector autoregression (VAR)
of the (r x 1) vector Zd,; see below.

For most although not all weighting schemes of interest the weights are zero for all
j=m+1 for some bandwidth m+1«T, and an estimate S is constructed as:

§=00+3,", k(+9),

where {k; } are the weights. For the Bartlett kernel emphasized in our earlier work, for
example, k;=1—j/(m+1).

The questlon is how to choose the bandwidth m + 1. S is consistent if m— o0 as T— o0
and m/T">-0. But Anderson (1971) and Andrews (1991) show as well that S converges
to S at different rates for different rules for choosing m. For most kernels, the most rapid
possible rate (which will still be less than the T'/? rate familiar from parametric models,
given that the estimator is nonparametric) occurs when m increases at the rate of the fifth
root of the sample size; the Bartlett kernel, for which the rate is not T'/° but T'?, is an
exception.

For the Bartlett kernel, on which we now focus for concreteness, we thus restrict
ourselves to choices of m of the form:

m=[parameter x T"7*], 2.1

where “[ - ]” denotes “integer part of.” Now the question is how to choose the “parameter”
in (2.1). For expositional convenience, assume for the moment that =1 so that S and S are
scalars. When normalized by an appropriate function of sample size, S — S is asymptotically
N(b, v) for a certain mean b and variance v, where b and v depend on the data. Given
the bias (b#0) in the limiting distribution the familiar rule of choosing the “parameter”
in (2.1) to minimize asymptotic variance does not seem appealing, and authors such as
Priestley (1981, p. 568) suggest choosing it to minimize mean squared error (MSE) b°+ v.
In the vector case in which > 1, a natural way to reduce the problem to a scalar one is
to specify a (r x 1) weight vector w and to minimize the asymptotic MSE of w'(S—S)w.
The asymptotic mean and variance depend not only on the data but on w as well, and
the optimal “parameter” will in general be different for different w’s. For a given weight
vector w, let o;=wQw, sV'=2%" jo;, s¥=00+2Y, ;. Hannan (1971, p. 286) and
Priestley (1981, p 568) show that the (2.1) “parameter” that is optimal by this MSE
criterion is y =1.1447(s" /s©)*3.

In practice, of course, the ©;’s are not known, so neither are the o;’s nor s and 5.
But Andrews (1991) shows how to estimate y so that in an appropriate sense the resulting
estimate of S is optimal by a MSE criterion even when 6, is unknown. Before illustrating

2. In our formal work, we maintain the milder assumption that T'/%(8 — 6,) = 0,(1). Here and throughout
this section we are sloppy about such details, to facilitate presentation of a relatively non-technical discussion.
3. Division by T rather than T—; makes our estimators positive semidefinite.
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our own procedure, we comment on the generality of procedures allowed both by Andrews
and ourselves. These procedures weight the j-th autocovariance by a smooth function of
the ratio of j to the bandwidth m+ 1, and are called “scale parameter’ kernels (Priestley
(1981, p. 446)). This excludes at least two other classes of estimators that are sometimes
used in practice.

The first class estimates S by averaging periodogram ordinates. Priestley (1981, pp.
580-582), however, indicates that certain scale parameter kernels, including in particular
one called the Daniell, may be interpreted as approximately averaging periodogram ordin-
ates. The Daniell in turn is dominated by the QS kernel in terms of the MSE criterion,
and is nearly as complex computationally. So, while we recognize that theoretical or
simulation evidence on the behaviour of such estimators may turn up important results,
we do not view such analysis as a pressing priority.

The second class fits a vector AR or ARMA to cross-products of instruments and
disturbances, and uses standard filtering formulae (e.g., Priestley (1981, pp. 600-604)) to
construct an estimate of S. It is not obvious that this second class is well approximated
by one or another scale parameter kernel, and detailed consideration of such estimators
is in our view a priority for future research. Andrews and Monahan (1992), however,
show that if the number of lags in the autoregressive model is very small relative to sample
size, so that conventional parametric theory may be applied to the estimates of that model,
one can extend the theory of Andrews (1991) to cover estimates of .S that combine (a)
prewhitening by a low-order VAR with (b) estimation of the spectral density of the VAR
residual using a scale-parameter kernel. When step (b) is done with a procedure such as
Andrews’ or ours, that step will be asymptotically optimal in the class that prewhiten with
a given and fixed number of lags in the vector autoregression, but may or may not
asymptotically dominate the same procedure applied to the original, non-prewhitened
data.

The formal theory in the next section of this paper does not consider prewhitening;
see the working paper version of Andrews and Monahan (1992) for some illustrative
calculations of when prewhitening is asymptotically preferable. We do however, experiment
with prewhitening in the simulations reported in Section IV and find, as did Andrews and
Monahan (1992), that prewhitening tends to improve the accuracy of test statistics. Our
recommended procedure, then, includes prewhitening, and proceeds as follows.

For clarity, assume that the Bartlett kernel is used. As above, let i, be the scalar
regression residual, Z, be the (r x 1) vector of instruments. If the first element of Z, is the
constant term, let the weight vector be

w=011...1);
other choices of w are possible and are discussed briefly in the next section. Also let
h=Za, A=Y hhi_ (X, he—ihio)™ ki =h,— Ah,_,,
n=[4(T/100)*”],
&=(T=1)7" T, {WhDWhI-)},j=0,...,n,
§V=23" j6;, 8% =60+2%,_, &, 7=1.1447({s"/5})'",

(2.2)

Thus, A is the (rxr) matrix of VAR(1) regression coefficients obtained by regressing
cross-products of instruments and residuals on their first lag, 4 is the resulting (rx 1)
vector of period-t residuals; &; is defined using (7— 1) rather than T~' to account for
the observation lost in fitting the VAR(1). We estimate the population quantities s =
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2%, jojand s¥=00+237 | 0; by truncating these infinite sums at a point indexed by
the lag selection parameter n. For a given value of m, the estimate of S is constructed as

I-A)'Stu-47",
S ={Qut+ 3L, {1-j/m+ D} Q+O}, &=(T- 1" 37, hlhlL, j=0,.
(Note that we have redefined Q,-.) We recommend initially setting
m=[9T"'"]

and then exercising some judgment about sensitivity of results to exact choice of » and
m—say, by increasing and decreasing n.

This procedure still involves choice of a parameter, the lag selection parameter n. But
there is some evidence from the literature on density estimation that the final result (here,
an estimate of the variance-covariance matrix) is less sensitive to » than to m (Silverman
(1986, p. 58)).

III. THEORY

We assume that estimation has exploited an orthogonality condition Eh,(6,)=0, where
the (rx 1) vector A, is mean zero and covariance stationary (see below) and 0, is the
unknown parameter. In an ordinary linear least-squares regression, for example, 4, is the
vector of cross-products of right-hand side variables and regression disturbance. As is well
known (e.g., Hansen (1982)), for inference on 6, it is necessary to estimate

S=Y o Q=Q+ Y7, (+Q), Q=Ehhi_;. (€R))

Apart from a factor of 2z, S is the spectral density of 4, at frequency zero.
As in Anderson (1971) and Andrews (1991), the estimators of S that we analyze
formally can be written as

S=3 kG = 0+ 3T k(i/m(TY)(+ ), (3.2)

where T is the sample size, m(T ) is a data dependent bandwidth, k is a kernel, and €; is
an estimate of Q; defined below.* Examples of kernels include the Bartlett, Parzen and
quadratic spectral (hereafter, QS). We take the kernel as given. Our aim in this part of
the paper is to develop an automatic procedure for choosing #(7) that will be optimal
in a sense defined below. On choice of kernel, see Priestley (1981) and Andrews (1991),
who, using an asymptotic mean squared error criterion, recommend the QS.

We make the following assumptions on the kernel:

Assumption 1. (a) k(0)=1, k(x)=k(—x), | k(x)| bounded, _[fw | k(x)| dx < o0, k(x)
continuous at zero and all but a finite number of other points; there is a finite, non-zero
q>0 that is the largest real number such that

lim; o {1-k(x)}/|x|"=c,
for some 0<¢, < 0.
(b) |k(x)—k(y)| <c|x—y| for some ¢>0.

4. The formal theory presented in this section does not allow for prewhitening, although it is clear from
Andrews and Monahan (1992) our procedure remains valid given the T'/? consistency of the VAR regression
coefficients.
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(c) k(x) has [g]+1 continuous, bounded derivatives on [0, x], for some x>0, with
the derivatives at x=0 evaluated as x—0".

Assumptions 1(a) and 1(b) are standard, appearing in Anderson (1971) or Andrews
(1991). Assumption 1(c) is new here, but will not be binding in practice since it holds for
all of the kernels in Anderson (1971) and Andrews (1991).

For a matrix A =(a;), let | - | denote the max norm max;;| a;| . We make the following
assumptions about the data and estimator of 6,:

Assumption 2. (a) h(0)=h(z,, ), where h(z, 6) is measurable in z for all §, and
twice continuously differentiable in 6 in a neighbourhood N of 6,, with probability one.

(b) Let h,o=0h,/00, hiyee=0"h;,/0000’, where h;, is the i’th component of &,. There
is a measurable function f(z) such that supy |h(0)| <f(z), supwy |he(0)| <f(2),
supy | hies(0)| <f(2), i=1,...,r, where for some finite constant D, E{f(z)*} <D.

(©) (h(6o)’, vec (h,e,— Ehyp,)")' is zero mean and stationary to fourth order; S (defined
in 3.1) is positive definite; (h;, vec (h,6,— Eh.g,)')’ has absolutely summable fourth cumul-
ants and p-summable autocovariances (so, e.g., Zj‘.’:_w [j1719;] <oo, for Q; defined in
3.1).

(d) T'2(6-05)=0,(1).

Assumption 2 is also made in Andrews (1991).
We make the following assumptions on the relationship between the data and the
kernel:

Assumption 3. (a) p>q+0-5+0-25¢" (where p is defined in Assumption 2, g in
Assumption 1).

(b) Let d=0-5{(2g+1)/(2p+1)}. Then |k(x)| <c|x| ~* for some ¢>0 and some b
satisfying 6> 1+ {(1—2d)q—d}".

Andrews (1991) and Andrews and Monahan (1992) maintain conditions similar to those
given in Assumption 3. Note that Assumption 3 implies that 0< {(1—2d)g—d}~". For
any kernel for which k(x)=0 for | x| >1 (a group that, to our knowledge, includes all
kernels used in practice except the QS), Assumption 3(b) holds trivially for arbitrarily
large b. For the QS kernel, Assumption 3(b) requires p>23/4, a constraint that we discuss
below.

We assume that one is interested in estimating w'Sw, for some (r X 1) weight vector
w. One has available a sequence of estimates {wr} that converge in probability to w at a
suitable rate:

Assumption 4. T D(w,.—w) 50,

It is possible that wy is non-stochastic, say wr=w=(011...1)’, as in our Monte Carlo
work below. Alternatively, since, in general, one is ultimately interested in estimating not
S but a variance-covariance matrix, say, ¥, which is, say, (a X a), one might have w'Sw=
(ea’'H)S(H'a)=a'Va, for some (ax 1) weight vector @ and some (a X r) matrix H, with
wr=a'Hy. For ordinary least squares, for example, with a vector of right-hand side
variables X,, H=(EX,X))™", Hr=(T"'¥,_, X,X})"". In this example and more generally
T'*(wy—w) is bounded in probability, so Assumption 4 is easily satisfied.
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Consider first optimal choice_of bandwidth m(T) in the hypothetical case where
h,=h(z,, 0,) rather than h,_h(z,, 6)) is observed. Let

O'j=WI W, (33)
SP=372 il WQw=Y>"__ |jl%o; forg20; 0°=1=>52=y2 0, (34)
Q=T"'Y_, hhi-; forj20,8,=0"; forj<0. (3.5)

Lemma 1. Let
8= k=00 + 37 K€+ 83) (3.6)

where k;=k(x;), x;=j/m(T), and {m(T)} is a non-stochastic sequence of bandwidths such
that m(T)— oo as T— oo, with m(T)?/T—0, m(T)/T—0. Suppose that 5P #0. Then no
sequence of bandwidths ytelds a smaller asymptotic mean squared error (smaller limy_,
E{normalized w'(§— S)w}?) than if m(T)=yT"/®1*V, where

1/(2g+1)
y=c,{sP/sP}2/P*D ¢ = (qci/ J kz(x)dx> . 3.7

The bias-squared component of the MSE is {y %c,s'?}, the variance component is
2y(s?)* [ k*(x)dx; the normalization factor is T¥1+"

Lemma 1 follows by finding the y that sets to zero the derivative of the standard
expression for the mean squared error (Hannan (1971, p. 286), Priestley (1981, p. 568)).
See Andrews (1991) for a proof under the conditions assumed here.

In practice, of course, y is not known, nor can 3; be computed since A, is not observed.
Suitable sample counterparts to the objects in Lemma 1 must therefore be used. To this
end define:

Q=T7" Z t=jr ,h'_, forj=20,Q,=Q"; for;<0, (3.8)
0',=wrf2jwr= T! Z,=j+, w'ph,h;_iwr, (3.9)
§O=3"__, |j|q&,. forn, g20;0°=1=50=y"__ 4, (3.10)
P=c, (8D /5@ ¥0a+D, (3.11)

=k(xj), %=j/pTV?*D, (3.12)

ki=k(%), %=j/(7T"** "] +1), (3.13)

S=3 Q=00+ YT ki + D), (3.14)

S=Y i Q=0+ 3 K+ ). (3.15)

In (3.10), the dependence of §? and § on the lag selection parameter n is suppressed
for simplicity.

As is suggested by (3.10) and (3.11), we will propose obtaining # through use of a
truncated autocovariance estimator of §® and §. In principle, one could use a kernel
other than the truncated. We recommend the truncated because it is the easiest to compute
and is efficient in a mean squared error sense (Anderson (1971)). Equation (3.11) is to be
applied by first squaring the quantity in braces, and then computing the 1/(2g+ 1) root
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of the result. It follows that 7 will be positive even if §@ or §@ are negative, so our earlier
(1987) reasons for recommending against using a truncated estimator for S itself are not
relevant.

Andrews (1991) suggests obtaining § and § by fitting ARMA models of fixed
order and using the estimated coefficients to compute the implied infinite sums; Andrews
and Monahan (1992) suggest prewhitening with a fixed-order AR before following the
Andrews (1991) procedure. Our own procedure obviously is useful when 4, does not follow
an ARMA process. But an advantage likely to be of more relevance in practice will be
when it is reasonable to suppose that A, is well approximated by an ARMA process but
the order of the process is unknown. Andrews (1991) and Andrews and Monahan (1992)
require a fixed order for the ARMA process and for the prewhitening AR process. But
we allow n— oo as sample size — o0, so our procedure still yields the optimal estimator in
such a case. Our procedure is also simpler computationally, in our opinion, especially
when accurate estimation of 5 and 5 requires estimation of a high-order ARMA process
for h,. That high orders might be required in practice is suggested by Cochrane (1988),
who, in a related context, has argued that for economic data low-order ARMA processes
tend to yield poor estimates of infinite sums of autocovariances such as s” and 5.

In (3.14) and (3.15), S and S differ only in that S uses a real bandwidth (as suggested
by Andrews (1991)), S an integer bandwidth. We show that the two are asymptotically
equivalent for most kernels used in practice (an exception is the QS). Choice between the
two thus depends on convenience. To prevent confusion, we note that even in a model
with a single instrument (r= 1), there is a difference between §” and S. 59 is a truncated
autocovariance estimate, while S uses a non-trivial kernel, which according to Assumption
1, must not be the truncated kernel.

The key question is how to choose the lag selection parameter » in (3.10) as a function
of sample size and data. For real bandwidths, this is considered in Theorem 1, whose
proof is in the Appendix.

Theorem 1. Assume sV #0. Let § be estimated so that

{1 -4e/Qa+ D) 20 -9y, -1 0 (3.16a)
T =4/Ca+ Dy 0, (3.16b)
Jfor some & such that |
(g+0-5)d<e<0-5g—(26—2)"". (3.17)
Then
T9/Ca+ ')(W'TS'WT— w'Sw)50. (3.18)

The smoothness of the spectral density of (h;, vec (h,,)')’ at frequency 0, which is
indexed by p, sets a lower bound on how fast one can increase the lag selection parameter
n; the characteristics of the kernel, which are indexed by ¢ and b, set an upper bound.
Assumption 3(b) guarantees that in (3.17) (g+0-5)d<0-5¢— (2b—2)"". In our discussion
of Assumption 3 above, we noted that it will hold for the QS kernel only if p>23/4. It
is doubtful that a constraint like p>23/4, or any other manifestation of the potentially
tight bounds on the rate of increase in n implied by Theorem 1, will be binding in practice,
since it is highly unlikely that an investigator would suspect that the autocorrelations of
his data die out at a specific slow rate such as that suggested by p <23/4. Insofar as an
investigator has a prior on p, it is often that implied by the assumption that 4, and A,
~ ARMA of finite order, in which case p= oo and d=0. Then Assumption 3 will not bind
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for any kernels used in practice, (3.16a) is satisfied as long as n— oo, and the left-most
inequality in (3.17) is satisfied as long as 0<g. Together with (3.16b), the right-most
inequality in (3.17) yields the following implied rate of increase of n for some common
kernels:
Bartlett: n—o, n/T*° -0,
Parzen: n—o0, n/T**-0,
Quadratic Spectral: n— o0, n/T**-0.
The rate for the Parzen (Bartlett) also applies to the many other kernels for which g=2
(g=1) and k(x)=0 for | x| >1; see Anderson (1971) and Priestley (1981) for examples.
We now consider integer bandwidths, which may make for more convenient
computation.

Theorem 2.  Let the assumptions of Theorem 1 hold, with Assumption 3(b) strengthened
so that
b>max (1+{(1-2d)q—d} ", 3). (3.19)
Then
T D(wiSwr—w'Sw) 50. (3.20)

The condition (3.19) applies to any kernel for which &(x)=0 for | x| > 1, but does
exclude one kernel sometimes used in practice, the QS.

What happens if 4, happens to be serially uncorrelated, but the researcher does not
know this and applies our procedure? Theorem 3 establishes that a consistent estimate
will still result.

Theorem 3. Assume that Ehh;_;=0 for j#0, so that s9=y=0. Then under the
conditions of Theorem 1,

Ly

5S. (3.22)
Under the conditions of Theorem 2,
S5S. (3.22)

It should be noted that it is possible to have s?=0 even if 4, is serially corre-
lated. A scalar example is h,~MA(2), EW?=1, Ehh,_,=0, Ehh,_=—0-25=5% =
Eh}+4Ehh,_,=0. It is possible that our procedure will then lead to an inconsistent esti-
mate of .S, but such cases clearly are singular.

IV. MONTE CARLO RESULTS
A. Description of Estimators

Using OLS estimation of various regression models, we experiment with Bartlett, Parzen,
quadratic spectral (QS) and truncated kernels, in some cases with the VAR (1) prewhitening
described in Section II and below. We used integer bandwidths for the Bartlett and Parzen
kernels, which satisfy the conditions of Theorem 2, real bandwidths for the QS kernel,
which satisfies Theorem 1 but not Theorem 2. The truncated kernel satisfies the conditions
of neither theorem (assumptions 1(a) and 1(b) both fail). For this kernel, as well as in
some of the computations with the Bartlett and QS kernels, we used bandwidths not
chosen in the data-dependent fashion suggested by our theory.
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TABLE 1
Summary of kernels and estimators

A. Formulas for estimators of S

(1) Bartlett Qo+, {1-j/(m+D}Q-)
() Parzen Qo+ Y A 1—6(j/{m+1} ) +6(j/{m+1})’ Y+
+X ton+ 17241 2{1-G/im+ 1P EQ+4)
(3) Quadratic Qo+2 Tk (4 + Q)
Spectral

25 (sm (67x,/5)
127°x \  6mx;/5
(4) Truncated Qo+3T, €+

(5) Population Qo+z ~1 (@)

kj=kj(Xj)= —Cos (6”XJ/5)>

B. Key parameters

1) ) (3) )
Max rate of increase
of lag selection Asymptotic MSE

q ¢y parameter n relative to QS
(1) Bartlett 1 1-1447 o(T?? o
(2) Parzen 2 2-6614 o(T**) 1-086
(3) Qs 2 1-3221 o(T*®) 1-0
(4) Truncated 0 na. n.a. 0-0
(5) Population n.a. n.a. na. 0-0
Notes:

1. € is an estimate of the j-th autocovariance of either (a) the cross-products of mstruments and regression
disturbances (h ), or (b) the residual from a VAR(1) estimated for such cross-products (h ).

2. Let &;=w'Q;w, where a given experiment’s weight vector w is defined below; let $=c,{§9/§©@}¥Ca* D
where 9 =23 _ j8;, §”=60+23]_, 6;, 4, ¢y, and n are as in Table IB, and the exact values of n used i in

the experiments are given below; T is the sample size. Then in our recommended procedure, m= [pT'/?* M
for the Bartlett and Parzen kernels, where “[-]” denotes “integer part of” and m is as in Table IA,
x;=j/($T"?* V) for the QS kernel, where x; is as in Table IA.

Panel A in Table I lists the formulas for the four kernels, as well as one for the population
value that is to be estimated. For notational simplicity, we suppress any data-dependence
of the bandwidth m. The formula for the Bartlett kernel, for example, maps into the
previous discussion by defining k;=1—j/(#1+ 1) for j<m=[§T'"?], k;=0 for j>rir. Panel
B lists some key parameters for each kernel. For prewhitened kernels, the estimate of S
was adjusted by the estimate of the VAR(1) regression coefficients as described below.
Table II presents a complete list of the kernels used in the Monte Carlo experiments.
Panel A describes some estimators that do not use our procedure to obtain the bandwidth
or lag truncation parameter. We include these for comparison. In line (1), the rule for
selecting the bandwidth of the Bartlett estimator is one used by Schwert (1987) in a study
that considered in part finite-sample properties of this estimator in a unit-root context. In
line (2), the bandwidth is selected by the sort of procedure suggested by Andrews (1991)
and Andrews and Monahan (1992). Let ¢ be the estimated first-order autocorrelation
coefficient of w'h, or wh! (h! is the residual after VAR(1) prewhltemng, see below). The
bandwidth is set to 1-3221 {4¢?/(1— $)*}/*T'*=#T"'/*, which is optimal if w'h, (or the
residual after prewhitening) follows an AR(1) in population (Andrews (1991)). Since that
is not the case with our data-generating processes, this procedure is consistent but not as
efficient as the one proposed here. In line (3), the truncated estimator was used by, e.g.,
Hansen and Hodrick (1980). The formula “[4(T/100)'/°]” was chosen by analogy to that
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TABLE 11
Estimators used in Monte Carlo experiments

A. Feasible estimators, bandwidth not chosen by our procedure

Formula for Relevant lines in:
Kernel bandwidth m Prewhitened? Table IV Table V
(1) Bartlett [4(T/100)"/4] No 1 1
(2) Qs? yT'? No 2 2

Yes 3 3

(3) Truncated [4(T/100)'/%] No 4 None

12 None 4

B. Estimators that are not feasible

(4) Population S n.a. No 5 5
(5) Bartlett [yT'? No 6 6

C. Feasible Estimators, Bandwidth Chosen By Our Procedure

Formula for lag selection Relevant lines in:
Kernel parameter n Prewhitened? Table IV Table V
(6) Bartlett [4(T/100)*°] No 7 7
[12(7/100)*°) No 8 None
12 No None 8
[3(7/100)*°] Yes 9 9
(7) Parzen [4(T/100)*%] No 10 10
[12(T/100)*%%] No 11 None
12 No None 11
[3(T/100)**] Yes 12 12
8) QS [4(T/100)*%] No 13 None
12 No None 13

Notes:

1. See notes to Table I. . .

2. In line (2) 7 was estimated by computing s and s from an AR(1) fitted to w'h, or wh], where a given
experiment’s w is defined in Table III and A, and hf are defined in note 1 of Table I.

for the Bartlett estimator in line (1), with the “1/5” exponent somewhat arbitrary; the
smaller this exponent, the more efficient asymptotically is this estimator. The formula “n=
12” for the other truncated estimator was chosen because it was known a priori in the
experiments reported in Table V that all autocovariances after the twelfth were zero.

Panel B describes two estimators that are not feasible in actual application, which we
use to gauge the effects of sampling error in estimation of y and the autocovariances of
h,. The estimator in line (4) uses the population spectral density, the one in line (5) a
Bartlett estimator using the population value of y. The latter sets the number of lagged
autolc;?variance used (m, in the notation of line (1) of Table I) to the non-stochastic vlaue
[y

Panel C of Table II describes the kernels that choose bandwidths optimally. The
“2/9” exponent in line (6), as well as the “4/25” and ““2/25” exponents in lines (7) and
(8), were chosen to let the lag selecton parameter n increase at the maximum rate allowed
by the theory.’ Results when a “1/9” exponent was used for the Bartlett kernel were
similar to the “2/9” results.

5. Strictly speaking, they let n increase at slightly too fast a rate. We use them nonetheless, for notational
simplicity, since, for our samples sizes (< 1000), the resulting values of n would be the same if we used technically
acceptable exponents of 200/901 in line (6), 400/2501 in line (7) and 200/2501 in line (8).)
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In panel C, the factors of 4 and 12 were chosen to mimic Schwert (1987). For
prewhitened kernels, the factor of 3<4 was chosen because prewhitening will tend to
reduce serial correlation. All prewhitened experiments were also done with a ““6” replacing
the ““3,” with very similar results. Once again, some of the kernels set n=12 independent
of sample size because it was known a priori in the experiments reported in Table V that
all autocovariances after the twelfth were zero.

All our experiments used OLS estimation. For y, and X, defined below, write the OLS
regressmn as y,=Xi0p+u,. Let 6= (Z xX.xn™! Z X:y. be the OLS estimate,

=y,— X,0 the OLS residual, h, X i, cross -products of right-hand side variables and
_res1dua1 ALS_ZT h h’ | (Z, 5 h, lh ) _the VAR(1) regression estimate, A be ALS
adjusted in a_ fashlon that guarantees that A has eigenvalues of modulus less than 0-97
(see below), ht=h,— Ah,_, the residuals corresponding to the adjusted VAR(1) estimate.
Then the asymptotic variance covariance matrix used in computing test statistics was

(T'Y, X.X))™" (estimate of S) (T7' ¥I_, X, X})™". 4.1)

For non-prewhltened estimators, the estimate of S in (4.1) was computed as indicated in
Table I, using the sample autocovariances of /,. For prewhitened estimators, the estimate
of S in (4.1) was computed as

I-A)7'StU-4)7", or(I-A)'Stu-47",

where 5" and ST were computed as indicated in Table I, using the sample autocovariances
of h'r In all experiments, the first element of X, was a constant term and the weight vector
wwassetto (011. 1)

The adjustment of AvLs to insure eigenvalues of modulus less than 0-97 is as in Andrews
and Monahan (1992): Let B and c be (r x r) matrices whose columns are the eigenvectors
of 4 LSALS and ALSALS ,Als= B ALSC A the matrix that results when the diagonal elements
of Ars greater than 0-97 are replaced by 0-97 and those less than —0-97 are replaced by
—0-97; then 4=BAC. (As reported in the additional appendix available on request, our
results showed little sensitivity to this adjustment, so the procedure that we recommend
in part I omits such an adjustment.)

B. Overview of experiments

We performed two sets of experiments, each motivated by a different body of empirical
literature. In each experiment, the number of repetitions was 1000, and the same 1000 sets
of data were used for all kernels. The first of our two sets, which consisted of two experi-
ments denoted Al and A2, was stimulated by the literature on testing for Granger causality
in the bivariate money-income process. One way to test for Granger causality from money
to income is to estimate by OLS a two-sided projection of money onto income and test
the null that the coefficients on future money are zero (Sims (1972)). The residual from
this projection will in general display serial correlation of an unknown form, and so the
procedure we have developed here is relevant.

To calibrate these experiments, we obtained monthly data on M1 and industrial
production, seasonally adjusted, 1959:9-1988:2. After taking both monthly and quarterly
log differences, we estimated the one-sided projection of y,=growth in M1 on x,=growth
in industrial production. We also estimated univariate processes for u,=the residual to
this projection and for growth in industrial production. The sample size was 342 for the
monthly regression, 110 for the quarterly. Two data-generating processes were then
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TABLE III
Description of Artificial Data

A. Experiments Al and A2
Y=01+0,x,+ - - +0sx,_4+u, (A1)
=60,+0,x,+- - ~+06x,_4+07x,_5+93x,_6+u, (AZ)

x,~AR(p) with i.i.d. normal innovations,
u,~AR(p) with i.i.d. normal innovations,
X, us independent all ¢, s;

Al: p=4; A2: p=6;
6;’s and parameters of x, and u, processes given in footnote 6;
Al: estimate y, =0+ 0,x,+- - - +06x,_4+ 07%,41+ O X, 2+ u,, test Hy: 0,=05=0.
A2: estimate y,=0,+0,x,+ - - +03x,-6+ 05X+ 1+ 010X,4.2+ 011 X, 4.3+ u,, test Hy: O5=0,0=0,,=0.
Al: First 10 autocorrelations of wh,=(01... 1)X,u,=0-226, 0-121, 0-133, 0-124, 0-050, 0-029, 0-024, 0-018,
A2: gi?sltli(()):l?tsc;correlations of wh,=(01...1)Xu=0-307, 0-101, 0-158, 0-021, 0-106, 0-088, 0-021, 0-029,
0-013, 0-007.
B. Experiments Bl and B2
x;=e,—fi—iz,e=e_1+n,t+e_\,fi=e+é&;

1., & independent, &~ N(0, 02); d2=5;

7.~GARCH(1, 1), n,/(a%)' >~ N(0, 1),

%=1+0-05 i, +0-85b02, (B1)

0%,=1+0-30 n?_,+0-60b02 , _, (B2)
Bl and B2: Estimate x,=0,+ 0,x,_ 3+ 03x,_ 14+ u,, test Hy: 0,=0,=05;=0.

B1: First 10 autocorrelations of (0 1 1).X,u,=w'h,=0-883, 0-738, 0-606, 0-487, 0-381, 0-288, 0-208, 0-141,
0-087, 0-046

B2: First 10 autocorrelations of (0 1 1).X,u,=w'h,=0-874, 0-722, 0-587, 0-468, 0-365, 0-275, 0-200, 0-137,
0-086, 0-048

Notes:

. A2 Bl B2
1. Sample sizes:
100 300 300, 1000 300, 1000

2. In all experiments number of repetitions = 1000.

defined, one in which the parameters were matched to those estimated for the quarterly
data (experiment Al), with the other to the monthly estimates (experiment A2).

Panel A of Table III describes the regression models, where, in a slight abuse of
notation, the scalar elements of the unknown parameter vector 6, are denoted
0,,0,,...,0,,r=6 (experiment Al) or r=8 (A2). The data were generated by using the
indicated AR(p)’s (p=4 for Al, p=6 for A2) to generate T=100 (A1) or T=300 (A2)
observations on x, and u,, then using the parameters listed in a footnote® to generate y,.

6. Experiment Al: y,=0-1575792E-01 +0-1364678x,—0-1199439x,_, — 0-3374262E-01x,_,—
0-3113678 E-01x,- 3 —0-1205284E-01x,_ 4 +u,, x,=0-005911203 +0-4717572x,_,—0-07913229x, _, +
0-04288376x,_3—0.07724863x,_4+ &1,; £1,~N(0, 03), 6y =0-01873203; u,=0-18866313u,_, +
0-05309064u, _ ,+0-1041030u,— 3+ 0-1213361u,_ 4+ &,; €5~ N(0, 03), 02=0-0096223922. Experiment A2: y,=
0-5031414E-02+0-2002929 E-01x,+ 0-2521308-02E-02x, — ; +0-2052117E-01x,_ , — 0-4798466 E-O1 x,_ 3 —
0-3796021 E-01x,_4+0-1133342E-03x,_5s—0-1039753E-01x, ¢ +u,; x,=0-001327165+0-3821891x,_,+
0-04460943x,_, +0-05424138x, 5 +0-08620320x, s — 0-06192332x, _ s+ 0-0186440x, _¢ + £1,; &1,~ N(0, 5?),
0, =0-00811155; u,=0-3367596u,_, —0-07424469u, _., +0-1934595u,_ ;— 0-1437814u,_ 4+ 0-171065%, _ s +
0-01611501u,_6+ &35 &2~ N(0, 63), G2=0-00454424,
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The actual initial historical values of money growth were used as initial conditions in
generating x,. The initial u,’s were set to zero, and the first 100 observations generated
were discarded (i.e., observations 101-200 (A1) or 101-400 (A2) were used to generate
¥). The innovations in x, and u, were assumed normal and independent, so there is no
conditional heteroskedasticity. The population autocorrelations of w'h, reported in the
Table were computed analytically. So, too, were the autocovariances of 4, the first 60 of
which were used to compute the population value of S (row 4 of Table II, row 5 of Table
IV). (The infinite sum was approximated by the sum of the first 60 terms because for both
Al and A2 the last 20 lags (lags 41 through 60) caused s=w'Sw to change by less than
107 of one percent.)

Panel B of Table III describes the setup of our second set of experiments, which was
motivated by the literature that tests whether the log of a forward exchange rate (f;—,; in
the notation of panel B) is an efficient predictor of the log of the corresponding spot rate
(denoted e,)—i.e., whether f,_13=E,_;e,.” The lag of 13 comes from Hansen and Hodrick
(1980), who used weekly data and a 13-week-ahead forward rate. The test we use is one
of theirs, obtained by regressing the realized difference between the two rates (x,=e,—f;-13)
on a constant and x,_,; and x,_4, and testing whether all three coefficients are zero.
Under the null, cross-products of regressors and the disturbance will follow a MA(12)
process.

As indicated in panel B, we assume that e, follows a random walk with GARCH(1, 1)
disturbances, a process consistent with the results of many recent studies of weekly bilateral
dollar exchange rates (e.g., West and Cho (1994)); h, will therefore be conditionally
heteroskedastic in these experiments. Since the coefficients on n7_, and 62, sum to 0-9,
the data display the substantial serial correlation in the conditional variance of e,—e,_;
that is suggested by such studies. When the coefficient on 77—, is 0-05 (experiment B1),
the formulas in Bollerslev (1986) indicate that 4, has finite fourth moments, as is required
by our theory. When this coefficient is 0-30 (experiment B2), 4, has finite second but not
third moments; this is inconsistent with our theory but seemed worth studying since some
empirical estimates do indeed imply that such moments do not exist.® The variances of
e, and 7, were chosen so that the implied unconditional variances of e,—e,_, and e,—f;_ 3
matched those of weekly data for the Deutschmark-dollar, 1971-1991.

For both Bl and B2, two sample sizes were used: T'=300 is roughly that of Hansen
and Hodrick (1980), 7= 1000 roughly that currently available to a researcher using weekly
data from the current floating exchange rate era. To generate a data set, the initial o5
was set to the unconditional variance of e,—e,—, and 1, was drawn from a N(0, %)
distribution. 1100 observations were then generated, the first 100 of which were thrown
away. Observations 101-400 were used when T=300, observations 101-1100 when 7=
1000. Once again, the population autocovariances of w'h, and of h, were computed
analytically.

C. Simulation Results

Table IV has sizes of nominal 1, 5 and 10% tests for experiments Al and A2. All the
feasible kernels over-reject, with sizes of nominal 5% tests, for example, ranging from

7. That this follows under the indicated data-generating process may be seen by beginning with e,=
e-1+1n+&-, and then recursively substituting out for e,_,, then e,_,,..., then e, yielding
e=e,-13te-int 77:"‘2,':, Mi-13e1t E-13+)=E - 136,=6€,- 13+ & 13.

8. See Hansen (1992) on consistency of covariance matrix estimators when fourth moments do not exist.
As Hansen (1992, p. 969) notes, the asymptotic mean squared error criterion we use is not obviously applicable
when such moments do not exist.
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TABLE IV

Sizes of nominal 1, 5, and 10% Tests, Experiment A

(¢)) 2 (3a) (3b) (42) (4b) (40 (5a) (5b) (5¢0)
Bandwidth m
i or lag selection Experiment Al Experiment A2
Kernel PW? parameter n Size Size ‘
Al A2 1-0 5-0 10-0 1-0 5-0 10-0
1. Bartlett 4 5 45 12-4 18-6 2-7 81 14-0
2. QS-AR(1) n.a. n.a. 36 11-6 17-4 30 85 151
3. QS-AR(1) y n.a. n.a. 39 11-2 17-3 2-3 73 13-4
4. Truncated 4 5 9-0 18-3 24-6 4-8 11-8 18-2
5. Population § n.a. n.a. 0-3 1-4 3-8 0-5 2:5 5-8
6. Bartlett, population y 8 13 59 14-9 20-9 4.5 10-7 16:7
7. Bartlett 4 5 46 131 19-7 35 93 150
8. Bartlett 12 15 11-0 19-7 27-0 52 11-6 17-9
9. Bartlett y 3 3 4-8 129 19-1 30 85 14-1
10. Parzen 4 4 55 15-3 217 33 9-8 15-4
11. Parzen 12 15 17-0 256 34-1 7-9 14-7 21-5
12. Parzen y 3 3 51 13-4 20-8 33 9-8 155
13. QS 4 4 5-0 14-0 21-4 31 9-1 153
Notes:

1. Column 1 gives the kernel. See Table I.

2. In column 2, a *y” indicates that VAR(1) prewhitening was done prior to kernel-based estimation of the
spectral density.

3. For m and n defined in the notes to Table I, columns 3a and 3b, rows 1, 4 and 6 give the bandwidth m;
other non-zero entries give lag selection parameter n; 7=100 in Experiment A1, T=300 in Experiment A2. The
two experiments differ not only in sample size but in other dimensions as well; see text. The rule used to choose
the lag selection parameter n is presented in Table II.

4. In columns (4a), (4b), and (4c), rows 1-13 give the actual sizes of nominal 1, 5 and 10% tests, for experiment
Al. Columns (5a), (5b), and (5c) do the same for experiment A2.

about 10 to about 25%. So, too, does the non-feasible Bartlett kernel that uses the popula-
tion bandwidth (row (6)). That the (non-feasible) kernel using the population S under-
rather than over-rejects (row (5)) indicates that error in estimation of the autocovariances
is in part responsible for the over-rejections. Comparison of rows 2 and 3, 7 and 9, and
10 and 12 indicates that prewhitening usually leads to a small improvement.

Table IV suggests to us the following. First, in this experiment, there are no firm
grounds for preferring our procedure over the others we consider; indeed, to a referee
and perhaps others it suggests that the QS-AR(1) procedure, which in its prewhitened
form (line (3)) was most accurately sized of all feasible estimators in all columns but (4a),
should be used. Second, in samples as small as that in these experiments (7= 100 and T=
300), our procedure performs less well with a relatively large lag selection parameter:
compare lines 7 and 8, and lines 10 and 11. Third, within the class of estimators that use
our procedure, the experiment suggests no particular grounds for preferring one kernel
over another. The Bartlett, Parzen and QS kernels in lines 7, 10 and 13, each of which
use a lag selection parameter of 4 or 5 (i.e., 4<n<5), all perform comparably.

This last point will apply in our second set of experiments, so we pause here to suggest
a theoretical rationale for it. Consider an analytical expression for the finite-sample mean
squared error in estimating s=w'Sw, obtained by dividing an asymptotic biased squared
and an asymptotic variance by appropriate functions of sample size. The bias squared and
variance are those for a hypothetical estimator such as that in Lemma 1 that uses cross-
products of regressors and unobservable disturbances rather than cross-products of regres-
sors and OLS residuals. That is, for a given kernel, use the population values of s, s
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and y to compute
T~29/Ca* D (295(@ . constant)” 27+ D 4.2)

where T=100 or T=300, g=1 for the Bartlett kernel, g=2 for Parzen and QS kernels,
and the constant varies from kernel to kernel. It may be shown that apart from the factor
of T72/@4*D_(4.2) is the mean squared error given by Lemma 1.

Expressed as a ratio to the figure for QS, the resulting figures are as follows. Bartlett:
0-76 (experiment Al), 0-88 (A2); Parzen: 1-09 (Al and A2). It may appear surprising
that the MSE for Bartlett is smaller than that for QS, since the QS is asymptotically
optimal by our mean squared error criterion among all kernels that generate positive
semidefinite estimates (Andrews (1991)). To understand why this theoretical figure is lower
for the Bartlett, note first that the MSE for the Bartlett is computed as (asymptotic MSE)/
T?7, for the QS as (asymptotic MSE)/T*?; with a big enough sample, QS will be more
efficient. But for our data-generating processes, 7=300 evidently is not sufficiently big.
The key feature of our data-generating process that makes the Bartlett MSE relatively
small is that sV=2 o =19 (which is relevant for the Bartlett) is small relative to
sP=237, j’o; (whlch is relevant for the QS kernel). This in turn will tend to be true if
the autocorrelations of h, are positive and die out slowly, even if, as indicated in panel A
of Table III, all but a few autocorrelations are small enough that they might be ignored
in traditional Box-Jenkins analysis. As noted in the previous section, Cochrane (1988)
argues that this is a possibility with economic data.

Now, the small magnitude of the 1-09 figure for the relative MSE of the Parzen, and
similarly small figures for some other kernels for which ¢=2, led Priestley (1981, p. 574)
to suggest that which of such kernels one uses is of secondary importance; as argued
above, for economic data, which often seem to have high-order autocorrelations that are
of the same (positive) sign, it is our view that as long as one chooses the bandwidth
optimally, choice of kernel may well be of secondary importance even if one considers
kernels with g=1 as well.

In the actual experiments, the MSE’s of the estimators in lines 7 and 10 (again,
relative to that of QS in line 13) were as follows. Bartlett: 1-01 (A1), 0-99 (A2); Parzen:
1-03 (A1), 0-99 (A2). Thus in practice as well as according to (4.2) QS did not uniformly
dominate other estimators in terms of MSE. However, here and for other kernels, the
very simple asymptotic approximation (4.2) did not perfectly predict the ordering nor the
dispersion of the relative MSE’s. This indicates that sampling error in estimation of the
regression vector, which is ignored in (4.2), is important in practice. More generally, it
illustrates what to us is disappointingly small guidance of the asymptotic theory for the
behaviour of the estimators in experiment A.

The theory, however, is more useful in experiment B. Table V has results analogous
to those reported in Table IV. As in experiment A, all feasible kernels over-reject, as does
the Bartlett estimator that uses the population y (line (6)). Interestingly, each kernel
performs about as well for Bl (for which the asymptotic theory has been shown to apply)
as for B2 (for which it has not).

Nonetheless, the asymptotic theory is useful here. First, rejection frequencies are
closer to nominal levels for sample sizes of 1000 than 300 (compare column (5) to (4) and
column (7) to (6)). Second, the Bartlett estimators that use the data-dependent bandwidth
(lines (7) and (8)) perform markedly better than the Bartlett estimator that does not (line
(1)), while the QS estimator that chooses the bandwidth optimally (line (13)) provides a
(very) modest improvement over one that does not (line (2)). Third, with the larger sample
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size, there is not much sensitivity to how the lag selection parameter n is chosen (in
columns 5 and 7, compare lines 7 and 8, 10 and 11).

In this experiment, the VAR (1) prewhitening results in a distinct improvement in the
accuracy of test sizes. Compare line 2 versus 3, lines 7 and 8 versus 9, or lines 10 and 11
versus 12. In fact, among the feasible kernels, the two prewhitened kernels with optimal
bandwidths are invariably the most accurately sized (lines 9 and 12), and the prewhitened
QS-AR(1) (line 3) is usually but not always the third most accurate.

Once again, it seems that choice of kernel is secondary, given our rule for selecting
the bandwidth. Compare (a) lines 7, 8, 10, 11 and 13, or (b) lines (9) and (12).

Nonetheless, all the feasible kernels have substantial size distortions. This is troubling,
but perhaps unsurprising, in light of the results of Monte Carlo experiments performed
by other authors. Table III indicates that the first-order autocorrelation of these data is
0-88 (B1) or 0-87 (B2). For data-generating processes whose first-order autocorrelations
are of comparable magnitude and sample sizes roughly those of experiments Bl and B2,
Andrews (1991), Keener, Kmenta and Weber (1991), Andrews and Monahan (1992), and
Christiano and den Haan (1993) all find comparable tendencies to over-reject in their
preferred procedures for estimating a variance-covariance matrix.

V. CONCLUSIONS

We have proposed a computationally convenient procedure for automatically selecting
the number of lags to use in computing a heteroskedasticity and autocorrelation consistent
variance-covariance matrix. Monte Carlo experiments provide some support for use of
the procedure, and suggest that careful selection of the number of lags may be more
important than choice of kernel. They also indicate that more accurate test statistics
result if prewhitening (Andrews and Monahan (1992)) is combined with our procedure.
Nonetheless, substantial size distortions remain. An important task for future research is
refining or extending ours or others’ procedures to get estimators whose actual size is
closer to nominal size. Because of the relatively good performance of the prewhitened
estimators, a priority is theoretical and empirical investigation of autoregressive or
autoregressive-moving average spectral estimators (e.g., Berk (1974)).

APPENDIX

Using arguments such as those below, it is straightforward to show that Sand § are O,(1). By Assumption 4,
then, T V(Wi Swr—w'Sw) 50, T"/ @4+ D (wiSwr— w'Sw) 50, In the proofs of Theorems 1 to 3, it therefore
suffices to consider the scalars §=w'Sw and 5=w'Sw, and we redefine &;=ww where &, was originally defined
in (3.9). Let s=w'Sw,

s=wSw=3 "\, kwQw=y""" k6, (A1)
§9O=%_ il (A2)

where S and €); are defined in (3.6). For notational simplicity, we assume that A, is a scalar (i.e., we do not
distinguish between w'h, and A,). In the proofs, ¢ or ¢; is a generic constant, not necessarily the same from
equation to equation.

To conserve space, we omit the proof of Theorem 2, which is similar to that of Theorem 1. A sketch of
the proof is available on request.

Lemma Al. If n—o0 as T—c0 such that n”¢*"'/T—0, (T/n**") var (§9) = O(1).

Proof. The case for g=0 is in Anderson (1971, p. 531). Therefore, assume g0, in which case
var (3)=var 2 Y, j'6)=4%Y, _, ()7 cov (&, &)).
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Let x(:,',") be the fourth cumulant of #. From Anderson (1971, p. 527), cov (6, &;)=
T Z,T=j+, Y i (0050 et O 10+ K (=i, 5= 1,5—1+])]. We therefore have
var G)=4T 255, _ () L/, Dot (01-s00-y-520)
HAT T G T T (Oissi00--)
HAT YY) Y, T k(i s =t s— 1))
=4V, +4V,+4V, (A3)

The desired result will follow if it can be shown that V;, ¥, and Vs are each O(T "~ 'n**"). Consider first
¥\. Making the change of variable k=17—s, we get

IVl=T7 YY), _ .(u)qz_,ﬂzk kO]
= D W WA () L YD YA [ ¥
ad S SN (/) L) YR T ¥ e
=7 2::'_"+. IS [ (Rt %)) L Y [
=7 D D YA ) VR [ X
=T\ @ Pl T 1000kl
ST (X, POE Lol
ST (E. P, lowl)
=0(T™'* )T, loul=0(T'n** ). (A.4)

That V,=0(T 'n**") can be shown similarly. So consider V; in equation (A.3). From Anderson (1971,
p. 530) we see that V;=T"" ZZ:, @) Zf; :1 k(i, —t,j— )¢t i,j), where ¢r is a certain nonstochastic
function satisfying 0<¢r=<1. Thus

VAl ST Sy G S IxG, =t =0
STWEY Y kG =t D)
STWETY S e k(1,1
=0(T™'n™). |

=—oo

Lemma A2. Let n—o0 as T— o0 in such a fashion that for some d, 0<d<1/2.
T —2/12(p =]y~ -0, (A.52)
T™2/Ca+ Dy 0, (A.5b)
Then
T4/~ d(~(q) _s(q))_g)().

Proof. We have T'~% var (39) =(T"%n®*")(T/n**") var (§'”)—0 by Lemma Al, since (A.Sb) states
that 7' ~2(n**'/T) -0 and thus n***'/T—0. The result therefore will follow if | T**~ (s’ — E§©)|>-0. Since
E&;=[(T-j)/Tlo,, 0;,— E&;=T 'jo; and

ITO‘S—d(s(q)_Eg(q))l
=215 57 | Jlo+ T™ 'Y i el
SZTOS dz-"+11 Iaj|+2T 1-5— dzfl_ -O-SIjq+0~So,j|
ST WO B P logl 2T TS T 140y -0,

since 2, j*|0; <co for some p>g+0-5 by assumption 3(a), T~ %n"?~2)-0 by (A.5a), and n/T—0 by
(ASb). |
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Lemma A3. For 0<d<1/2, if n—co as T-oo such that (A.5b) holds, T/~ 3% —5)50.

Proof. A second-order Taylor series expansion of h, around h, yields hy=ho+ho(0—00)+
0 5h,00(0 0,)%, ‘where h,gg is evaluated at a point between 6 and 6,. Let hg=Eh,o. Then for j=0, 6,—&;=
(6~ B0)Ry;+ hig(B — Bo) Roy+ (B — 00)*Ryy+ (6 — 60)* Ry + (8 — 86)*Rs;, where

R,=T" Z 1 [hi(hy-j0— ho) + b (hig — o)),
Ry=T7'Y0_ . (h+h_),
Ry=T"S7_ ., Uhiohi—10+0-Shily 00+ 0-Shi_higo), (A6)
Ry=0-5T"" Z,T_ - [’118;11»-]' o0t h, —j.B;;IGB]y
Rs;=0- 257" Z 4 ,oah,—, 66 -
Then
T(l/l)—d(§(q) _ ~(q)) - T('/z’""(c‘ro— &o) +2(§_ 00)[T('/z""' Z:"=1qu|J]
+2(0 = 00)ho[T /> Y7 _, j*Ry)+2T(0 = 00’ [T /29 ¥7_, j*Ry]
+2T(0 = 00)’[T 2757 j*Ry)+2T(0 = 0)'[T /279 %_ j*Rs). (A7)

We have T'/? 79 (89~ &0) 50. The proof of Lemma A2 is easily adapted to show that '_, j*R; is O,(1) (since
Z," \JORy; is just §9 with cross-moments of 4, and h,e replacing own moments of 4,); absolute summability of
the autocovariances of /, implies that Z _,J*Ry; converges in mean square and thus in probability to zero. Since
T2~4§— 0,) 50 for any d> 0, the terms involving Ry, and R;; are o,(1). For i=3, 4, 5 Assumption 2b implies
that E|R,| <2D=T""/>~“E]| Y JRy| ST an- "O(n"“) 0((n'l*“/”/T")(n/T)“/”)—»o by (A5)=
T4/ dz ,j*Ry50 by Markov’s inequality. Since T(6 — 6,)>=0,(1) by Assumption 2, the summations in
(A.7) involving Ry, Rs;, and Rs; are each o,(1). |

Lemma A4. If n—oo such that (A.S) holds for some d, d<d<1/2, d defined in Assumption 3(b), then
T(I/Z)—d(f(q) —s("’)£>0.

Proof. Follows from Lemmas A2 and A3. |
Lemma A5. If 59 #0, then under the conditions of Lemma A4, T/?~ 44" -y )50,

Proof. Write P7'=g(59,5). A mean-value expansion of ' around y yields P '=y"'+
2139 — 59) + 2,(5@ — 5), where g, =g /05", g, =0g/3s®, and the “*” indicates that the derivatives are eval-
uated at points between §“’ and s, and between §© and 5. Since 59, 5@ £0, dg/osV(s?, sP) =g, < 0,
ag/ag(o)(s(q) (0)) =g,< 0. Then T(1/2) d(,y— y—l) g [T(I/Z) d(*(ll) (ll))]+g [T(I/Z) d(A(O)_S(O))] By
Lemma A3, §@ 559 §O 5O 7 2o % e, The conclusion then follows from Lemma A4. |

Lemma A6. Under the conditions of Theorem 1, T*/?4* "[Z I (kj—k;)(6;,— EG,)] 0.

Proof. Choose v and define a so that
1+(1/(2b-2))<v<1+(q/2)— &;a=[T"?* "] (A.8)

(The assumption on b in (3.17) guarantees that this can be done.) As in the proof of a similar proposition in
Andrews (1991), we divide the sum that is to be shown to be 0,(1) into two parts, for j<a using the Lipschitz
condition inAAssumptiop 1(b), for j>a using the bound on |k(x)| in Assumption 3(b).
Since ko—ko=0, k_;=k;, and k_,-=k
Te/Cah Z —r+| (k —k;)(6,— E6))
=21V ¥ | (k= k;)(6)— E6))+2T9 4+ I k(6,— E&;)

_2Tq/(74+l)z a“ (O'j—EO'j)

52A|+2A2—2A3. (A9)
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Consider 4, first. We have
|| STV 59 k=116~ E8|
a7/ Y 1G/ATY D) = (/y TV V)16, — ESy
éc.[T"/Z’*z‘/‘”*"I?"' —y [T Vet D=/ 26/ D12 ., T"%|6,- EG,|,

where the second inequality follows from the Lipschitz condition. In the final expression, the first term in
brackets is O,(1) by Lemma AS because (q+0-5)d<e<«>2e/(2q+1)>d. Since E|6,—EG,;|<
(E|G,— E&;|%)"/*=var (6;)'/? and var (T'?6,) Sc, for some c, that depends on neither j nor T, the last term
will be o,(1) by Markov’s inequality if 7¢~"/@¢+ D=1/2+2e/Ga+ Dp=l/2 59 0. But this does indeed hold,
since ¥_, j=0(a")=O(T*/®* "), and (g— 1 - (2 +1) +2¢+2v) <0 by assumption.

Now,

|4l STYCHD ST 1K1 65— B

=a+1

_S_CT"/(Z"“’ ij=—;|H Ij/?TI/(qu)I_bld'j_E&jl

— b(q+b)/(2g+1 =172 T -1 .~bml/2) ~
—C‘?T"*' g+ /Zj=a+l-’ T Io.j__E&jl

T-1

Since $?5 %, by the logic used in considering 4,, it suffices to show 7@*®/CGa+ D172 Z,=,+,f"’—>0-

This holds since the summation is O(T"~#*/?4*Y) and by assumption g+b—((2g+1)/2)+(1-b)v<0. A
similar argument shows 4;50. |

Lemma A7. If $5y#0, T[5! | (k—k)EG]50.

Proof. For 0<%;<x (x defined in Assumption Ic), expand I@Ek(fj) around k(0):
k=k(0)+- - - +kP)Z/[q] 1+ K )R /([gl + 1)1,

where k™ is the n’th derivative of k and ;cj lies between 0 and £;. Since limyy_o (1—k(x))/|x|?<c0,
k™(0) =0 for n<gq. After a similar expansion of k,, also around 0, we therefore get

k= k= (K9 /g1 (E7 — x9)+ (1/([g] + D DA DGy
— (/a1 + DK O,

where §; lies between O and x;. This Taylor-series expansion is valid when
£=j/(PT V1 Dy <x, 5;=j/(yT"** V<, e, if

jSj=min {T—1, [xpT"®* D), [eyTVC* V],
Write T O[5! (k—k)ES;) as
2TV Y (k= k) EG+ 2T D YT G EG;— 2T VY K ES,
=2B,+2B,+2Bs.
Consider B;:

By=T/%* (P (0)/1q11) T, [(G/(PT % )= (/T V0 ) )6
T/ + 1)) B KOG/ T D) B,
=T/l + DY T, K GG/ T s,

=By +Bi2+Bus.

If [g]<gq, then since limy_.o (1 —k(x))/(Ix|?))<c0, k'9(0)=0=B,,=0. So _assume [g]=q. Then
Bi=K20)/[gIN(P I~y )T J°EEH0  since  $7—y 7?50, and 1% J°E8)| éZf,.f"lGjl s
Zf;l Jj4ojl<oo. Now consider Bi,. Since the [g]+ I-derivative of k is bounded on [0, x], |EG;| <|o;l,
and f§[x7T'/zq+'], | Bial gc?_["’_'T("_["]_')/(2"”) Z][:?]T‘/(W”ljlqlﬂlajl since Z}‘O_Ijq+0'5|o.j| <00,
loj| Se2f ™0 P o) | Scpj 797 "°=> the final sum in the above inequality for |By| is
O (P=a+OST U =a+0D/C4+ Dy from which it follows that |Bio|50. A similar argument shows that
B|;-£>0=B|£*o.
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Now consider B, defined above. We have
|By Seif* TP/ g TNES|
b(q+b)/(2g+1) 7b 15
ST 2q o j=j+1J -
P 4 B A Bt ] IRy e Y |
since the sum approaches zero for any of the three lower bounds. That B350 can be established by exactly the
same argument. ||

Lemma A8. If 95y #0, T"/(Z"”)[Z -r+| ki(6,- 6)150.

Proof. Write T"/‘z"“)z —~'r+| kj(&j—&i) as
T4 (80— o)+ [2T O T k(6= )] = 0,(1) + [2T"*(8 — 00)G: + 2heT'*(6 - 60)G»
+2T(0 - 80)°G3+2T(8 — 60)°Ga + 2T (8 — 60)°Gs],
G,= T"'””""*"ZJL’," I?,R,-,-, i=1,2,
G=T VDYoL R, i=3,4,5;

see A.6. Since T'2(6— 0,)=0,(1), it suﬂices to show G, 50, i=1,. 5
Fori=1,2, G=T" 1/22/Ga 1y PN "k~ k)R + T ‘/2’/04“)2 'k, ;R;. The proofs of Lemma A6 and

A7 are easily adapted to show that the ﬁrst summation is o0,(1) (since Z,T ,' (k —k;)R; is just er ,' (k —k;)é;
with cross-moments of /4, and h,, replacing own-moments of /,). A standard proof of the consistency of kernel
estimators (Andrews (1991)) shows that the second summation is O,(1), and thus for i=1,2 G;50. For G,, i=
3,4, 5: since k is bounded and |k(x)| Sca|x|®

|G| S e T e~ V@t Zm/ﬂvﬂn |R,| + T a1 +0/Cat D Z [,a/uun]”j 5R,{150
by Markov’s inequality, since, 7°%y® and, by Assumption 2b, E|R,| <2D. |
Proof of Theorem 1. Follows from Lemmas A6, A7 and A8. |
Proof of Theorem 3. Since koé‘o— 6050y, it suffices to show 2 ZT ! k G 2,0. We have

Y k6=3 e+ T k(8- 6))=Hi + H,.
Let
=min (b, 2q+1).

Then |k(x)| <clx|™: for |x| <1, Jk(x)| Sc|x| ™ for arbitrary b'21; for |x| > 1, |k(x)|  cs) x| *=k(x)| S| x| ¥
for any b’ between 0 and b. Let ¢ be as in Theorem 1. Let 1 be chosen so that 0<n<1/2, (¢/2)—&>n(2q+1)/
2b'+0-25{1—[(2q+ l)/b]} this can always be done since (¢/2)— £>0 by (3.17) and 0-25{1 —[(2¢+1)/b'] 0.
Then using |&;| Sc|£;| ™" =¢j P PP T?/ %Y, we get

|H|<ch/(24+I)T—l/2+nT—b/2+(Zcb/(Zq+l)l(T(l/z) 2e/(24+l)y) Z -1 -—bTI/z "|0|
The term in # is 0,(1) by Lemma AS5, since (¢+0-5)d<e=>2¢/(2g+1)>d. The final summation is 0,(1) by
Markov’s inequality. And by assumption, 7 is chosen so that

0>b'/(2q+1)—(1/2)+ n—(¥'/2) +[2eb'/(2q + 1)]=H, 50.
Now consider H,. As in the proof of Lemma A8,
Y k(8= 8)=T"(8— 00)Hy +hoT""*(6 - 60)
+T(8 - 00)Has + T(8— 00)’ Has + T(8— 60)*Hs,
Hz,sr‘/zz_’_"lé.k,, i=1,2,

=T7'y] "kR,  i=3,4,5,
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with R, defined in A.6. The proof of Lemma A8 shows that H, 50, i=3,4, 5. That H,50 for i=1, 2 follows
by writing (R;=(R,— ER;)+ER,; the logic used to show H,;50 shows that the summations involving
(R;— ERy)) are 0,(1); absolute summability of autocovariances maintained in Assumptions 2c and 3a are easily
shown to imply that the summations involving ER; are o,(1). |
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