Econometrica, Vol. 64, No. 5 (September, 1996), 1067-1084

ASYMPTOTIC INFERENCE ABOUT PREDICTIVE ABILITY

By KENNETH D. WEST!

This paper develops procedures for inference about the moments of smooth functions
of out-of-sample predictions and prediction errors, when there is a long time series of
predictions and realizations. The aim is to provide tools for analysis of predictive accuracy
and efficiency, and, more generally, of predictive ability. The paper allows for nonnested
and nonlinear models, as well as for possible dependence of predictions and prediction
errors on estimated regression parameters. Simulations indicate that the procedures can
work well in samples of size typically available.

KeywoRrps: Forecasting, forecast evaluation, testing, hypothesis test, model com-
parison.

1. INTRODUCTION

THIS PAPER DEVELOPS PROCEDURES for asymptotic inference about the moments
of smooth functions of predictions and out-of-sample prediction errors. The
relevant environments are ones in which a long time series of predictions has
been made from a sequence of base periods, and, if predictions are based on
regression estimates, each of the sequence of regression estimates underlying
the predictions has also been obtained from a long time series.

The aim is to provide tools that will be useful in two broad classes of
applications. The first evaluates a model or a set of models on the basis of
predictive accuracy or efficiency. Common measures of accuracy or efficiency
include mean or mean squared prediction error, correlation between one
model’s prediction and another model’s prediction error, correlation between
prediction and realization, and serial correlation of prediction errors (e.g.,
Nelson (1972), Meese and Rogoff (1983), Fair and Shiller (1990), Stock and
Watson (1993), West and Cho (1995)). The second, closely related, class of
applications uses a series of predictions to make hypothetical decisions about,
say, asset allocation, and then measures the quality of a model by the mean
profit or utility yielded by use of its predictions (e.g., McCulloch and Rossi
(1990)).

Diebold and Mariano (1994) provide a review and extension of procedures to
perform inference about predictions when predictions do not rely on regression
estimates. Typically, however, economic predictions rely on such estimates.

1 thank two anonymous referees, the Co-Editor, Patrick DeFontnouvelle, Steven Durlauf,
Whitney Newey, Mark Watson, Ka-Fu Wong, Jeff Wooldridge, and seminar participants at the
Federal Reserve Board of Governors, NBER, Northwestern University, and the Universities of
Chicago, Iowa, Rochester, and Wisconsin for helpful comments and discussions. I also thank
Chia-Yang Hueng, John Jones, Michael McCracken, and Ka-Fu Wong for excellent research
assistance, and the NSF, the Sloan Foundation, and the University of Wisconsin Graduate School
and College of Letters and Science for financial support. ‘

1067



1068 KENNETH D. WEST

Asymptotic tests that examine the correlation between realizations or prediction
errors on the one hand and regression-based predictions on the other have been
applied by a number of authors, one of the earliest being Nelson (1972). For
asymptotic inference about mean squared prediction errors, Meese and Rogoff
(1988), Christiano (1989), and Diebold and Rudebusch (1991) suggest applying
standard asymptotic results (e.g., Hansen (1982)) in a fashion that, in the end,
entails ignoring possible effects of error in estimation of parameters. These
papers do not, however, justify their procedures with formal theory or with
simulation evidence.

Simulation methods to compare the predictive accuracy of competing models
have been proposed by Fair (1980). Such methods tend, however, to be computa-
tionally intensive, and may require specification of a null model to generate
data, a specification that sometimes is not easy to come by when one is
comparing competing, non-nested models. Nevertheless, simulation methods
may be applied quite generally, and the asymptotic procedures proposed here
should be viewed as complementary rather than competing.

These procedures allow for: a variety of linear and nonlinear techniques to
estimate the models used to make the predictions, including maximum likeli-
hood and generalized method of moments; serial correlation and conditional
heteroskedasticity in regression disturbances and prediction errors; comparison
of non-nested models; inference about moments of general, nonlinear functions
of single or multi-period predictions and prediction errors. Using standard
regularity conditions, I establish consistency and asymptotic normality of the
estimators of the moments, and show that the asymptotic variance-covariance
matrix may be estimated by familiar methods, including kernel techniques that
allow for unknown forms of serial correlation and heteroskedasticity in predic-
tion errors. A small set of simulations suggests that the procedure can yield
accurately sized tests in samples of size typically available.

Whether and how one adjusts for error in estimation of regression parameters
used to form predictions depends on a number of factors: the moment being
examined, the regression technique, the fraction of the total sample used for
out-of-sample estimation of the moments, and, of course, the probabilistic
environment. Simulation evidence indicates that substantial size distortions may
result if one ignores uncertainty about the regression vector that, according to
this paper’s asymptotic approximation, is asymptotically relevant for inference.>

Section 2 describes the basic environment, Section 3 presents technical
assumptions, Section 4 derives asymptotic results, Section 5 presents Monte

2It should be acknowledged at the outset that the paper does not provide a formal statistical
justification for the use of out-of-sample rather than in-sample analysis: the conventional statistical
theory used here indicates that a model that does not fit well in-sample will not fit well out-of-
sample. But out-of-sample comparisons sometimes bring surprising and important insights (e.g.,
" Nelson (1972), Meese and Rogoff (1983)), perhaps because of inadvertent over-fitting that results
from repeated profession-wide use of a limited body of data. This suggests that tests of predictive
ability have good power, and, in any case, the tools developed here are relevant for work aimed at
developing good methods to predict out-of-sample (e.g., Stock and Watson (1993)).
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Carlo evidence, and Section 6 concludes. All proofs are in an Appendix.
Additional proofs, simulation results, discussion, and interpretation have been
omitted from the paper to save space, but are available in an additional
Appendix and in two earlier versions of this paper that are collectively refer-
enced as West (1994).

2. DESCRIPTION OF ENVIRONMENT

One is interested in an (/ X 1) vector of moments Ef,, where f, depends as
described below on the (kX 1) unknown parameter vector B*, and the ¢
subscript indicates that f(-) depends not only on B* but also on observable
data. If estimated serial correlation coefficients are used in prediction, these will
be included along with regression parameters in B*. If moments of predictions
or prediction errors of competing sets of regressions are to be compared, the
parameter vectors from the various regressions are stacked to form gB*. A
special case of the analysis below is when predictions do not depend on
estimated parameters, so that k =0; to avoid repeated qualifications to state-
ments concerning ranks of certain matrices, I assume & > 0 and note in Section
4 how the results specialize when k£ = 0.

Let 7>1 be the longest prediction horizon of interest. There are P Predic-
tions or vectors of predictions in all. The first prediction is based on a parameter
vector estimated using data from 1 to R (R as in Regress), the second on a
parameter vector estimated using data from 1 to R+1,..., the last on a
parameter vector estimated using data from 1to R+P—1=T.2 Thus, R+ P —
1+ 7=T+ 7 is the size of available sample. Division of the available data into
R, P, and 7 is taken as given; when a model of interest was first estimated on
data frqm t=1,..., R, there was a natural choice of R.

Let B, denote an estimate of B* that relies on data from period ¢ and earlier.
The estimate of Ef, is constructed as

T
f=P' L fii(B)
t=R

To illustrate f,, consider the scalar linear model y, =X, 8* + u;, and assume
that the population one-step-ahead prediction of y,, ; is computed as Xj, ; B*.
The corresponding sample prediction would be X/, B,, where, for example,
B,=(Ci_1 X, X))"'X!_, X,y, if ordinary least squares is the estimator.

If the object of interest is the one-step-ahead mean squared prediction error
(MSPE), then Ef,=E(y,—X,B*)? and f=P 'YT_.(y,.,—X!., B)> If the
object of interest is one-step-ahead mean prediction error (MPE), then Ef, =
E(y,—X/B*), and here, and in all subsequent examples but the last, f is
constructed in the obvious way. If, further, X,,, =y,, so that k=1 and the

3West (1994) considers how the results vary if instead: (a) a single estimate of B* is used to form
all P out of sample predictions, or (b) the sequence of P estimates of 8* is obtained from a series
of rolling samples, each of size R.
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model is a zero mean univariate autoregression, the 7-step-ahead MSPE is
Ely,..—X,,(B*) . As indicated in this example, the dating of X, is
arbitrary, and X,,,; may be realized in period t or earlier. Finally, for the
ﬁrst autocovarlance of u, E(y,1—X18Ny,—X/B*), we have f=
P YT o (31 —X!+1 B)y, —X!B,). (The natural, and convent10na1 way to
compute the corresponding sample moment is P~ X7, (3,41 — X! 1 B, —
X! B,_,), which is asymptotically equivalent (West (1994)) To keep the notation
relatlvely simple, in the theory I assume f depends only on B,, although I use
the natural estimator in the simulations.)

It will rarely be the case in practice that / = 1, as in these examples. But more
realistic examples may be built from such simple ones by stacking the objects of
interest into a vector f, with /> 1. See, for example, the experiment described in
Section 5.2 below.

3. ASSUMPTIONS

The first assumption is that f, is well approximated by a smooth quadratic in
the neighborhood of the parameter vector. I use the following notation: for
any differentiable function g,; R™ — R® and for x in the domain of g,, let
&g,/ dx denote the (s X m) matrix of partial derivatives of g,; for any matrix

A=l[a;], let |A|= ; jla;;; summations of variables indexed by ¢ or t+ 7
run from r=R to t— T R+P—1: for any variable x, ¥ x(¢)=XT_p x(2),
Yx,,,=X"_px,,,; summations of variables indexed by s run from 1 to ¢; for
any variable x, X x, =X!_, x,.

ASSUMPTION 1: In some open neighborhood N around B*, and with probability
one:

(a) f,(B) is measurable and twice continuously differentiable with respect to B.

(b) Letf;, be the ith element of f,. Fori=1,...,1 there is a constant D < ® such
that for all t, supgc y|0%f;,(B)/3BIB'| <m, for a measurable m, for which
Em,<D.

Provided appropriate second moments exist, Assumption 1 holds trivially
when the function is MPE, MSPE, or an autocovariance, the horizon is one
period, and the model is linear. It also holds when these functions are based on:
(a) multiperiod ARIMA forecasts and single or multiperiod reduced form
forecasts for linear simultaneous equations models, all of which are nonlinear in
the parameters; (b) predictions based on smooth transformations of forecasts
constructed from regression estimates (e.g., Fair and Shiller (1990), West et al.
(1993)).

ASSUMPTION 2: The estimate f, satisfies B, — B* = B(t)H(t), where B(t) is
(kxq) and H(®t) is (g x 1), with (a) B(t) ‘B, B a matrix of rank k; (b)
H@)=t"'X!'_, h(B*) fora (q X 1) orthogonality condition h ( B*); (c) Eh ( B*)
=0.
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H(t) is a sample average of a (g X 1) orthogonality condition used to identify
B*, B(t) a (kX gq) matrix that selects a linear combination of these sample
averages.

To illustrate, let A, =h,(B*), and assume stationarity. If, say, the only
regression equation is the scalar model y,=X,B* +u,, and the regression
technique is OLS, B=(EX,X,)™! and h,=X,u,. Note that there is no pre-
sumption that u, or X,u, is serially uncorrelated (although it is of course
required that EX,u,=0). Suppose more generally that for y, (n X 1) and a
smooth function g: R" — R", the set of regressmn equations is y, =g(X,, B*) +
u,. Let B* be estimated by GMM: B, is chosen to min(X k) WXL h,),
h,=ly,—g(X,,B)l®Z,, Z, a vector of instruments, Eh,=FEu,® Z, =0, and

W(t) L W, W p.d. and symmetric. Then
-1

A(t), where

h
B(t)=—|A®)t 'Y i g

A(t)=[— ‘12

oh;,  9g,

®Z,
B B

and afzs /9B is dh,/dB evaluated at points between ﬂA, and B*; optimal GMM
estimation (again, allowed but not required) entails W=X7__ Eh,H,_;. The
analogous definition for maximum likelihood is that B(¢) is the inverse of the
Hessian evaluated at a vector between the population parameter vector and its
estimate, and H(¢) is the score. See Hansen (1982) or Andrews (1987) for
primitive conditions that imply Assumption 2.

Let

=(8)| oo,

fi=f(B"), fp= i(3*) F=Ef,.

ASSUMPTION 3: (a) For some d > 1, sup, Ellvec(f,s), f/, i, YII** < oo, where ||-||

denotes Euclidean norm. (b) [vec(f,z — F)',(f, — Ef,)',h,]' is strong mixing, with
mixing coefficients of size —3d/(d — 1).(c) [vec(f,)', f/, I,]" is covariance station-
ary. (d) Let I}f(]) =E(f, _Ef,)(f,_] - Eft)” Sff= Zj?= o [}‘f(]). Then Sff is pd

Assumption 3 allows serial correlation and conditional heteroskedasticity in
both f, — Ef, and k,. The assumption is rather stronger than is necessary, but is
convenient.

ASSUMPTION 4: R,P > as T > », gnd lim;_, (P/R)=m,0< m<o; 7=
® e lim, _, (R/P)=0.
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R — = allows use of asymptotic theory to formalize how uncertainty about B*
affects the estimated moment; even in the absence of such uncertainty, P — <« is
obviously necessary to allow asymptotic analysis. The parameter 7 is taken as
given. Given that the forecast horizon 7 is fixed, the decision to design a symbol
to the limit of P/R rather than of, say, P/(T + 7) is arbitrary. That 7 is fixed
also suggests that the relevant applications are those in which 7 <R, P.

Throughout, I maintain Assumptions 1-4.

4. ASYMPTOTIC DISTRIBUTION OF THE OUT-OF-SAMPLE MEAN OF f,

The Appendix applies a mean value expansion of f,, ,( 3,) around B* to show
4.1 PY(f—Ef,)=P 2 Y (f,,,—Ef,) + FB[P"'* L H()] +0,(1).

The first term on the right-hand side represents uncertainty about f that is
present even when B* is known. The second term represents uncertainty about
B*. To state precisely how the asymptotic variance of P'/*(f — Ef,) reflects both
forms of uncertainty requires some additional notation. Let

(4.2) th(J) E(f,— Ef)H,_ —j» th= E th(j)’ T,,(j) =EhH,_ —j»
j=—oo

Ssr thB’

BS}h BS,,B

Ssr S B’

Y 1,(), S= ,
hh Bth V;;

j=—oo

H=MNO(x)=1—7"'In(1+7) for 0<m<>,
IH=0 for w=0, II=1 for w=oo.

Apart from a scale factor, S is the (I +k)X(l+k) spectral density of
[(f,—Ef,),h,B']" at frequency zero. The (k X k) matrix V;=BS,,B’ is the
asymptotic variance- covariance matrix of T7'/2( 8; — B*). The scalar function IT
is discussed in comment 4 below.

LEMMA 4.1: (@ P V2 X(f,,,—Ef,) *NO,S,), E[P"'EHWOLH®]-
2008,,, EIP7' £(f,,,— Ef)L H(t)']1 - IIS.
M) IfSispd., P~/ (f,,,— EF), ZH(t)B ' 2 N(0, V), where

o Sy 1s,,B’
IBSy, 201V,
V has full rank if =+ 0.

THEOREM 4.1: (a) If w=0 or F =0, P'/*(f—Ef,) * N(0, 2), 2=S;
() If S is pd., PVX(f-Ef)~NQO,Q), 2=S;+ H(FBSf,,+sf,,B F')+
2IFV,F'.
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The two parts of Theorem 4.1 of course are not mutually exclusive; the
formula for the rank / matrix £ in Theorem 4.1(b) reduces to S;; under the
conditions of Theorem 4.1(a). Primitive conditions that ensure that § is p.d. may
be found in, for example, Durbin (1970) when Ef, equals the first autocovari-
ance of a disturbance, and Hamilton (1994, p. 301) when Ef, = MSPE in a vector
autoregression. Consistency (f % Ef,) obviously follows from Theorem 4.1. If B*
is known (no regression estimation is required for prediction), B =0 and, as
noted by Diebold and Mariano (1994), P'/2(f— Ef,) & N(0, Sip).

The following six comments on Theorem 4.1 are relevant. The first three and
the fifth discuss cases in which PY/2(f— Ef,) 2 N(0, S;;) and uncertainty about
B* is asymptotically irrelevant for inference about Ef,; I make a point of noting
these because in such cases inference is greatly simplified.

1. From part (a) of Theorem 4.1, one condition for asymptotic irrelevance is
when 0 = 7=lim, _, (P/R). The intuition is that one may treat the estimate of
B* as known, if the asymptotic distribution of f is derived under the assumption
that for arbitrarily large T there will be an arbitrarily large number of observa-
tions used for estimation of B* relative to the number used for estimation of
Ef,. This point was argued informally by Chong and Hendry (1986) in the
context of tests of forecast encompassing.

2. Theorem 4.1(a) also indicates that asymptotic irrelevance holds when
0=F =E[(df,/dBX B*)]. The leading case here is MSPE when the predic-
tors are uncorrelated with the prediction error. In the scalar linear model y, =
X/ B* + u, with one step ahead population prediction X}, , 8*; for example, one
has f(B*) =(y, - X; B*),

17
3—2(3*)=—2u,Xt’=>F=—2Eu,X,’ and F=0 if FuX]=0.

More generally, asymptotic irrelevance applies for the MSPE of single or
multiperiod predictions from, for example, the reduced form of simultaneous
equations models. When one is comparing non-nested models, the appropriate
asymptotic variance is still S;; as long as each prediction error is uncorrelated
with the corresponding predictors, even if the competing models use different
information sets so that one model’s prediction error is correlated with another
model’s prediction.

3. On the other hand, asymptotic irrelevance sometimes applies to an out-of-
sample test when it does not apply to the corresponding in-sample test. The
technical condition here is that IT(FBS}, +S;,B'F')+2IIFV,F’ =0, so that
the variance induced by error in estimation of B* is exactly offset by the
covariance between such terms and terms that would be present even if 8* were
known.

One such case is in testing for first order serial correlation in one step ahead
prediction errors in certain models. To illustrate, consider once again the scalar
linear model, now specialized for simplicity so that X, is a scalar and X, =y,_,
=Y, =Y;—1B* +u,. Assume E(u,ly,_;,y,_,,...) =0 and let the object of inter-
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estbep=(Eu?)"'Euu,_,=v;', = v, Ef(= O) Let the estimator be OLS, let
u, be the one-step-ahead prediction error, 9 =P~' L4,i,_ L f=%, p=
%5 'f. Theorem 4.1 indicates that the asymptotic variance of P/% is

(4.3) 7620 = 762{Eu12u12—1 —-2II [(Eutyt)(EytZ)_lEutzut—1yt—1]
20 2y "2 2 2
+2H[(Eu,y,) (Ey?) "(Ey! ,u; )]}

It may be seen that if E(ully,_;,y,_,,...) = Eu? = v,, the right-hand side of
(4.3) reduces to y, 2y¢ = 1: the standard error to be used in hypothesis testing is
the familiar 1/P!/? that applies as well when B* is known. In contrast, it is well
known (e.g., Durbin (1970)) that if in-sample residuals are used, the relevant
asymptotic variance includes a term reflecting uncertainty about B*. The result
illustrated in (4.3) holds generally when predicting from the reduced form of a
linear simultaneous equations model estimated by 3SLS (a VAR estimated by
OLS is a special case), as long as the disturbance vector is a conditionally
homoskedastic martingale difference.

4. Such asymptotic irrelevance of course does not always apply. One example
is MSPE when the predictors are correlated with the prediction error (see
Section 5 below). Also, in the tests for serial correlation and for zero covariance
just described in comment 3, asymptotic irrelevance typically fails if the distur-
bance is conditionally heteroskedastic and there are lagged dependent variables,
even if the disturbance is a martingale difference. This may be verified by
working through (4.3) with a specific parametric model for the conditional
heteroskedasticity.

To interpret Theorem 4.1(b) in these and other cases, note first that 0 < [T<1
and II'(w)>0. Uncertalnty about B* adds II[FBS}, + 8, B'F’ 1+ 2I1FV,F’
to the asymptotlc variance of PY/?(f— Ef,). In comparison to the hypothetlcal
case when B* is known, uncertainty about B* may cause an asymptotic
standard error to be larger, smaller, or, as noted in comment 3, no different. In
those cases when uncertainty about 8* causes the standard error of interest to
be larger (smaller), the standard error increases (decreases) with the fraction of
the sample set aside for prediction, that is, with .

5. This comment concerns MPE. Theorem 4.1 may not be applicable because
S may not be p.d. despite positive definiteness of S;; and of V. West (1994)
shows, however, it is generally the case that a vector of mean prediction errors is
asymptotically normal with variance-covariance matrix S ff( ):]_ _w Euu, i
the model y, =X;B* + u,). In contrast to the serial correlation example (com-
ment 3), such asymptotic irrelevance holds even if the disturbance vector is
conditionally heteroskedastic and serially correlated.

6. The final comment concerns consistent estimation of (2. Inspection of
Theorem 4.1 indicates that one must estimate S, and, when uncertainty about
B* matters, one must also supply a value for IT and estimate B, F, Sy, and S,,,.
Sample analogues for the population quantities may be used (West (1994)): One



INFERENCE ABOUT PREDICTIVE ABILITY 1075

ror(2] o )

= B(T) 5 B. Next,

can set

By assumption 2

fep ;fm()F

and sample autocovariances of f, and h, are consistent (e.g. . letting
fron = el (B) and i =h(B), P XLy (o = PN fius = 1) 5 1,0,
P Y (fy. - PR D Ff,,(O) P~ 'YT_. ki, 5 T,,0), with analogous results
for auto- and cross-covariances at nonzero lags) Often, this suffices for infer-
ence, as in the simulations below. But if not, upon mild strengthening of the
assumptions about #, along the lines of Andrews (1991), conventional nonpara-
metric kernel estimators, such as the Bartlett or quadratic spectral, may be used.
When applied to the sample auto- and cross-covariances of f, and h,, these
yield estimates Sff, Sf,,, and S,,,, that are consistent for Sff, Sf,,, and S,, w. and,
as well, a consistent ps.d. estimate 0= Sff + H(FBth + Sf,,B F") +
2I1FBS,,B'F'.

5. MONTE CARLO EVIDENCE

Here I present two small Monte Carlo experiments, aimed at giving a feel for
whether Theorem 4.1’s asymptotic approximation might yield well-sized test
statistics. Both involve tests on various moments of one-step-ahead prediction
errors in models estimated by instrumental variables. The first does not require
accounting for uncertainty about the regression vector, the second does.

In the experiments, each of 5000 artificial samples of size 200 was split into 12
different regression (R) and prediction (P) samples: R =25, P =25, 50, 100,
150, 175; R =50, P = 25, 50, 100, 150; R =100, P = 25, 50, 100. This range for
P/R (from .25 to 7), as well as the values of T=P + R — 1, seem broad enough
to include most relevant empirical work. For each pair of R and P, the first
R + P observations of each sample of size 200 were used. So R=50/P =100
and R =100/P =50, for example, used the same 150 observations, but began
the out-of-sample exercise at different points. I report tests of nominal size .05.
Tests of nominal size .01 and .10 worked equally well (West (1994)).

5.1. Predictions Using Predetermined Variables in a Simultaneous
Equations Model

Here I consider a bivariate model, borrowed from Schmidt (1977):

(5.1 Y1:= B+ B2y + BisYi—1 + Buaxy, +uy, =X, By +uyy,
20 = Bor + BVt BasYar—1 + BaaXo, + Uy = X5, By + Uy,
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In (5.1), (uy,, u,,)’ =u, is an iid normal vector. The exogenous variables x,, and
x,, were assumed to follow univariate AR(1)’s with common parameter ¢ and
iid standard normal d1sturbances that are independent of one another and of u,.
The 5 X 1 vector of instruments is the list of predetermined variables in the
reduced form, Z, = (1, y1,_1, Yor—15 X155 X2,) -

Most of the parameters were borrowed from Schmidt (1977): B* =(B;, B;)’
=(0,.2,.5,1,0,1,.5,2)'; ¢$=0.8; Eu? =FEu2 =1, Eu,,u,,=0.5. For 5000 sam-
ples, an initial value of the (4 X 1) vector (¥4, Y20, X19> X20)’ Was drawn from the
unconditional normal distribution of (y,,, ¥,,, X1,, X,,)’, and samples of size 200
were generated. For each value of R and P, and for t=R to t=R+P—1,
3SLS was used to estimate the structural equations (5.1) using the 10 X1
(g = 10) orthogonality condition 4, =u, ® Z,. The implied reduced form coeffi-
cients were computed, y;,,; was predicted from the reduced form, and a
(P X 1) vector of one step ahead prediction errors {J;,, ;} was constructed.

This vector was used to perform the following three hypothesis tests: (a) Zero
MPE f=P'L0,,, =P 'L, ; from comments 5 and 6 in Section 4,
05 (2 Evlt (b) MSPE equals the populatlon value of Ev?,, (=1.9375):
f=pP1 Zv““, Q=P 1Lt — (P 1Lp?,,)?% from comments 2 and 6 in
Section 4, 25 0 = Ev?, — (Ev3)*(= 2(Ev? )2) (c) Zero first order serial corre-
lation coefficient: the object of interest is [P Y (0y,01,+ V/(PT L 0%, ), and,
in accordance with comment 3 in Section 4, the standard error used in hypothe-
sis testing was simply P~1/2,

Table I has the results for nominal .05 tests. There is a mild tendency to
overreject; of the 36 entries in the Table, only 8 are less than .05. (The entries
are not, however, independent. If a test happens to overreject for a given R and
P, it is likely to do so for the same R and slightly larger P as well.) But the
figures, which range between .034 and .100, are also close to .05.

5.2. MSPE with Endogenous Right-Hand-Side Variables as Predictors
Here I consider the system
(5.22)  y, =By + Browy, +uy, =X], By +uy,
(5.20)  y, = o1+ BpaWa + Uy = X3, By + iy,

where the w,’s are correlated with the u;’s and Eu?, = Eu3,. The idea is that
(5.2a) and (5.2b) are competing models for y,. Write (5.2) as

Uy,

Uy |’

Y — — Y'Q* — 1 Wi, 0 0 Bl
(y,)_Y‘ XiB +”"(0 0 1 w,llg]|T

Let (z,,, 2,,,0,)" be an iid normal random vector with an identity covariance
‘matrix. Let w,, =z,, +v,, w,, = z,, + v,. The data are generated as y, =w,, +w,,
+v,. So in (5.2a), B;; = B,; =0, By, = B,, = 1. Each equation was estimated by
2SLS, with a vector of instruments (1, z,,)’ = Z,, (equation (5.2a)) or (1, z,,)' =
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TABLE I
SizE OF NOMINAL .05 TESTS, EXPERIMENT 1

A. Mean Prediction Error
P

R 25 50 100 150 175
25 .059 .064 .060 .057 .060
50 .059 .063 057 .059

100 .055 .058 .058

B. Mean Squared Prediction Error
P

R 25 50 100 150 175
25 .076 .066 .061 .063 .066
50 .081 .060 .057 056

100 .100 .075 .055

C. First Order Serial Correlation
P

R 25 50 100 150 175
25 .037 .046 .050 .049 .050
50 .038 .045 .053 .052

100 .034 .040 .043

Notes: 1. As detailed in Section 5.1, the following was done 5000 times: a.
200 observations on the variables in a bivariate simultaneous equations
model were generated. b. The model was estimated 175 times by 3SLS,
using observations 1-25,1-26,..., and 1-199. The implied reduced form
coefficients were used to make one-period-ahead predictions of one of the
two endogenous variables. c. For the values of R and P given above, a
(P x 1) vector of prediction errors was formed using predictions dated
R,R+1,...,R+ P— 1. d. The vector of sample prediction errors was used
to test: zero mean (panel A), variance equal to the underlying population
value (panel B), zero serial correlation (panel C).

2. According to this paper’s theory, each statistic is asymptotically x 2.
Each panel reports the fraction of the 5000 statistics that were greater than
3.84, which is the .05 critical value for a x2(1) random variable.

Z,,(52b). Let B,=(t" ' T'_, Z,, X/)" (¢t 7' X._, Z,,y,) be the 2SLS estimate of
B;. For each value of R and P, and for t—R to T, one step ahead prediction
errors were obtained as Bips1=Yee1 —Xii i1 B.,. The hypothesis tested is that
Euf,=Euj,=f=(P ' Laf,, P L))

Note that realized right-hand-side endogenous variables are used for “predict-
ion.” In the forecasting literature such “conditional” or “ex-post” forecasts are
made when one is not interested in ex-ante prediction but evaluation of
predictive ability of a model given a path for some unmodelled (but endogenous,
in a larger system) set of variables. Examples include Meese and Rogoff (1983,
1988) and Oliner et al. (1993). In such cases, F is nonzero and sampling error in
estimation of B* is asymptotically relevant (except when 7 = 0).

In particular, in the system under consideration here,

u 0
F=-2E 6’ ", X, = -2EUX,=F(1,2) = —2Euw,, #0,
t

F(Q2,4) = —2Eu,w,, #0.
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Since (uy,, 2y, Ug;s Z5,) is normally distributed, S;, =0 = 2= S, +
8 II(EU, X,V;(EX,U)). Thus use of S, which abstracts from sampling error in
estimation of B*, will yield standard errors and confidence intervals that are too
small, and will lead to too many rejections at any specified significance level. The
lower the asymptotic ratio of observations used for prediction to those used for
regression (the lower is ), the less will sampling error in estimation of B*
afcht inference, and the closer will S, be to (2.

Q) was constructed as follows. (i) In a computationally convenient variant of
the estimator suggested in comment 6 in Section 4, V; = B'S,, B was estimated
in conventional in-sample fashion, using the largest regression sample: For
s=1,...,T, let d4,=Y,—X.By, h,=(Z\ i, Z5i,). Then §,, =
T-' XT_ h.K,. For i=1,2, the (i,i) block of B is (T~' £T_,Z; X])™"; the
off-diagonal blocks are zero. (i) As suggested in comment 6 in Section 4, S
and F were computed using the out of sample residuals. Let fra1=
(ﬁ%wl’ﬁgwl)" Then Sff=P_1 EtT=R (ft+1 —f)(ft+l —f),v

P 0 2P 'Zl gwylysr O 0
0 0 0 —ZP_lth=RW2t+1”A‘2t+1

_Let a=(1 —1)". The test statistic is P(a'F)2/(a'Qa) R x2(1), where 0=
Si+2IIFVF', Vs =B'S,, B'. A test statistic that ignores uncertainty about g*
is P(a’f)?/(a'S;a); it seems of interest to evaluate such a statistic since it
seems to be one used by Meese and Rogoff (1988) and suggested by Diebold
and Mariano (1994). For such an evaluation to be empirically relevant, one
would want an empirically plausible ratio of a'FV;F'a (the term due to
uncertainty about B*) to a'Sea (the term that would be present even if 8*
were known): the test statistic that ignores a'FV;F'a will behave arbitrarily
poorly for an arbitrarily high ratio of a’'FV;F'a to a'S;a. Since predictive
accuracy figures prominently in the exchange rate literature, I fit a convenient
model (Meese (1986)). As described in a footnote, the resulting estimates are
consistent with this experiment’s ratio of a'FV;F'a to a’Sffa.4

In Table II, panel A presents results when a consistent estimator of (2 is
used, with 7 set to P/R, while panel B presents results when the term due to
uncertainty about B* is ignored. In panel A, tests are slightly more poorly sized
than in the previous experiment when P and R are both less than 50. The
remaining entries are all between .049 and .075.

Panel B indicates that ignoring uncertainty about B* can result in substantial
overrejection, with nominal .05 tests having actual sizes larger than .50. As
predicted by the theory, for given P the size distortions are smaller for larger R

*1 fit Meese’s (1986) model to monthly Deutschemark-dollar data 1974:3-1988:8, using a lag of
Meese’s scalar measure of fundamentals as the instrument. The estimates of the scalars Sy and
FV,F' yielded FVyF' =55. With the DGP described above, it may be shown that a'FIF'a=
4a'S;ra. So this experiment is, if anything, a little conservative about uncertainty about B* (since
4<5).
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TABLE 11
S1ze oF NOMINAL .05 TesTs oN EQUALITY oF MSPE, EXPERIMENT B

A.7m=P/R
P
R 25 50 100 150 175
25 0.022 0.035 0.057 0.071 0.075
50 0.027 0.036 0.058 0.064
100 0.049 0.056 0.063
B.7r=0
P
R 25 50 100 150 175
25 0.378 0.446 0.489 0.508 0.513
50 0.276 0.365 0.421 0.453
100 0.198 0.269 0.349

Notes: 1. As detailed in Section 5.2, the following was done 5000 times: a. 200
observations of the variables in a pair of linear regressions were generated. b. Each of
these regressions was estimated 175 times by 2SLS, using observations 1-25,1-26,...,
and 1-199. The regressions have the same left-hand-side variable y,. The resulting
structural coefficients and the realized values of the right-hand-side endogenous
variables were used to predict y, one step ahead. c. For the values of R and P given
above, and for each of the two competing models, a (P X 1) vector of prediction errors
were formed using predictions dated R,R+1,...,R+ P — 1. d. Equality of mean
squared prediction error was tested, using the two vectors of sample prediction errors.

2. According to this paper’s theory, the statistic in panel A is asymptotically x 2(1),
that in panel B is not. The panel A statistic accounts for the fact that the predictions
were made using estimated parameters; the panel B statistic is one that would be
x2QU) if the predictions were made using the population regression parameters rather
than estimates. Each panel reports the fraction of the 5000 statistics that were greater
than 3.84, which is the .05 critical value for a y2(1) random variable.

(i.e., for a smaller ratio of P to R; recall that as 7= lim(P/R) — 0, the term in
2 due to uncertainty about 8* — 0).

One cautionary note: Recent literature suggests circumstances under which it
may be difficult to obtain accurately sized in-sample tests (e.g., Newey and West
(1994), Nelson and Startz (1991)). Such circumstances no doubt lead to poorly
sized out-of-sample tests as well. In that sense, the simulation evidence pre-
sented here probably is unduly supportive of the asymptotic approximation.

6. CONCLUSION

Priorities for future research include: allowing for functions that are not
differentiable, such as mean absolute prediction error and functions of the
predicted sign of a left-hand-side variable; allowing for nonparametric estima-
tors of regression parameters; application of the results in this paper to
computationally convenient regression tests of predictive ability; and analysis of
the power of tests applied to the moments of out-of-sample prediction errors, in
a framework broad enough to include models that are overfit in-sample.

Dept. of Economics, University of Wisconsin, 1180 Observatory Dr., Madison, WI
53706-1393, U.S.A.

Manuscript received May, 1994; final revision received October, 1995.
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APPENDIX

NOTATION: “sup,” means “Supg ., . 7”; “var’, “cov” denote variance and covariance; all limits
are taken as the sample size T goes to infinity; summations of variables indexed by ¢, £+ 7, or ¢ +j
run from ¢ =R to t =R + P — 1 = T; summations of variables indexed by s run from s=1to s=¢.

LEMMA Al: (2) For 0<a<.5, P"1/2 L 14 50, (b) P~1/2 Lt~ 1/2=0(1).

PROOF: (a) Choose a, 0<a<.5. For m<w, use P /2Lt 1*¢ <p VAPR1*%) =
P—1/2+a(P/R)1—a — 0. For =, use P—1/2 Zt_l+a SP—l/ZJ’RT_lx—1+adea—IP—l/Z(R_'_I:)_
1) - 0. For a = 0 the result follows since ¥,#~!*¢ is increasing in a. (b) Follows by setting a =.5 in
the proof of part (a).

LeMMA A2 Let x,=[vec(f,s —F),(f,—Ef,),K,Y, v;=Ex;x,_;. Then (a) Zi- _wlillyl <o,
®) [P2E PR _aljllyl = 0.

ProoOF: (a) In light of Ibragimov and Linnik (1971, p. 307), (a) follows from Assumption 3.
(b) follows from part (a) and Lemma Al(a).

LEMMA A3: For 0 <a <.5: (a) sup,|t°H(t)| 5 0; (b) sup,|t*( B, — B*) 2 0.

ProoF: (a) In this proof only, [-] denotes “integer part of,” g =1, and k; is an unimportant
constant. Let {e;} be the mixing coefficients. Note that by Assumption 3, a; is of size —3d/(d—1)
= a; is also of size —2d/(d — 1) = h, is a mixingale with Hall and Heyde’s (1980, p. 19) symbols c,
and y; defined as c, = max(1,sup, , o Elh,|**/“@* V), = 5(ay; )/ P~ D/4D = 5(ay; 5™ b/4d
(McLeish (1975, p. 837)). Thus, y; <k([j/2]73¢/@=D)d=D/4d =k [j/2]73/% <k(f(j - 1)/2} 7>/
<k, j~3* = <kyj~1/*(log j)~2. Since, finally, £;_(¢7'**)* <o for 0<a <5, the result fol-
lows from Hall and Heyde (1980, Theorem 2.21). (b) By Assumption 2, sup,|B(¢) — B| 50

sup|t?( B, — B*)| = sup|t*B() H(2)|
t t
< suplt[ B(r) — BIH(?)| +q|BI[ Suplt"H(t)I]
t t

sq[SUPIB(t) —BI] [supt“lH(t)|] +q|B|[SuPIt“H(t)I] 2.
t t t

LemMa Ad: (a) P~Y/2E(f,,, g— F)BH() = 0,(1); (b) P> LI, s — FIB(t) - BIH(1)| =
0,(1); (©) P7/> L[B(t) — BIH(t) = 0,(D).

ProOF: (@) Let v,=(f,,, 3—F), redefine Bh, as h, and let vy =Euh, ;. We have
|[EP~Y2 X p,H@)| = PY2[R Wy + - +yg_y) + -+ (R+P—D7 yy + = + vpip2l<
PR 4 - +(R+P—1"'1L7_ly;l - 0 by Lemma Al(a). Assumption 3(a) bounds the fourth
moments of [vec(v,),#,]’ in such a way that limvar[P~'/% Lv, H(t)]=0 (West (1994)) and the
result follows from Chebyshev’s inequality. (b) Let v,=(f,,, g—F) and for simplicity assume
I=k=g=1. We have [P~'/2Lv[B(t)— BIH(¢)| <[sup,|B(t) — BI[P~/? L|v,H(1)]] and since
[sup,|B(¢) — B & 0 by Assumption 2 it suffices to show P~!/% £|v, H(t)| = O,(1). From Assumption
3, E[v,H(t)* <t~ !c for a constant c that does not depend on ¢; in the fourth order stationary case,
for example, ¢ = Ev? 5. _ o |Eh,h,_j|+ 257 _o|Evh,_D* + ET7 . _|x(0, i, j)l, where « is the
fourth cumulant. Then P~'/2Y¥ E[v,H(¢)| <P 1/2 E{E[u,H(t)]z}{/2 <cP V2T V2=0() by
Lemma Al(b) and the result follows from Markov’s inequality. (c) By logic such as that in the proof
" of Lemma A4(b), P~Y2T|H() = O,1). Then |P~'/2 T[B(+) — BIH(#)| < glsup,|B(t) —
BI[P~'/2 £|H(#)]% 0 by Assumption 2.
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PROOF OF EQUATION (4.1): A second order mean value expansion of f;, ,( B,) around B* for
t=R,...,T yields fie (B =frertfisn, B(Bt B*) +w,, ., where the ith element of w,,, is
Wigs = 5( B, — B*Y10f,4 .(Bi)/9BB'N B, — ¥ and B, lies between B, and B*. Then P'/2(f—
Ef) = P'I/ZZ‘,(f+ —Ef)+P V2% f,, . o(B—B*)+P /2 Lw, . and (4.1) will follow if (a)
P~ 1/22f,+,3(;3, B*)=FB[P~ 1/2ZH(t)]+0(1) and (b) P~'/2Lw,, ,=o0,(D).

PROOF OF (a): We have
P2y g (B—B=PV2Y f, . sB()H(t)
=FB[P 2 H®)| + P> L (fisr g~ F)BH()
+P~Y2F Y [B(t) - BIH(t)
+P Y2y (fiy, s~ F)IBW) —BIH().

The second term after the equality is 0,(1) by Lemma A4(a), the third by Lemma A4(c), the fourth
by Lemma A4(b).

PROOF OF (b): Choose a, 0 <a <.5 and define m, as in Assumption 1. Then for the ith element
of Wit rs

IP_1/2 Zwit+‘r

A lt+-r( i A
5 P_l/zz{[t““(ﬁ,—ﬁ*)’][%t 1“](3,—3*)}

IA

k2supltS=32( B, — BNP~V2 Y (16,4 (B, )3BoB' 1t~ +7)
t

IA

kZSuplt.S—.Sa( ét _ B*)|2P— 1/2 th+‘rt_1+a Py 0’
t

by Lemma A3(b), Lemma Al(a), Assumption 1, and Markov’s inequality.
LEMMA AS: lim E[P~! £ H()L H(t)'] = 2[1 — 7~ In(1 + 7)IS,, = 211S,,,,.
PROOF: Set g =1 for notational simplicity. Let
Yi=Tu(), ag,=(R+5)"'+-+(R+P-17" for 0<s<P-1,

where the dependence of ap ; on P is suppressed for notational convenience. L’HOpital’s rule
indicates that for 7=0, 1 — 7~ 'In(1 + 7) =0. To establish the lemma in this case, proceed as
follows: Since

Y H(t)=ag o(hy + -+ +hg) +ag thgyy+  +ag p_ihrip_1,

var(PTV2 Y H()) < Y |ylP(Rak o +ak i+ +ak p_1);
j=—
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since ag ; <(P—j)/R,
P~ '[Ra} o +ak  + - +ak p 4]
<(R/P)(P/R)*+ (PR} '[1+2%+ - +(P—-1)]
=(P/R)+(PR®) "' O(P?)
—O(P/R) >0
= limvar(P"/2 EH(t)) =0.
For 7> 0, write
P12 H(t)=A, +A,,
Ay =P~ o(hy + - +hg),
Ay=P'*lag \hgyy+ - +ag p_1hrip-1]
=>var[P_‘/2 ZH(t)] =var(A,) +var(A4,) +2cov(A4,, 4,).
It will be shown that when 7> 0,

(A-1a) limvar(4,) = 7" 'In?(1+ @) ), v,

Jj=—=

(A-1b)  limvar(4,) = 2[1 - 77 ' n( + D] - 7~ A+ ™)} Y v,
j= —

(A-1c) limcov(A;, A,) =0.

From the definition of A;, var(4,)=P~'a} LR 15, (R=1jDy;=(R/P)aj o Ef gy~
P 'a} o TR 1z 1jly. In light of Lemma A2(b), (A-1a) will follow if (R/P)aj o — 7 (1 + 7).
We have

n[(R +P - 1)/R] =f0”“(R +x)7! a:xsamsf_”l'l(R +x) L

=m[(R+P-1)/(R-1)]
= (R/P)n?[(R+P —1)/R] < (R/P)a% o < (R/P)n*[(R+P—1)/(R-1)]
= (R/P)a% o — n~ 'In’(1 + m),

where the result for o = o follows since L’Hopital’s rule indicates that x~'In*(1 +x) — 0 as x - o,
Now consider (A-1b). Let
di=agag .1+ t+ag p_j_rag p_y for 0<j<P-2;

dj=d_; for —P+2<j<0;

P-2 P-2 P-2
=var(4,)=P~! Y. dy=P 4, Y y+P! Y (dj—dyy;
j=—P+2 j=-P+2 j=—P+2

where the dependence of d; on P and R is suppressed for notational simplicity. Using logic such as
that in the proof of (A-1a), we have P~'dy=P~'[f=1In’[(R + P —1)/(R +y)ldy + o(1), where
“0(1)” denotes a sequence whose limit is zero. Routine manipulations then yield

P 'dy=P Y{2(P-2)—2(R+ DIn[(R+P~-1)/(R+1)]
—(R+ Dn?[(R+P—-1)/(R+ D]} +0(1)
=P ldy—> 21— 7 'In(1 + 7)) — 7~ In* (1 + =)

again using L’Hopital’s rule for 7= o,
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So (A-1b) will follow if P! £/=2,, ,(d; —dy)y; = 0. To show this, let m = min{(P/2) — 1, R}.

Write P £F72 5, ,(d;j—do)y; =P~ L) (d; —do)y; + P71 £, ,, (d; —dy)y;. By the Cauchy-
Schwarz inequality, 0<d;<dy=I|d;—dyl<dy, so P! L, ,(d;—dy)y,—0 since P~'d, is
bounded, m — «, and ¥7_ _.,|y;| < . To analyze ) L\j1< m (d; — do)y;, note that for 0 <j <m, we

have
do—d;= 5[(ag jor —ag ) + = +(ag p_y —ag p_1_]
+ Slag,  + - +ag j+ak p_;+ - +ag p_q]
<.5(P—j=DIj/(R+ D +a} oj < 5PLj/(R+ D] +ak o],

and P~' £, ,, (d; — dy)y; = 0 now follows from Lemmas A2(a) and A2(b).
Finally, consider (A-lc). Since ag; <agg, a direct calculation yields cov(4;, 4;) <
P7a} 0Ty repo2 lillyl < (P71 %ag o) £ _.1jl1y;l - 0 by Lemma A2(b).

LEMMA A6: lim E[P™* £(f,, , — Ef)LH()'1=[1 — o' In(1 + ] T7_ _ o, [;4(j) = ISy
ProoF: Follows from an argument similar to that for Lemma A5 (West (1994)).

PROOF OF LEMMA 4.1: That the limiting variance of P~1/2[L(f,,,— Ef,),L H(t)']" is as indi-
cated follows from Lemmas A5 and A6. That V() is of full rank when 7+ 0 and S is p.d. is
straightforward to establish. Asymptotic normality follows from McLeish (1977) as shown in
Theorem 3.1 of Wooldridge and White (1989).

PROOF OF THEOREM 4.1: Follows from equation (4.1) and Lemma 4.1.
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