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Abstraet

A \/ T-consistent estimator of a heteroskedasticity and autocorrelation consistent
covariance matrix estimator is proposed and evaluated. The relevant applications are
ones in which the regression disturbance follows a moving average process of known
order. In a system of | equations, this ‘MA-!’ estimator entails estimation of the moving
average coefficients of an l-dimensional vector. Simulations indicate that the MA-/
estimator’s finite sample performance is better than that of the estimators of Andrews and
Mcnahan (1992) and Newey and West (1994) when cross-products of instruments and
disturbances are sharply negatively autocorrelated, comparable or slightly worse other-
wise.
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1. Introduction

This paper proposes and evaluates an estimator of a heteroskedasticity- and
autocorrelation-consistent covariance matrix that is positive semidefinite by
construction. The estimator is applicable when the regression disturbance fol-
lows a moving average (MA) process of known order, and the innovations in this
moving average process have zero mean conditional on past disturbances and
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current and past instruments. I prove that the estimator, which is parametric, is
\/ T-consistent under mild conditions. This means that it is asymptotically more
efficient than the nonparametric estimators emphasized in recent work such as
Andrews (1991), Andrews and Monahan (1992), and Newey and West (1994).

Simulations are used to evaluate the finite sample performance of hypothesis
tests about a parameter in a linear model. Consistent with some asymptotic
calculations worked out for a simple example, these simulations indicate that
the estimator works relatively well — has relatively accurately sized tests — when
cross-products of instruments and disturbances are sharply negatively corre-
lated. The simulations also indicate that these are precisely the circumstances
under which an estimator known as the ‘truncated’ one is likely to fail to be
positive semidefinite. Since repeated occurrence of this failure in empirical work
was one of the major spurs to development of alternative covariance matrix
estimators, I take the implication to be that such circumstances are empirically
relevant ones.! The simulations also indicate, however, that when the es-
timator’s asymptotic advantages relative to nonparametric estimators are rela-
tively small (but still nonzero), the estimator works comparably or slightly worse
than the nonparametric ones.

A second contribution of the simulations is to evaluate some existing es-
timators when cross-products of instruments and disturbances are negatively
autocorrelated. When the negative autocorrelation is sufficiently strong, some
carlier estimators have a tendency to reject too infrequently, rejecting at the
5 percent level, for example, in distinctly less than 5 percent of the simulations.
This complements the Andrews and Monahan (1992) and Newey and West
(1994) result that strong positive autocorrelation tends to cause the non-
parametric estimators to reject too often.

The proposed estimator, which generalizes one suggested by Hodrick (1991),
is more restrictive than the nonparametric ones now in common use. It is not
applicable when the order of the moving average of the disturbance is not
known or is infinite, as sometimes happens in empirical work. But in many
studies the null specification implies a moving average of known order. Exam-
ples in which this is the case include: evaluation of multi-period forecasts, using
either financial market (e.g., Hansen and Hodrick, 1980), or survey data (e.g.,
Brown and Maital, 1981), Euler equations (first-order conditions) from rational

! Unfortunately, empirical papers typically do not provide enough information to allow one to
deduce the autocorrelations of cross-products of instruments and disturbances. But perhaps the
unpublished calculations underlying scrie of my own work on monthly, aggregate inventories is
representative. West and Wilcox (1996) considered a model with an MA(2) disturbance. Underlying
the estimates in Table 7 of West and Wilcox (1996) are cross-products of instruments and distur-
bances whose estimated first-order autocorrelations are around — 0.6. In the simulations, the
proposed estimator performs relatively well with an MA(2) process calibrated to the West and
Wilcox estimates. See Table 2, panel C, column (5) below.
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expectations models when there are costs of adjustment (e.g., West, 1986),
nonseparable utility (e.g., Eichenbaum et al, 1988), and/or unobservable
moving average shocks (e.g., Kollintzas, 1993), time-aggregated models (e.g.,
Hansen and Singleton, 1990).

As was noted above, the estimator also requires that the innovation in the
regression disturbance have a zero mean conditional on past disturbances and
current and past instruments. This means that the best predictor of the distur-
bance is the same as the best linear predictor, and so is not implied by
a conventional stationarity assumption. This condition thus is not invariably
maintained in empirical work. But it is consistent with popular parametric
models for regression disturbances, including for example GARCH models. It is
to be emphasized that the estimator allows for heteroskedasticity of the distur-
bance conditional on the instruments.

In a system with [ equations, the estimator requires obtaining the moving
average coefficients of the I-dimensional vector of disturbances. In a
single-equation system, then, one fits a univariate MA model, regardless of
the size of the parameter or instrument vector. Software to fit univariate
MA models of course is widely available. Software to fit multivariate MA
models is less widely available, so computational considerations may well call
for use of other techniques such as nonparametric ones in systems with many
equations.

Section 2 describes the estimator, Section 3 presents simulation results, and
Section 4 concludes. For clarity of exposition, the formal econometric theory
~ not only proofs but precise statement of technical conditions as well - is in an
appendix.

2. The new estimator
2.1. Mechanics

I first illustrate this estimator with a simple scalar example, and then define it
in the general case. Precise statement of technical conditions may be found in
Appendix A. Let y, = x,B + u, be a scalar regression model, where u, is the
unobservable disturbance and B is an unknown parameter. For a sample of size
T, let B be estimated by instrumental variables using as an instrument a scalar z;,
=N z2x) "Y1z 2z = x, if OLS is run. Thus, Ezu, = 0 is an ortho-
gonality condition used to estimate f. Let {zx,} and {zu,} be covariance-
stationary. For inference about f, one needs an estimate of the asymptotic
variance-covariance matrix (Ezx,) %S, where S=)7_, Ezuu, z ;
= Ezfu? + 23 ;21 Ezuu, _ iz, j. (The last equality follows since z,u, is a station-
ary scalar). Estimation of Ez,x, is straightforward, since under very mild condi-
tions T~ [ z,x, », Ez,x,.
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Estimation of § is more problematical, and is the subject of this paper. To
illustrate the approach, let u, follow an MA(1) process, u, = ¢ + 0,¢,-,. and
suppose that {z¢} and {zg,_,} are mean zero and stationary. (To prevent
confusion, it may be worth noting the dating convention: if ¢_; is a shock
realized in period t — 1, and is orthogonal to z’s that are realized in period t — 2
and earlier, then z, must be realized in period t — 2 or earlier.) Suppose further
that ¢ has zero mean conditional on past ¢’s and z,.,’s: E(g|&-1.6-2,
e Zie 1524 ... ) = 0.2 (In other words, suppose that &, is a martingale difference
sequence with respect to past g&’s and z,,’s) Since u, ~ MA(1) and
E(ele—~15 - 52141, ... ) = 0, the autocorrelations of z,u, are zero for lags greater
than 1. Hence, the Wold representation of zu, is an MA(l), and
S = Ez2u? + 2Ezuu, _,z,_ ;. We have

EzZu? = E[z% (e, + 016-1)%]
= E[z2(e2 + 20,5, + 032 1)]
= E[z2(e + Bel-1)]
= Ezle? + 0IE2?, . (2.1

The equality at the beginning of the third line follows from
E(ele 148025 .. s 241220 ... ) = 0, the last equality from stationarity. Sim-
ilarly, Ezuu, z,., = 0,Ez,z,, &%. Thus,

S = Eztu} + 2Bzuu, 7, -,
= Bzle} + 03Ez2, 82 + 200,Ez,z, | 162)
= Bz + 01z, 1607
=Edl ., doo=@0+ 0020 0)8. (2.2)

One then estimates S by a sample average of a measure of d,, as illustrated
below.
The general case proceeds as follows. There is a regression model

JB) =u, (2.3)

where the I x | vector f, depends on data observable at time t and the (kx1)
unknown parameter vector f, and u, is an ! x 1 unobservable disturbance vector.
In a linear model, for example, f,(f) = y, — X8, where the [ x 1 vector y, and the
k x | matrix X, are observable. Let Z, be a (¢ x /) vector of instruments used to
estimate fi. In the common case in which an (r x 1) vector of instruments R, is

3 . . . . . » o
It should be noted that with ¢, the univariate innovation in t,, the zero mean condition Eze, = 0
will be violated in some applications (see Hayashi and Sims. 1983).
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orthogonal to each of the elements of u, (e.g., Hansen and Singleton, 1982),
Z,=R,®I,and q =rl

To motivate the present study, suppose that a technique such as that in
Hansen (1982) is used to estimate f, under Hansen’s conditions (although the
present technique is not necessarily tied to Hansen’s estimation technique and
technical conditions). Then B solves ming{[Y/~\ Z,fi(BYWr[Y/=1 Zf( P}
where W is a (g x q) symmetric positive semidefinite matrix. Let W, converge in
probability to a (g x g) symmetric positive definite matrix W, let F, denote the
(k x 1) matrix of derivatives of f; evaluated at the true parameter vector, and let
H = EZ/F,. Then \/T(ﬁ —PANOV),V=HWH) 'HWSWHHWH)™ Y,
S= Z}‘;_m EZuu; - ;=7;_;. Thus, here and in other contexts, one needs to
estimate S.

Let the disturbance follow an MA process of known order n,

M, = St ’+' 018;—1 + e + Gngt“ll’ (2.4)

whereg, isIx 1,the §’sarelx !, and I + 6,L + --- + 0,L"1sinvertible. [ assume
E(&le-158-2s oo s ZitnsZisn—1>--. ) =0, which implies that Z,u, ~ MA(n).
Then

S=To+ 3 (Ij+ T, Ti=EZuu,_Z )
i=1

Define the (g x 1) vector d,,,=(Z, + Z,, 0, + -+ + Z,+,0,)&. It is easily
established that Edd; = S. It is to be emphasized that Edd; = S even if u, 1s
heteroskedastic conditional on Z,, so that EZuu,Z,# EZ (Euu)Z;.
Let
where f8 is a consisient estimate of f. Let 0y, ..., 0, be consistent estimates of
0y, ...,0,, and let ., satisfy &, = & + 0,6, + --- + 0,6,-,. In the case where
I =1 and u, is a -calar, the 0’s and £’s may be obtained, for example, by
nonlinear least squsres applied to 4,, with § = 0 for t < 0; Hannan and Deistler

(1988) discuss :igorithms applicable for vector MA models. For
t=1,...,T —n, aciine the (g x 1) vector d,, , as

al-ku = (Zt + Zt+101 + o+ Z!+ngn)£t- (25)

Estirw.. N S as

T-n
SE(T_H)—I Z Jl+nJ;+n- (26)
t=1
Evidently, § is positive semidefinite.
Hodrick (1991} suggests a similar estimator, in the case of a certain linear
model in which it is known that 0, = --- =0, = 1.
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2.2. Discussion

If fand 0, ... ,0,are obtained by T '/?-consistent estimators (and some other
mild conditions hold), this estimator is T '/2-consistent for S. (See the Appen-
dix.?) By conventional asymptotic efficiency criteria, then, this method domin-
ates the positive semidefinite nonparametric estimators proposed by Andrews
(1991), Andrews and Monahan (1992), and Newey and West (1994), which are
T*-consistent for some a < 1.

Under the present assumption that Z,u, ~ MA(n), the T'/? rate of con-
vergence is, however, shared by the truncated kernel. This kernel works as
follows. Let 4, =f(f) be the regression residual. For j=0,...,n
let ;=T 'Y ;s 1 Zdd;-;Z;_;, with T'; = EZuu;_;Z,_; the corresponding
population moment. The truncated kernel estimates S as

S=lo++T7)+ - +(F,+ ). 2.7)

As is well-known, § need not be positive semidefinit-, a point I return to below.

To get a feel for how § compares to §, I computed the asymptotic variances of
S and §in a scalar linear model in which the only regressor is the constant term.
In this model, which is described in detail in the notes to Table 1, £;(f) = y, — 8B,
l=n=k=gqg=1,and Z, = 1. Appendix B outlines the algebra used to derive
the asymptotic variances.*

It rnay be seen that the new estimator - which I call the MA-I estimator - is
dramatically more efficient when 0, is near — 1. This is essentially the following
well-known result from Box-Jenkins analysis: Suppose that one wants to
estimate ¢ in the MA(1) model x, = v, + Ov,. |, where v, ~ i.i.d. Then, if 0is near

- 1, nonlinear least squares (NLLS) is dramatically more efficient than is the
simple estimator that relies on the one-to-one mapping between the MA
coefficient and the first autocorrelation (e.g., Brockwell and Davis, 1991, p. 254).
The textbook intuition for this result is that NLLS exploits information in the
sample autocorrelations beyond the first (Fuller, 1976, p. 343), intuition that
seems to carry over here as well.

Note that the proposed estimator involves estimation of the moving average
coefficients of i, and not Z4,. In the general, and empirically plausible, case in

3The appendix also shows that $ is consistent as long as ff and 0y, ... ,0, are consistent. The
implication is that one will be able to obtain the 0;’s by inverting the estimates of the autoregressive
representation of i, provided one lets the order of the autoregression increase al an appropriate
rate. Such a procedure might be computationally convenient when the number of equations [ is
large. In this paper 1 do not, however, attempt to establish what this rate might be.

*The table assumes that & is i.i.d. normal. Suppose more generally that ¢, is iid. with Eg} =0,
E} = k. Then the ratios reported in Table 1 will continue to be greater than one, but will shrink if
k>3 growifk < 3.
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Table 1

Inefficiency of the truncated estimator ielative to the MA-I estimator

0,

- 09 —0.6 -03 0.3 0.6 0.9
840.08 8.25 1.47 1.16 1.52 204

This table presents the ratio of the asymptotic variance of the truncated estimator (Eq. (2.7)) to that
of the MA-! estimator (Eq. (2.6)). That the entries are greater than one indicates that the truncated
estimator is less efficient asymptotically. The calculations assume OLS estimation of a scalar model
with an MA(1) disturbance, whose only regressor is the constant term: y, = B + u, 4, = ¢ + 6, ,,
where &, is an i.i.d. normal variable. The reported ratios are invariant to the scale of &,. In the MA-]
model. it is assumed that 8, is obtained by nonlinear least squares or an asymptotically equivalent
procedure. The object of interest is S = Eu? + 2Euy, . ;.

which Z, is stochastic, a positive semidefinite estimator at least as efficient as the
one I propose results from fitting an MA(n) to (g x 1) vector Z,i, and estimating
S as the usual quadratic form in the variance—covariance matrix of the innova-
tion to Z,i, (see, e.g., Fuller, 1976, p. 166, for the population formula). Why then
do I not propose applying a multivariate analogue of NLLS to Z,? The reason
is computational. Since g = [ fitting an MA(n) to the l-vector #, obviously is
computationally simpler than fitting an MA(n) to the g-vector Z,4,, and in
practice it is often the case that g > I. In Eichenbaum et al. (1988), for example,
g=14and =2

It should be noted that the circumstances under which the new estimator is
relatively efficient are precisely those under which the truncated estimator tends
to yield an estimate that is not p.s.d. This is indicated by the Monte Carlo
simulations reported in the next section, and is suggested by some algebra given
in a footnote.’

In any case, one should expect the asymptotic comparison in Table 1 to
provide at best a rough guide to actual performance. One obvious reason is that
the example is so simple and stylized. When there are multiple, stochastic
regressors, efficiency of the MA-I estimator will of course be affected not only by
serial correlation properties of the disturbance but by those of the instruments
as well. In general, then, there will not be a simple scalar that indexes relative
efficiency of the MA-/ estimator for any and all hypothesis tests. A second reason

SSuppose that u, =& + 0,¢,-, is a scalar (I=1) MA(1). For j=0, 1 let y;=Euu,_; and
§i=T1 Z,T: j+ it - ; be the population and sample autocovariance of u,. Assume that the first
element of Z, is the constant term = §(1,1) = # + 2f,. Then §(1,1) < 0«1, + 2, < 0; given that
70 + 2y, — 0as #; — — 1, it is not unreasonable that when 0, is nearer — 1 sampling error will more
likely cause (1, 1) < 0. The same logic applies to the other diagonal elements of S, at least when &, is
conditionally homoskedastic and the relevant element of Z, is highly positively autocorrelated.
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is that the precision of estimation of the asymptotic variance—covariance matrix
is affected by the precision of estimation of the expectation of cross-products of
Z, and the gradient of f; (that is, of EZ, X in the linear model y, = X;f + u,—see
the discussion of (2.3)); given that this estimate typically will also converge at
rate \/ T, there is no a priori reason to expect performance to be dominated by
the precision of estimation of S.

As we shall see, the simulations nonetheless indicate a broad connection
between serial correlation properties of the disturbance and of cross-products of
instruments and disturbances on the one hand, and performance of the MA-/
estimator on the other.

3. Monte Carlo results
3.1. Description of data generating processes and estimators

The data generating processes (DGPs) and hypothesis tests are very similar to
some reported in Andrews and Monahan (1992). The experimental design was
chosen in large part because the simplicity of the Andrews and Monahan (1992)
DGPs allowed me to cleanly extend their analysis of DGPs with positive
autocorrelation of cross-products of instruments and disturbances to ones with
negative autocorrelation.

As in Andrews and Monahan (1992); all experiments involve the linear
regression Vo= 4+ Bazo + Bazy + Baza + Bszs, + u = Z,f + u,, t=
l,....T, T =128 E(u|Z,) =0 and least squares is the estimator =f =
Gl 220 'Y L Zyys without loss of generality, f is set equal to zero; the
hypothesis of interest is Hy: i, = 0. Let I'y = EZuu, . ;Z; - ;. In all experiments,
Zay, ~MAMTorn=1o0rn=2=

S=1y+T,+ 1 (MA(1) specifications),
S=ly+ 1+ T+ + 1 (MA(2) specifications). 3.1)
Let V be an estimate of the asymptotic variance—covariance matrix of j,
R T -1 T -1
V= (T oty Z,Z;> (estimate of S)(T ) Z,Z}) . (3.2)
t=1 t=1

The relevant test statistic is T53/7(2,2) & x2(1). In all experiments, the number
of replications was 1000,

The regressors (= the instruments) follow independent AR(1) processes with
common parameter ¢: for i = 2, ..., 5, z;, = ¢z;,. | + ¢,. Two values of ¢ were
used: ¢ — 0.5 and ¢ = 0.9. An autocorrefation of 0.5 is approximately that of
growth rates of some macroeconomic variables, such as GDP; that of 09 is
characteristic of many undifferenced macroeconomic variables. For each value
of ¢, the variance of the i.i.d. normal variable e, was chosen so that Ez? = 1.
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In the homoskedastic models, u, = &, + 0,6, or u, = &, + 0,6_, + 0,&,_, where
& is i.i.d. normal and Eg,e;; = O for all ¢, i, s. For various values of 8, and 6,, the
variance of & was chosen so that Eu? = 1. In the MA(1) model, 0, ranged over
the seven values — 0.9, — 0.6, — 0.3, 0, 0.3, 0.6, and 0.9. The values towards the
lower end perhaps capture some important characteristics of applications in
which the truncated estimator of S fails to be p.s.d., because, as we shall see, these
tend to cause such a failure. The smaller positive values might arise from time
aggregation. The larger positive values are for comparison. In the MA(2) model,
three sets of parameters were used: 6, = — 13,0, =0.5; 0, = — 1.0, 6, =0.2;
0, = 0.67, 0, = 0.33. The first two sets come from estimates from inventory data
in West and Wilcox (1996); the last is suggested by Andrews and Monahan
(1992). Thus the total number of homoskedastic MA(1) models is 14 (= 2 values
of the regressors’s autoregressive parameter ¢ times 7 values of the disturbance’s
moving average coefficient 6, ), the total number of MA(2) models was 6 (= 2 x 3).
When 0, = 6, = 0, u, ~ i.i.d,; to prevent possible misunderstanding, I note that if
this fact were known, one would not use an autocorrelation consistent estimator.

The heteroskedastic models, which were suggested by a similar model in
Andrews and Monahan (1992), are identical to the homoskedastic models
except that

u, = (1//3)[238 + 01 (23— 18- 1)), (3.3a)
U = (1/\/3)[25@ + 0,(Z3—18-1) + 02(23,- 28— 2)]. (3.3b)

(The factor of 1/\/ 3 keeps the variance of 4, at unity.)

IFor future reference, I note the following about the serial correlation proper-
ties of u, and Z,u,, all of which may be established with a little bit of algebra.
First, for given 0;’s the autocorrelations of u, are identical for the homoskedastic
and heteroskedastic models. Second, the signs of the first-order autocorrelations
of u, and z,u, (i = 2,3,4,5) are the same as those of 0,, for both MA(1) and MA(2)
models; all the MA(2) models happen to have (small) positive second-order
autocorrelations. Third, the autocorrelations of z,u, are smaller in absolute
value for ¢ = 0.5 than for ¢ = 0.9.

Four estimators are considered. The new estimator is implemented by ap-
plying nonlinear least squares to the least squares residuals, with presample
values of ¢, set to zero.® A second estimator was the truncated. I checked whether

¢ rarely encountered numerical problems using this estimator. Of 40,000 sets of estimates, only 21
did not converge using a canned nonlincar search algorithm (the OPTMUM procedure of GAUSS).
Of the 21 cases of nonconvergence, eight occurred for the heteroskedastic MA(1) model with
0, = 0.9: for no other parameter configuration did nonconvergence occur more than three times.
Rather than attempt to tune the search for these 21 data sets, [ omitted them altogether from the size
calculations reported in Tables 2 and 3: with so few cases of nonconvergence per parameter
configuration, the character of the results would not change in the slightest, no matter what test
statistics would result from playing with the scarch algorithm until it converged for these data sets.



180 K.D. West | Journal of Econometrics 76 (1997) 171-191

the estimate (2.7) was positive definite. If so, I used (2.7) in computing the
variance—covariance matrix (3.2); if not, I computed (3.2) setting the estimate of
Sto Iy (i.e., I ignored the autocorrelation in u, and Z,). A similar procedure was
used in the simulations reported in the working paper version of Cumby and
Huizanga (1992).

The third and fourth estimators are the prewhitened QS estimator suggested
in Andrews and Monahan (1992, Sec. 3) and the prewhitened Bartlett estimator
suggested in Newey and West (1994, Sec. 2). For details on these estimators, see
the original papers; here, I limit myself to a brief outline. These two estimators:
(1) Prewhiten Z,i, by fitting a vector autoregression of order 1 to Z,i,. Let
h! denote the (5 x 1) vector of residuals to this vector autoregression. (2) Esti-
mate the spectrum of 4 by taking weighted sums of the sample autocovariances
of this residual. After defining (in the notation of Andrews and Monahan, 1992;
Newey and West, 1794) w, = 0, w, = w3 = w, = ws = 1, the weights are deter-
mined by a procedure that is asymptotically optimal in a cerain precise sense.
The two estimators differ in the weighting scheme used. Call the resulting
estimate S*. (3) Use S* and the matrix of autoregressive coefficients estimated in
step | to estimate S.

3.3. Simulation results

Table 2 presents sizes of nominal 1, 5, and 10 percent tests for the homo-
skedastic models. First consider panel A, in which ¢ = 0.5 so the regressors are
mildly positively autocorrelated. When ¢, = — 0.3, so that the autocorrelations
of the disturbance, and of cross-products of instruments and disturbance, are
positive or mildly negative, all the estimators display a tendency to overreject.
For the QS and Bartlett estimators, such a tendency also characterized the
simulations in Andrews and Monahan (1992) and Newey and West (1994). With
the possible exception of the truncated, the estimators seem to perform better for
) = — 09 and 0, = — 0.6. Overall, the estimators seem to perform comparably,
with the possible exception of the truncated estimator when 6, = — 0.9.

Panel B considers the MA(1) model when the regressors are strongly posit-
ively autocorrelated. When 0, > 0, the estimators show a mild tendency to
overreject; for such values of 0, the Bartlett performs worse than the other
three, which seem about comparable. When 0, = — 0.9 or 0, = — 0.6, so that
the disturbance, and cross-products of instruments and disturbances, are strong-
ly negatively autocorrelated, the Bartlett overrejects and the MA-{ estimator is
relatively accurately sized; the QS and truncated estimators substantially under-
reject. With 0, = — 0.9, for example, the test statistic generated by QS was
greater than 3.84 (the § pereent value for a 3*(1)) in only 7 of the 1000
replications (the ideal is 50).

A comparison of panels A and B suggests that for given 0,, the MA-/
estimator is not sensitive to ¢, the autocorrelation coefficient of the instrumenis;
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for given ¢, the estimator seems to perform a little better when 6, = — 0.9. The
other estimators seem sensitive to both ¢ and 6,, with the QS and truncated
estimators tending to underreject when the product ¢0, is near — 1—that is,
when cross-products of instruments and disturbances are sharply negatively
autocorrelated.

Panel C tells a similar story for the MA(2) specifications. The performance of
the MA-l estimator seems insensitive to ¢, but for given ¢ is better when 8; < 0.
When 6, <0, the QS and truncated estimators underreject mildly for ¢ = 0.5
(columns (1) and (2) of panel C), substantially for ¢ = 0.9 (columns (4) and (5)).
All four estimators tend to overreject when both ¢ and 0, are positive.

I also experimented with an MA(1) DGP in which the instruments were
strongly negatively autocorrelated (¢ = — 0.9) and the disturbance was strongly
positively autocorrelated (6, = 0.9). Such strong negative autocorrelation of the
instrument is not common in the economic data that I am familiar with. I used
this DGP nonetheless to see whether the key characteristic that leads to
relatively good performance of the MA-l estimator is strong negative autocorre-
lation of cross-products of instruments and disturbance. And, indeed, the
MA-! estimator seemed insensitive to this change in parameters, while the
QS and truncated estimators tendec¢ to underreject. Rejection rates for
nominal 5 percent tests, for example, were: Bartlett, 5.2; QS, 0.4; truncated, 0.5;
MA-/, 3.6.

A broadly similar story is told in the heteroskedastic siinulations reported in
Table 3. While the performance of the MA-/ estimator is somewhat worse here
than in the homoskedastic simulations, so, too, is the performance of the other
estimators. And the MA-I estimator coutinues to perform relatively well when
the autocorrelation of the disturbance is ra.cher nzgative (0, near — 1 for MA(1)
models, 0, < 0 for MA(2) models): in all three panels, the QS and truncated
estimators underreject when cross-products of instruments and disturbances
have sharp negative autocorrelation. See columny (1) and (2) in panels A and B,
and columrs (1), (2), (4), and (5) in panel C. All the estimators show a tendency to
overreject when both ¢ and 0, are positive.

I summarize the simulations in Tables 2 and 3 and the asymptotic calcu-
lations in Table 1 as indicating that the MA-/ esiimator tends to perform
relatively well when cross-products of instruments an:d disturbances are strongly
negatively autocorrelated, although the magnitude of autocorrelation is by no
means a sufficient statistic for performance.

These points are illustrated in Fig. 1, which plots tlie actual size of tests of
nominal size 0 to 25, for selected experiments. A comparison of graphs (1) and (2)
in each panel illustrates the insensitivity of the MA-i estimator to autocor-
relation of the instrument, and the tendency of Q% to underreject when
cross-products of instruments and disturbances display saarp negative auiccor-
relation. Graphs (1) and (3) of both panels illustrate that the MA-I and QS
estimators behave quite similarly in many of the simulations. Especially in
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graph (4), a comparison of panel A to panel B iilustrates that the estimators
perform worse in the heteroskedastic simulations.

In those simulations in which the QS and truncated estimators performed
poorly, use of formula (2.7) tended to generate truncated estimates that were not
p.s.d. When 8, = — 0.9 and ¢ = 0.9 (column (1) of panel B in Tables 2 and 3), for
example, (2.7) was not p.s.d. in an astonishing 93.2 (Table 2) and 88.7 (Table 3)
percent of the simulations. (See Appendix C.) Given that in such cases I set the
estimate of S to Iy, the tendency tc underreject is unsu:rprising: in such DGPs
V(2,2) < I4(2, 2), so the estimator will underreject if I'y(2, 2) is near I'y (2, 2).

To get a feel for why the QS estimator also underrejected in these DGPs,
I calculated the bias across the 1000 repetitions in the estimate of 5(2, 2). (Recall
that in population, V(2, 2) = S(2, 2).) My thought was that underrejection might
be associated with estimates of S(2,2) that were too large, i.e., that QS was
biased upwards in these DGPs. And this was indeed the case. For example, in
the homoskedastic MA(1) process with ¢ = 0.9, 0 = — 0.9, the average differ-
ences between the estimated and population values of S(2, 2), expressed as
a fraction of the population value of S(2, 2), were 3.86 for truncated, — 0.20 for
Bartlett, 0.96 for Qs, and — 0.35 for MA-/

On the other hand, in all but the DGPs with sharp negative correlation, QS
tended to be biased downwards, as it was in Andrews and Monahan (1992). So,
too were the other estimators, as is consistent with the general tendency to
overreject that is zvident in Tables 2 and 3.”

4. Conclusions

This paper has proposed and evaluated a positive semidefinite estimator of
a heteroskedasticity- and autocorrelation-consistent covariance matrix. A re-
quirement is that the regression disturbance follow a moving average (MA)
process of known order. In a system of [ equations, this ‘MA-I’ estimator entails
estimation of the moving average coefficients of an I-dimensional vector; in
a single-equation system, for example, one fits a univariate MA model, regard-
less of the size of the parameter or instrument vector. Simulations indicate that
the estimator performs better than the nonparametric ones now in common use
when cross-products of instruments and disturbances are sharply negatively
autocorrelated, comparably or slightly worse otherwise.

"To prevent misunderstanding, let me note that many factors determine the smal! sample perfor-
mance of the estimators. An downward (upward) bias in the estimate of §(2,2) may not and indeed
did not always translate into overrejection (underrejection) at a given nomiral significance level, fet
alone at all significance levels. For example, in the homoskedastic MA(1) process with ¢ = 0.9,
0 = 0.9, the biases as a fraction of $(2,2) were — 0.51 for truncated, — 0.53 for Bartlett, — 0.23 for
QS, and — 0.47 for MA-l. Thus, QS was biased downwards, but, as indicated in Table 2, still
underrejected (slightly) at the 0.05 and 0.10 significance levels.
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One priority for future work is to allow for disturbances whose moving
average representation is of unknown, and possibly infinite, order. Such an
estimator might be implemented in, say, a single-equation model as follows.
First estimate a univariate autoregression. Then obtain the first n moving
average coefficients from the autoregressive estimates in the usual way (e.g.,
Fuller, 1976, p. 74). Use these coefficients as described in Egs. (2.5) and (2.6)
above, with the autoregression’s residuals used for &,.2 If the order of the ARMA
process of the disturbance is unknown, one needs to let the number of coeffi-
cients in the autoregression and the number of moving average coefficients
increase as a suitable function of sample size. The theoretical challenge is to
determine this suitable function.

A second priority is to develop refined asymptotics that better characterize
the finite sample distribution of the present estimator.

Appendix A

This appendix formally proves the consistency results stated in Section 2. To
do so, it is helpfui to denote the true value of the regression vector as §* rather
than B, the true value of the mairices of moving average parameters as 0¥ rather
than 0;. So: Let Z, be gx/, let u, and ¢ be Ix1, with u, =g + 6%, -,

+ o + 0 for geC, |[I+6f¢c+ - +0Fc"|=0=]|g|>1. Let
S=Y1__.EZuu_;Z,_; Let f,(f*) = u,, where p* is (k x 1).

Assumption 1. E(e|6-1,8-25 o s Zism Zysn-1 --- ) =0, and {(Z &), ... .(Z;+ &)}
is covariance-stationary and ergodic.

Assumption 2. In some open neighborhood around f*, and with probability I,
1) is measurable and continuously differentiable in £.

For notational simplicity, assume that none of the elements of %, ... ,0} are
known. (In some applications it may be known that some of the elements of the
0F's are, say, zero; in such cases, the argument presented here is easily adapted.)
Let o* = (%, vec(0F), ..., vec(0F)); let

r=(k+ nl*)

be the dimension of a*. Methods for estimation of MA models vary in treatment
of presample values of the unobservable disturbance. For concreteness, I assume
that these are zero, both in the data and in the estimation method:
Eg=E. = =g gy =8p=E_ = - =§_,,; =0. Accordingly, for an es-
timate d of «* obtained from a sample of size T, define & = ¢,(d) by solving for

® Cumby et al. (1983) and Eichenbaum et al. (1988) suggest similar procedures, but require that an
autoregression be estimated whose dimension is the number of orthogonality conditions rather than
the number of equations.
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the first ¢t — 1 aAutoregresswe weights obtained by inverting the MA(n) lag
polynomial I + 6,L + - + 8,L", &(d) = Z f.— i(B), where the autoregres-
sive /s are defined by the usual recursion (e g Fuller 1976, p. 74): Yo =
Yr=—0,,%,=—0,y, —0,, .... For given a € R", define &(x) analogously,
and define 4, ,(): R" - R? as (Z, +Z,10+ - +Z,00,)e(x). It is under-
stood that ‘d,; means ‘d,(o*)’, ‘d, means ‘d,(&)’. Let § =(T — n)“z i A

By Assumption 2, there is a neighborhood N around o* in wh1ch d(a) is
continuously differentiable; for o € N, let D,(x) = 0d,(x)/0x denote the (g xr)
matrix of partial derivatives of d,(x). For any matrix 4 =[a;], let
|A| = max; ;| a;|.

Assumption 3. There exists a constant ¢ and a measurable random variable
m, such tbat for all ¢, sup,cn|d:(®)| < m,, sup,en|Di(@)| < m,, Em? < ¢ < 0.

Assumption 4. T'P[T —n) 'Y 5 dwudicn — S1 = O,(1).
Proposition 1. Under Assumptions 1-3, if & P, a*, S 7, 5.

Proposition 2. Under Assumptions 14, if T'?|& — o*| = O,(1), then T V*(§ — )
= 0,(1).

Proof of Propositions I and 2. Setq = 1for notational simplicity. A mean value
expansion of (T —n) 'Y/ "d2, = (T — n)~ 'Y d., around (T —n)~ 'Y dfs
yields

S S = (T - n) 1Zd'+" S + 2BT,
B'r:(T—H) ! Zd,+,,(oc t+n(&)(&_a*)}a
where & is on the line between & and o* By the ergodic theorem,

(T —n)~ 1Y .d2,, °, Ed?; it is easily verified that Ed? = S. For & sufficiently close
to o*, we have

|dy+ (@ D1+ )G — 0*)| < rldys (@I Desn(@I] 8 — o*| < poif | — ¥
—3
|By| < rld — o*|(T —m)~ ' Y mi].

Since (T — n) ‘Zm, is O,(1) by Markov’s inequality, By 2,0 under the conditions
of Proposition 1, and T”ZBr O,(1) under the conditions of Proposition 2.

Assumptions similar to Assumptions 2 and 3 are also made in Andrews and
Monahan (1992) aud Newey and West (1994). Assumption 4 follows from the
assumption about summability of fourth cumulants made in Assumption A in
Andrews and Monahan and in Assumption 2 in Newey and West.

For the reader unfamiliar with those papers, the following illustration may
help in interpretation of my assumptions. Consider a scalar linear model,



190 K.D. West | Journal of Sconometrics 76 (1997) 171-191

f{(B*) = y, — X, p* for some observable data y, (a scalar) and X,. Then Assump-
tion 2 holds. Assumption 3 holds if sup,E|Z,|* < oo, sup,E|X,|* < o0,
sup,E|e,|* < co. Assumption 4 holds if Z, is stationary with moving average
representation (say) Y ;2o gje;,—;and Y 2 olg;| < oo; for some m, the (¢ + 1) x 1
vector {e;,&-_,) is i.i.d. with finite eighth moments, with Eegé, ,, possibly not
zero. (See Section 2 on the dating convention, which accounts for a nonzero
cross-correlation between ¢, and ¢, _,, occurring when m#0.)

Appendix B

This appendix outlines the asymptotic theory used to compute the figures in
Table 1. Let o2 = Ee?, I'o=Eu? =(1 + 0})a?, Il = Euy,-, = 0,6%. From
Fuller (1976, p. 239) the asymptotic variance of the truncated estimator
Fo+2F is Vi +4Vi +4Vy,, Vi =23442, Vi, =4Iy, V=
ri +3ri.

In this example, the MA-I estimator is (1 -+0,)2(T — )" 'Y 182,

= (1 + 0,)%6?%, where §, is the NLLS residual. From Fuller (1976, pp. 346—349),
one can conclude the following. After some rearrangement, a second-order
mean value expansion of § around S gives \/ TS —S)=g6r + o,(1),
g=[2(1 + 0,)e%,(1 + 0,)*], 67 = \/T(él — 0,,6%* — ¢?). For a certain (2 x 1)
random vector Cyp, Or=Cp+o0,(1), with limy,, EC;Cr=C,
C(1,1)=1-0% C(1,2) = C(2,1) =0, C(2,2) = 26* = the asymptotic variance
of S is g'Cg = 4(1 + 0,)%1 = 03)6* + 2(1 + 0,)*¢*.

Appendix C

Percentage of truncated estimates that were not positive definite:

Value of 8,

- 09 - 0.6 -03 0.0 0.3 0.6 09
Table 2A  65.3 44.7 5.3 0.1 0.0 00 0.0
Table 2B 93.2 78.5 27.3 1.7 0.0 0.0 0.0
Table 3A  69.7 48.9 17.6 2.6 0.2 0.5 0.1
Table 3B 388.7 78.9 453 12.6 1.7 0.2 0.0

Values of ¢, 0,, 0, N

05, -13.05 05, -10,02 050.67,033 09, 13,05 05 -10,02 09,067,033

Table 2C 68.6 63.3 00 95.6 93.6 0.0
Table 3C 72.8 68.6 0.6 94.6 93.4 0.7
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