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Abstract 

A ~/T-consistent estimator of a heteroskedasticity and autocorrelation consistent 
covariance matrix estimator is proposed and evaluated. The relevant applications are 
ones in which the regression disturbance follows a moving average process of known 
order. In a system of ! equations, this 'MA-/' estimator entails estimation of the moving 
average coefficients of an /-dimensional ,'ector. Simulations indicate that the MA-/ 
estimator's finite sample performance is better than that of the estimators of Andrews and 
Menahan (1992) and Newey and West (1994) when cross-products of instruments and 
disturbances are sharply negatively autocorrelated, comparable or slightly worse other- 
wise. 

KO, words: Moving average; Time series: Serial correlation: Spectral density; Inference; 
Hypothesis lest 
JEL class!lication: CI2, L22; C32 

1. Introduction 

This paper  proposes and  evaluates an est imator  of a heteroskedasticity- and 
autocorrelat ion-consistent  covariance matrix that is positive semidefinite by 
construction.  The est imator  is applicable when the regression dis turbance fol- 
lows a moving  average (MA) process of known order,  and the innovat ions in this 
moving average process have zero mean condit ional  on past disturbances and 
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current and past instruments. I prove that the estimator, which is parametric, is 
x/T-consistent under mild conditions. This means that it is asymptotically more 
efficient than the nonparametric estimators emphasized in recent work such as 
Andrews (1991), Andrews and Monahan (1992), and Newey and West (1994). 

Simulations are used to evaluate the finite sample performance of hypothesis 
tests about a parameter in a linear model. Consistent with some asymptotic 
calculations worked out for a simple example, these simulations indicate that 
the estimator works relatively well - has relatively accurately sized tests - when 
cross-p,roducts of instruments and disturbances are sharply negatively corre- 
lated. The simulations also indicate that these are precisely the circumstances 
under which an estimator known as the 'truncated' one is likely to fail to be 
positive semidefinite. Since repeated occurrence of this failure in empirical work 
was one of the major spurs to development of alternative covariance matrix 
estimators, I take the implication to be that such circumstances are empirically 
relevant ones. 1 The simulations also indicate, however, that when the es- 
timator's asymptotic advantages relative to nonparametric estimators are rela- 
tively small (but still nonzero), the estimator works comparably or slightly worse 
than the nonparametric ones. 

A second contribution of the simulations is to evaluate some existing es- 
timators when cross-products of instruments and disturbances are negatively 
autocorrelated. When the negative autocorrelation is sufficiently strong, some 
earlier estimators have a tendency to reject too infrequently, rejecting at the 
5 percent level, for example, in distinctly less than 5 percent of the simulations. 
This complements the Andrews and Monahan (1992) and Newey and West 
(1994) result that strong positive autocorrelation tends to cause the non- 
parametric estimators to reject too often. 

The proposed estimator, which generalizes one suggested by Hodrick (1991), 
is more restrictive than the nonparametric ones now in common use. It is not 
applicable when the order of the moving average of the disturbance is not 
known or is infinite, as sometimes happens in empirical work. But in many 
studies the null specification implies a moving average of known order. Exam- 
ples in which this is the case include: evaluation of multi-period forecasts, using 
either financial market (e.g., Hansen and Hodrick, 1980), or survey data (e.g., 
Brown and Maital, 198 i), Euler equations (first-order conditions) from rational 

t Unfortunately, empirical papers typically do not provide enough in,~ormation to allow one to 
deduce the autocorrelations of cross-products of instruments and disturbances. But perhaps the 
unpublished calculations underlying seine of my own work on monthly, aggregate inventories is 
representative. V~ est and Wilcox ~1996) considered a model with au MA{2) disturbance. Underlying 
the estimates in Table 7 of West and Wilcox {1996) are cross-products of instruments and distur- 
bances whose estimated first-order autocorrelations are around -0 .6 .  In the simulations, the 
proposed estimator performs relatively well with an MA{2) process calibrated to the West and 
Wilcox estimates, See Table 2, panel C, column (5) below. 
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expectations models when there are costs of adjustment (e.g., West, 1986), 
nonseparable utility (e.g., Eichenbaum et al., 1988), and/or unobservable 
moving average shocks (e.g., Kollintzas, 1993), time-aggregated models (e.g., 
Hansen and Singleton, 1990). 

As was noted above, the estimator also requires that the innovation in the 
regression disturbance have a zero mean conditional on past disturbances and 
current and past instruments. This means that the best predictor of the distur- 
bance is the same as the best linear predictor, and so is not implied by 
a conventional stationarity assumption. This condition thus is not invariably 
maintained in empirical work. But it is consistent with popular parametric 
models for regression disturbances, including for example GARCH models. It is 
to be emphasized that the estimator allows for heteroskedasticity of the distur- 
bance conditional on the instruments. 

In a system with i equations, the estimator requires obtaining the moving 
average coefficients of the /-dimensional vector of disturbances. In a 
single-equation system, then, one fits a univariate MA model, regardless of 
the size of the parameter or instrument vector. Software to fit univariate 
MA models of course is widely available. Software to fit multivariate MA 
models is less 'widely available, so computational considerations may well call 
for use of other techniques such as nonparametric ones in systems with many 
equations. 

Section 2 describes the estimator, Section 3 presents simulation results, and 
Section 4 concludes. For clarity of exposition, the formal econometric theory 
- not only proofs but precise statement of technical conditions as well - is in an 
appendix. 

2. The new estimator 

2.1. Mechanic's 

I first illustrate this estimator with a simple scalar example, and then define it 
in the general case. Precise statement of technical conditions may be found in 
Appendix A. Let y, = xd~ + ut be a scalar regression model, where u, is the 
unobservable disturbance and/~ is an unknown parameter. For a sample of size 
T, let 13 be estimated by instrumental variables using as an instrument a scalar z,, 
B = (~ '= ,  z t x , ) - l ~ r  zty,; z, = x, if OLS is run. Thus, Ez,ut = 0 is an ortho- 
gonality condition used to estimate ~6. Let {z,x,} and {z,u,} be covariance- 
stationary. For inference about /L one needs an estimate of the asymptotic 
variance-covariance matrix (Eztx,)-2S, where S = ~ j~_~  Ez,u,u,_jz,_j 
= EzZ, u~ + 2~j% l Eztu~u,-izt-j. (The last equality follows since z, ut is a station- 

ary scalar). Estimation of Eztxt is straightforward, since under very mild condi- 
tions T -  1 ~ ~= t z,xt ~ Eztxt. 
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Estimation of S is more  problematical, and is the subject of this paper. To 
illustrate the approach, let u, follow an MA(1) process, u, = et + 0let-1,  and 
suppose that {z,e,} and {z,e,_t} are mean zero and stationary. (To prevent 
confusion, it may be worth noting the dat ing convention: if ~t-1 is a shock 
realized in period t - 1, and is or thogonal  to z's that are realized in period t - 2 
and earlier, then zt must be realized in period t - 2 or earlier.) Suppose further 
that  e, has zero mean conditional on past et's and zt+t's: E( ,~ , l g , - 1 ,~ t - z ,  

• . . ,  zt + 1,zt . . . .  ) = 0.: (In other words, suppose that et is a martingale difference 
sequence with respect to past et's and zt+l's.) Since ut,,~ MA(1) and 
E(e, I e,-- t . . . . .  z, + 1, ... ) = 0, the autocorrelations of z,u, are zero for lags greater 
than 1. Hence, the Wold representation of z,u, is an MA(1), and 
S = Ez~u~ + 2Ez,  uzu,_ l z~ - i .  We have 

EzZtu~ = E[z~(e,, + 01e.,_ ,)z] 

2 2 = E[z,2(,:t z + 20re.,_ ~ + 0~:,- 1)] 

, 2  2 = + 

= Ez% 2 + 02Ez2+ 1~:~. (2.1) 

The equality at the beginning of the third line follows from 
E(~:,I~:,-,,~:,-2 . . . . .  z,+ ~,z, . . . .  ) =  0, the last equality from stationarity. Sim- 
ilarly, Ez,u,u,_ lz , - l  = 01Ez~z,+ 1~:~. Thus, 

S = Ez:u~ + 2Ez,  u,u, lz, t 

= Ezr~:r + 0~ F - , ,  ,~:, + 2(01Ez, z, ,  

-~ Ed?, t, d t ,  l ~ (z, + 01zt + t)ct. (2.2) 

One then estimates S by a sample average of a measure of dr, as illustrated 
below. 

The general case proceeds as follows. There is a regression model  

Jill3} = u,, 12.3) 

where the i x  ! vector j~ depends on data observable at time t and the (k x 1) 
unknown parameter vector/~, and u, is an I x 1 unobservable disturbance vector. 
In a linear model, for example, .~(/l) = y, - XIB, where the ! × 1 vector y, and the 
k x I matrix X,  are observable. Let Zt be a (q × i) vector of instruments used to 
estimate/~. In the common  case in which an (r x 1} vector of instruments R, is 

" It should be noted that with ,:, the univariate innovation in u,, the zero mean condition Ez#:, = 0 
will be violated in some applications (see Ilayashi and Sims, 1983). 
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orthogonal  to each of the elements of u, (e.g., Hansen and Singleton, 1982), 
Z~ = R~ ® It and q = rl. 

To motivate  the present study, suppose that  a technique such as that in 
Hansen (1982) is used to estimate fl, under Hansen 's  conditions (although the 
present technique is not necessarily tied to Hansen 's  estimation technique and 
technical conditions). Then /~ solves min#{E~,r=~ Z,f ,( f l)] 'Wr[Y'f=~ Z~(fl)]  }, 
where W r  is a (q x q) symmetric positive semidefinite matrix. Let W r  converge in 
probabil i ty to a (q x q) symmetric  positive definite matrix W, let F, denote the 
(k x I) matr ix of derivatives o f f  evaluated at the true parameter vector, and let 
H = EZ, F~. Then x / T ( f l -  fl)A N(0, V), V = - ( H ' W H ) - ~ H ' W S W H ( H ' W H ) -  ~' 

QO I ~ t  S = ~ = _ ®  EZ,u,u,_~,_ t-~. Thus, here and in other contexts, one needs to 
estimate S. 

Let the disturbance follow an MA process of known order n, 

ut = ~t + 01e, t - ~  + . . .  + 0 . ~ t - , , ,  ( 2 . 4 )  

where ~t is I x 1, the 0~'s are I x I, and I + OIL + ... + Oo, L" is invertible. I assume 
E(e.tl~.t-~,e.t-2, ... ,Z,+,, ,Zt+,,-~, ... )--, 0, which implies that Ztu~ ".. MA(n). 
Then 

S = ro ÷ ~ (r~ ÷ r)), r j  - E(Z,u,u;_jZ;_j). 
j=l 

Define the (q x l) vector dr+, = (Z, + Zt+ ~01 + ... + Z~+,O,,)e,. It is easily 
established that Ed, dl = S. It is to be emphasized that Edfdl = S even if u, is 
heteroskedastic conditional on Z,, so that EZ, u,u;ZI# EZ,(Eu, ul)Z~. 
Let 

/;(/?) 
U r ~ 

where/~ is a consis.fent esthnate of [/. Let 01, . . . ,  0,, he consistent estimates of 
0~ . . . .  ,0,,, and let ,r satisfy ~, = ~t + 01~'f,- I + "'" + 0,~,_,,. In the case where 
l =  1 and u, is a ~ealar, the O's and gs  may be obtained, for example, by 
nonlinear least sqv ~res applied to ~,, with ~, = 0 for t ~< 0; Hannan  and Deistler 
(1988) discuss ?~!gorithms applicable for vector MA models. For  
t = 1, . . . ,  T - n, o~:fine the (q x 1) vector dt +,, as 

= t z ,  + z,+ 01 + .. .  + 12.5) 

Esti~-,..: ,; S as 

T - n 

g - i T - n) -1  Y. ,/, + ,3;  +,,. t2.6) 
t = l  

Evidently, S is positive semidefinite. 
Hodrick (1991) suggests a similar estimator, in the case of a certain linear 

model in which it is known that  01 . . . .  = 0, = I. 
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2.2. Discussion 

If ~ and 0t, . . . ,  0~ are obtained by T ~/2-consistent estimators (and some other 
mild conditions hold), this estimator is T t/2-consistent for S. (See the Appen- 
dix. a ) By conventional asymptotic efficiency criteria, then, this method domin- 
ates the positive semidefinite nonparametric estimators proposed by Andrews 
(1991), Andrews and Monahan (1992), and Newey and West (1994), which are 

t T'%onsistent for some 0¢ < i .  
Under the present assumption that Z,u, ~ MA(n), the T ~/2 rate of con- 

vergence is, however, shared by the truncated kernel. This kernel works as 
follows. Let ~,=ft(/~) be the regression residual. For j = 0 , . . . , n  

T t t let /~j = T - ~ ~,=j+ 1Z,atEt't-~Z~-j, with r j  = EZ,u,u,_~Z,_~ the corresponding 
population moment. The truncated kernel estimates S as 

A 

g = Po + (P, + ? ' , )  + --- + (P. + r . ) .  (2.7) 

As is well-known, S need not be positive semidefinit~, a point I return to below. 
To get a feel for how ~ compares to S, I computed the asymptotic variances of 
and g in a scalar linear model in which the only regressor is the constant term. 

In this model, which is described in detail in the notes to Table 1,ft(/1) = y, - /~,  
! = n = k = q = 1, and Z, = 1. Appendix B outlines the algebra used to derive 
the asymptotic variances. ¢ 

It nmy be seen that the new estimator - which I call the MA-/ est imator-  is 
dramatically more efficient when 01 is near - 1. This is essentially the following 
well-known result from Box-Jenkins analysis: Suppose that one wants to 
estimate 0 in the MA(I) model x, = vt + 0v, ~ t, where v, ~ i.i.d. Then, if0 is near 
*~ I, nonlinear least squares (NLLS) is dramatically more efficient than is the 

simple estimator that relies on the one-to-one mapping between the MA 
coefficient at,~d the first autocorrelation (e.g., Brockwell and Davis, 1991, p. 254). 
The textbook intuition for this result is that NLLS exploits information in the 
sample autocorrelations beyond the first (Fuller, 1976, p. 343), intuition that 
seems to carry over here as well. 

Note that the proposed estimator involves estimation of the moving average 
coefficients of tl, and not Z,~,. In the general, and empirically plausible, case in 

3The appendix also shows that ~ is consistent as long as fl and O~ . . . . .  0~ are consistent. The 
implication is that one will be able to obtain the 0,:s by inverting the estimates of the autoregressive 
representation of t~r, provided one lets the order of the autoregression increase at an appropriate 
rate. Such a procedure might be computationally convenient when the number of equations I is 
large. In this paper I do not, however, attempt to establish what this rate might be. 

'LThe table assumes that ~:f is i.i.d, normal. Suppose more generally that ~:, is i.i.d, with E~:i ~ = O, 
E~:~ = r,'. Then the ratios reported in Table 1 will continue to be greater than one, but will shrink if 
s,' > 3, grow if ~," < 3. 
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Table 1 
Inefficiency of  the truncated estimator ~lative to the MA-/es t imator  

177 

01 

- 0.9 - 0.6 - 0.3 0.3 0.6 0.9 
840.08 8.25 1.47 1.16 1.52 2.04 

This table presents the ratio of  the asymptotic variance of the truncated estimator (Eq. (2.7)) to that 
of the MA-! estimator (Eq. (2.6)). That  the entries are greater than one indicates that the truncated 
estimator is less efficient asymptotically. The calculations assume OLS estimation of a scalar model 
with an MA(1) disturbance, whose only regressor is the ~.onstant term: y, = fl + u,, u, = ~t + 0 : , _  ~, 
where c, is an i.i.d, normal variable. The reported ratios are invariant to the scale of ~,. In the MA-/ 
model, it is assumed that ~1 is obtained by nonlinear least squares or an asymptotically equivalent 
procedure. The object of interest is S - Eu, 2 + 2Eu,u~_ !. 

which Z, is stochastic, a positive semidefinJte estimator at least as efficient as the 
one I propose results from fitting an MA(n) to (q x 1) vector Zt~, and estimating 
S as the usual quadratic form in the variance-covariance matrix of the innova- 
tion to Zt~, (see, e.g., Fuller, 1976, p. 166, for the population formula). Why then 
do I not propose applying a multivariate analogue of NLLS to Zt~fl The reason 
is computational. Since q >/l fitting an MA(n) to the/-vector t~, obviously is 
computationally simpler than fitting an MA(n) to the q-vector Ztt~,, and in 
practice it is often the case that q >> 1. In Eichenbaum et al. (1988), for example, 
q = 14 and l =  2. 

it should be noted that the circumstances under which the new estimator is 
relatively efficient are precisely those under which the truncated estimator tends 
to yield an estimate that is not p.s.d. This is indicated by the Monte Carlo 
simulations reported in the next section, and is suggested by some algebra given 
in a footnote:  

in any case, one should expect the asymptotic comparison in Table 1 to 
provide at best a rough guide to actual performance. One obvious reason is that 
the example is so simple and stylized. When there are multiple, stochastic 
regressors, efficiency of th~ MA-I estimator will of course be affected not only by 
serial correlation properties of the disturbance but by those of the instruments 
as well. In general, then, there will not be a simple scalar that indexes relative 
efficiency of the MA-/estimator for any and all hypothesis tests. A second reason 

5Suppose that u,=~r+Ol~:t-i is a scalar ( l = l )  MA(I). For j = O ,  I let 7j=Eu,ut_j  and 
T -  t x-'r t~t~t j be the population and sample autocovariance of u~. Assume that the first 

element of Z, is the constant term =~ ~{1, 1) = go + 2~1. Then S(I,I) < 0~*.'~o + 2~1 < O; given that 
t'o + 27x --* 0 as 0x ~ - I, it is not unreasonable that when 01 is nearer - 1 sampling error will more 
likely cause ~(I, I ) < 0. The same logic applies to the other diagonal elements of ~, at least when t~t is 
conditionally homoskedastic and the relevant element of Zt is highly positively autocorrelated. 
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is that the precision of estimation of the asymptotic variance-covariance matrix 
is affected by the precision of estimation of the expectation of cross-products of 
Zt and the gradient off, (that is, of EZtX~ in the linear model Yt = X'tfl + u , -  see 
the discussion of (2.3)); given that this estimate typically will also converge at 
rate x/T,  there is no a priori reason to expect performance to be dominated by 
the precision of estimation of S. 

As we shall see, the simulations nonetheless indicate a broad connection 
between serial correlation properties of the disturbance and of cross-products of 
instruments and disturbances on the one hand, and performance of the MA-/ 
estimator on the other. 

3. Monte Carlo results 

3. I. Description o f  data generating processes and estimators 

The data generating processes (DGPs) and hypothesis tests are very similar to 
some reported in Andrews and Monahan (1992). The experimental design was 
chosen in large part because the simplicity of the Andrews and Monahan (1992) 
DGPs allowed me to cleanly extend their analysis of DGPs with positive 
autocorrelation of cross-products of instruments and disturbances to ones with 
negative autocorrelation. 

As in Andrews and Monahan (1992): all experiments involve the linear 
regression y, = [11 + [ l :~ ,  + [~3z3, + ll4z4t + flszst + u, =- Z',lt + ut, t = 
I . . . . .  T, T = 128; E(u, I Z , ) = 0  and least squares is the estimator =~//= 
(~,~j=~.'r ZtZI)  t~ f .~lZ,y , ;  without loss of generality, It is set equal to zero; the 
hypothesis of interest is Ho: [~, = 0. Let I~ ~ EZ,  u,u,. ~Z; i .  In all experiments, 
Zd~, ",- MA(n) for n = 1 or n = 2 ~. 

S = l'c~ + 1~! + F'I (MA(1) specifications), 

S = l'o + F~ + F'~ + I'2 + I"~ (MA(2) specifications). (3.1) 

Let I~ be an estimate of the asymptotic variance-covariance matrix of fl, 

= T - t Z , Z  (estimate of S T - t Z , Z  (3.2) 
I=1 t=l  

The relevant test statistic is Tfl~/i)(2, 2) ~ Z2(1). In all experiments, the number 
of replications was 1000. 

The regressors (= the instruments) follow flldependent AR(1) processes with 
common parameter tk: for i = 2 . . . . .  5, z~, = ~z~, ~ + e,. Two values of ~b were 
used; t/J - 0.5 and tk = 0.9. An autocorrelation of 0.5 is approximately that of 
growth rates of some macroeconomic variables, such as GDP; that of 0.9 is 
characteristic of many undifferenced macroeconomic variables. For each value 
of q~, '~he variance of the i.i.d, normal variable e~, was chosen so that Ez, ~ --- 1. 
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In the homoskedastic models, u~ --= et + 01e~- 1 or ut = e, + 0:~_ 1 -Jr- 0 2 ~ t  - 2 where 
c.t is i.i.d, normal  and Ee~ei~ = 0 for all t, i, s. For  various values of 01 and 02, the 
variance ofet  was chosen so that  Eu~ = 1. In the MA(1) model, 01 ranged over 
the seven values - 0.9, - 0.6, - 0.3, 0, 0.3, 0.6, and 0.9. The values towards the 
lower end perhaps capture some important  characteristics of applications in 
which the t runcated est imator  of S fails to be p.s.d., because, as we shall see, these 
tend to cause such a failure. The smaller positive values might arise from time 
aggregation. The larger positive values are for comparison.  In the MA(2) model, 
three sets of parameters were used: 01 = - 1.3, 02 = 0.5; 0~ = - 1.0, 02 = 0.2; 
0~ = 0.67, 02 = 0.33. The first two sets come from estimates from inventory data 
in West and Wilcox (1996); the last is suggested by Andrews and Monahan  
(1992). Thus the total number  of homoskedastic MA(1) models is 14 ( = 2 values 
of the regressors's autoregressive parameter tk times 7 values of the disturbance's 
moving average coefficient 01 ), the total number of MA(2) models was 6 ( =  2 × 3). 
When 01 = 02 = 0, ut "-- i.i.d.; to prevent possible misunderstanding, I note that if 
this fact were known, one would not use an autocorrelation consistent estimator. 

The heteroskedas t ic  models, which were suggested by a similar model in 
Andrews and Monahan  (1992), are identical to the homoskedastic models 
except that 

u, = (1/~/3)[z2,~,  + 01(z2,,- 1~,- ~)], (3.3a) 

ut = ( l / x /3 ) [z2 t~ t  + 01 (Z:~t- l g , -  I )_~t_ O2(Z2t_ 2gt_ 2)]. (3.3b) 

(The factor of l /x /3  keeps the variance of u, at unity.) 
For future reference, l note the following about  the serial correlation proper- 

ties of u, and Ztut ,  all of which may be established with a little bit of algebra. 
First, for given 0:s the autocorrelat ions of u, are identical for the homoskedastic 
an, d heteroskedastic models. Second, the signs of the first-order autocorrelat ions 
ofut and zi~ut (i = 2,3,4,5) are the same as those of0~, for both MA(1) and MA(2) 
models; all the MA(2) models happen to have (small) positive second-order 
autocorrelations. Third, the autocorrelations of z,ut are smaller in absolute 
value for tk = 0.5 than for tk = 0.9. 

Four est imators are considered. The new est imator  is implemented by ap- 
plying nonl inear  least squares to the least squares residuals, with presample 
values ofe.~ set to zero. 6 A second estimator was the truncated. I checked whether 

"1 rarely encountered numerical problems using this estimator. Of 40,000 sets of estimates, only 21 
did not converge using a canned nonlinear search algorithm tthe OPTM U M procedure of GAUSS). 
Of the 21 cases of nonconvergence, eight occurred for the heteroskedastic MA(I) model with 
01 = 0.9: for no other parameter configuration did nonconvergence occur more than three times. 
Rather than attempt to tune the search for these 21 data sets, l omitted them altogether from ~hc size 
calculations reported in Tables 2 and 3: with so few cases of nonconvergence per parameter 
configuration, the character of the results would not change in tile slightest, no matter what test 
statistics would result from playing with the search algorithm until it converged for these data sets. 
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the estimate (2.7} was positive definite. If so, I used (2.7) in computing the 
variance-covariance matrix (3.2); if not, I computed (3.2) setting the estimate of 
S to Fo (i.e., I ignored the autocorrelation in u, and Z,). A similar procedure was 
used in the simulations reported in the working paper version of Cumby and 
Huizanga (1992). 

The third and fourth estimators are the prewhitened QS estimator suggested 
in Andrews and Monahan (1992, Sec. 3) and the prewhitened Bartlett estimator 
suggested in Newey and West (1994, See. 2). For details on these estimators, see 
the original papers; here, I limit myself to a brief outline. These two estimators: 
(1) Prewhiten Z,t~t by fitting a vector autoregression of order 1 to Ztt~,. Let 
h,* denote the (5 × 1) vector of residuals to this vector autoregression. (2) Esti- 
mate the spectrum of h,* by taking weighted sums of the sample autocovari~,nces 
of this residual. After defining (in the notation of Andrews and Monahan, 1992; 
Newey and West, 1094) w, = 0, w2 = 1,123 ~ -  W 4 = W 5 = 1 ,  the weights are deter- 
mined by a p~:ocedure th,~t is asymptotically optimal in a certain precise sense. 
The two estimators differ in the weighting scheme used. Call the resulting 
estimate S*~ (3) Use S* and the matrix of autoregressive coefficients estimated in 
step 1 to estimate S. 

3.3. Simul6~,t.ion results 

"fable 2 presents sizes of nominal 1, 5, and 10 percent tests for the homo- 
skedastic models. First consider panel A, in which 4~ = 0.5 so the regressors are 
mildly positively autocorrelated. When 0t f> - 0.3, so that the autocorrelations 
of the disturbance, and of cross-products of instruments and disturbance, are 
positive or mildly negative, all the estimators display a tendency to overreject. 
For the QS and Bartlett estimators, such a tendency also characterized the 
simulations in Andrews and Monahan (1992} and Newey and West (1994}. With 
the possible exception of the truncated, the estimators seem to perform better for 
0 t  = - 0.9 and 0t = - 0.6. Overall, the estimators seem to perform comparably, 
with the possible exception of the truncated estimator when 01 = - 0.9. 

Panel B considers the MA(I) model when the regressors are strongly posit- 
ively autocorrelated. When 0t i> 0, the estimators show a mild tendency to 
overreject; for such values of 01, the Bartlett performs worse than the other 
three, which seem about comparable. When 01 = - 0.9 or 01 = - 0.6, so that 
the disturbance, and cross-products of instruments and disturbances, are strong- 
ly negatively autocorrelated, the Bartlett overrejects and the MA-/estimator is 
relatively accurately sized; the QS and truncated estimators substantially under- 
reject, With 0~ = -0 .9 ,  for example, the test statistic generated by QS was 
greater than 3.84 (the 5 percent value for a ~2(1)) in only 7 of the IOOG 
replications (the ideal is 50). 

A comparison of panels A and B suggests that for given 0~, the MA-I 
estimator is not sensitive to ~/~, the autocorrelation coefficient of the instruments; 
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for given ~, the estimator seems to perform a little better when 01 = - 0.9. The 
other estimators seem sensitive to both ~b and 01, with the QS and truncated 
estimators tending to underreject when the product tk01 is near - 1 - tha t  is, 
when cross-products of instruments and disturbances are sharply negatively 
autocorrelated. 

Panel C tells a similar story for the MA(2) specifications. The performance of 
the MA-/estimator seems insensitive to ~, but for given ~ is better when 01 < 0. 
When 01 < 0, the QS and truncated estimators underreject mildly fcr ~ = 0.5 
(columns (1) and (2) of panel C), substantially for ~b = 0.9 (columns (4) and (5)). 
All four estimators tend to overreject when both ~ and 01 are positive. 

I also experimented with an MA(1) DGP in which the instruments were 
strongly negatively autocorrelated (t~ = - 0.9) and the disturbance was strongly 
positively autocorrelated (01 = 0.9). Such strong negative autocorrelation of the 
instrument is not common in the economic data that ~ am familiar with. I used 
this DGP nonetheless to see whether the key characteristic that leads to 
relatively good performance of the MA-! estimator is strong negative autocorre- 
lation of cross-products of instruments and disturb~mee. And, indeed, the 
MA-/ estimator seemed insensitive to this change m parameters, while the 
QS and truncated estimators tended to underreject. Rejection rates for 
nominal 5 percent tests, for example, were: Bartlett, 5.2; QS, 0.4; truncated, 0.5; 
MA-I, 3.6. 

A broadly similar story is told in the heteroskedastic simulations reported in 
Table 3. While the performance of the MA-/estimator is somewhat worse here 
than in the homoskedastic simulations, so, too, is the performance of the other 
estimators. And the MA-/estimator co~ltinues to pe, rform relatively well when 
the autocorrelation of the disturbance is r~,Lher n,~,gative (01 near -- 1 for MA(1) 
models, 0~ < 0 for MA(2) models): in all three panels, the QS and truncated 
estimators underreject when cross-products o.r instruments and disturbances 
have sharp negative autocorrelation. See columm' (1) and (2) in panels A and B, 
and columns (1), ~2), (4), and (5) in panel C. All the estimators show a tendency to 
overreject when both ¢ and 01 are positive. 

I summarize the simulations in Tables 2 and 3 and the asymptotic calcu- 
lations in Table 1 as indicating that the MA-I estimator tends to perform 
relatively well when cross-products of instruments ar;d disturbances are strongly 
negatively autocorrelated, although the magnitude of autocorrelation is by no 
means a sufficient statistic for performance. 

These points are illustrated in Fig. 1, which plots t'ae actual size of tests of 
nominal size 0 to 25, for selected experiments. A cornpari.~on of graphs (1) and (2) 
in each panel illustrates the insensitivity of the MAq estimator to autocor- 
relation of the instn,ment, and the tendency of Q", to underreject when 
cross.-products of instruments and disturbances display saarp negative autvcor- 
relation. Graphs (1) and (3) of both panels illustrate that the MA- / and  QS 
estimators behave quite similarly in many of the simulations. Especially in 
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graph (4), a comparison of panel A to panel B illustrates that the estimators 
perform worse in the heteroskedastic simulations. 

In those simulations in which the QS and truncated estimators performed 
poorly, use of formula (2.7) tended to generate truncated estimates that were not 
p.s.d. When 0a = - 0.9 and tk = 0.9 (column (1) of panel B in Tables 2 and 3), for 
example, (2.7) was not p.s.d, in an astonishing 93.2 (Table 2) and 88.7 (Table 3) 
percent of the simulations. (See Appendix C.) Given that in such cases I set the 
estimate of S to Po, the tendency t~ underreject is unsr:rprising: in such DGPs 
V(2, 2) </ '0(2,  2), so the estimator '~ill underreject if/'0(2, 2) is near Fo (2, 2). 

To get a feel for why the QS estimator also underrejected in these DGPs, 
I calculated the bias across the 1000 repetitions in the estimate of S(2, 2). (Recall 
that in population, V(2, 2) = S(2, 2).) My thought was that underrejection might 
be associated with estimates of S(2, 2) that were too large, i.e., that QS was 
biased upwards in these DGPs. And this was indeed the case. For example, in 
the homoskedastic MA(1) process with ~b = 0.9, 0 = - 0.9, the average differ- 
ences between the estimated and population values of S{2, 2), expressed as 
a fraction of the population value of S(2, 2), were 3.86 for truncated, - 0.20 for 
Bartlett, 0.96 for Q:~, and - 0.35 for MA-! 

On the other hand, in all but the DGPs with sharp negative correlation, QS 
tended to be biased downwards, as it was in Andrews and Monahan (1992). So, 
too were the other estimators, as is consistent with the general tendency to 
overreject that is evident in Tables 2 ann 3. 7 

4. Conclusions 

'rhis paper has proposed and evaluated a positive semidefinite estimator of 
a heteroskedasticity- and autocorrelation-consistent covariance matrix. A re- 
quirement is that the regression disturbance follow a moving average (MA~ 
process of known order. In a system of I equations, this 'MA-r estimator entails 
estimation of the moving average coefficients of an /-dimensional vector; in 
a single-equation system, tbr example, one fits a univariate MA model, regard- 
less of the size of the parameter or instrument vector. Simulations indicate that 
the estimator performs better than the nonparametric ones now in common use 
when cross-products of instruments and disturbances are sharply negatively 
autocorrelated, comparably or slightly worse otherwise. 

7 To prevent misunderstanding, let me note that many factors determine the small sample perfor- 
mance of the estimators. An downward (upward) bias in the estimate of S(2, 2) may not and indeed 
did not always translate into overrejection {underrejection) at a given nomir~al ,dgnificance level, let 
alone at all significance levels. For  example, in the homoskedastic MA(1} process with rk = 0.9, 
0 = 0.9, the biases as a fraction of SI2, 2} were - 0.51 for truncated, - 0.53 for Bartlett, - 0.23 for 
QS, and - 0 . 4 7  for MA-I. Thus, QS was biased downwards, but, as indicated in Table 2, still 
underreiected (slightly} at the 0.05 and 0.10 significance levels. 
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One priority for future work is to allow for disturbances whose moving 
average representation is of unknown, and possibly infinite, order. Such an 
est imator might be implemented in, say, a single-equation model as follows. 
First estimate a univariate autoregression. Then obtain the first n moving 
average coefficients from the autoregressive estimates in the usual way (e.g., 
Fuller, 1976, p. 74). Use these coefficients as described in Eqs. (2.5) and (2.6) 
above, with the autoregression's residuals used for ~t. a If the order of the A R M A  
process of the disturbance is unknown,  one needs to let the number  of coeffi- 
cients in the autoregression and the number  of moving average coefficients 
increase as a suitable function of sample size. The theoretical challenge is to 
determine this suitable function. 

A second priority is to develop refined asymptotics that  better characterize 
the finite sample distr ibution of the present estimator. 

Appendix A 

This appendix formally proves the consistency results stated in Section 2. To 
do so, it is helpful to denote tile true value of the regression vector as fl* rather 
than fl, the true value of the matrices of moving average parameters as 0* rather 
than Oi. So: Let Z, be q xl ,  let ut and ef be i x  1, with ut = et + O~'~t-i 
+ ... +O*,e..,_,,; for qc=C, I I + 0 * q +  ... + 0 * g " l = 0 = ~ l g l > l .  Let 

S = Y ' .7=- ,EZ,u ,u; - jZ; - j .  Let f ( f l* )  = u,, where fl* is (k x 1). 

Assumption 1. E0:, I t:,_ I, ~:t - 2 . . . .  , Z, +,, Zt 4, - l, ... ) = 0, and {(Z:.,)', . . . .  (Z, + ~e,)'}' 
is covariance-stat ionary and ergodic. 

Assumpt ion  2. In some open neighborhood around fl*, and with probabili ty 1, 
./i(fl) is measurable and continuously differentiable in ft. 

For  notational simplicity, assume that none of the elements of 0~', . . . ,  0~* are 
known. (In some applications it may be known that some of the elements of the 
0~"s are, say, zero; in such cases, the argument  presented here is easily adapted.) 
Let ~t* = (fl*', vec(07)', . . . ,  vec(0~*)')'; let 

r =- (k + nl 2) 

be the dimension of ~*. Methods for est imation of MA models vary in treatment 
of presample values of the unobservable disturbance. For  concreteness, I assume 
that these are zero, both in the data  and in the est imation method: 
~;o = e,_ t . . . . .  ~:-,+ t = go = ~- t . . . . .  ~- ,+ t = 0. Accordingly, for an es- 
t imate ~ of ~* obtained from a sample of size T, define 8~ = et(a) by solving for 

s Cumby et al. 11983) and Eichenbaum et al. (19881 suggest similar procedures, but require that an 
autoregression be estimated whose dimension is the number of orthogonality conditions rather than 
the number of equations. 
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the first t -  1 autoregressive weights obtained by inverting the MA(n) lag 
polynomial I + O t L  + ... + O~L ~, e,(~) = ~-~o  ffff,-j(/~), where the autoregres- 
sive ff;s are defined by the usual recursion (e.g., Fuller, 1976, p. 74): fro = 1, 
~ = - 0~, ~2 = - 0~,~ - 02, . . . .  For given a e R ~, define e,(~) analogously, 
and define dt+,,(a): R" ~ R q as (Zt + Zt+lO~ + ,.. + Z,+nO~)e,(a). It is under- 
stood that 'd; means 'dt(~*)', "at' means 'dr(a)'. Let g = (T - n)-1 ~ r___-~ at + ~a~'~ ÷ ,. 

By Assumption 2, there is a neighborhood N around 0~* in which dd~) is 
continuously differentiable; for a ~ N, let D,(oO = ~dt(~)/~ denote the (q × r) 
matrix of partial derivatives of dt(~). For any matrix A = [a~j], let 
] A [ = maxi.~l ao]. 

Assumption 3. There exists a constant c and a measurable random variable 
m, such that for all t, sup~Nld,(a)l < m,, sup~NlD,(00l < m,  Em? < c < ~ .  

Assumption 4. TI /2[ (T  - n) - lx - 'T-"a  a, - S] Op(1). / , t = l  t~t+nt~t+n 

Proposition 1. Under Assumptions 1-3, if ~ ~ ~*, $ ~ S. 

Proposition 2. Under Assumptions 1--4,/fT ~/2102 - ~'1 = Op(1) ,  then T 1/2(~ _ S) 

= OA1 ). 

Proof of  Propositions 1 and 2. Set q = 1 for notational simplicity. A mean value 
expansion of (T - n)- 1 ~,r_--3 a2+. = (T - n)-l~a2+n around ( T -  n)- t~dZ+n 
yields 

- S = (T  - n ) - '  ~d2+,, - S + 2B,r, 

BT, = (T - n)- ' {~d,+,,(~)D,+.(~)(0~ - a*)}, 

wherc ~ is on the line between ~ and ~*. By the ergodic theorem, 
(T - n)- IX-'d2 /.., t+,, ~ Ed,2; it is easily verified that Ed~ = S. For & sufficiently close 
to ~*, we have 

I d, + . (a)D,  +.(a)(a - ~*) l  ~< r i d ,  + d07)I I D, + ,,(a) l I a - ~*1 ~< rm,21a - ~*1 

IBTI <~ rl02 --~* I [(T - ,1 ) -1~m23.  

n) ~mt is Op(1) by Markov's inequality, BT ~ 0 under the conditions Since ( T  - - ~  2 

of Proposition 1, and T 1/2 BT = Or(l) under the conditions of Proposition 2. 
Assumptions similar to Assumptions 2 and 3 are also made in Andrews and 

Monahan (1992) mid Newey and West 0994). Assumption 4 follows from the 
assumption about summability of fourth cumulants made in Assumption A in 
Andrews and Monahan and in Assumption 2 in Newey and West. 

For the reader unfamiliar with those papers, the following illustration may 
help in interpretation of my assumptions. Consider a scalar linear model, 
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f (~*)  = y, - X~fl* for some observable data y, (a scalar) and Xt. Then Assump- 
tion 2 holds. Assumption 3 holds if sup, E I Z , [ 4 < ~ ,  s u p t E I X t l 4 <  ~ ,  

suptEle, I 4 < ~ .  Assumption 4 holds if Zt is stationary with moving average 
representation (say) ~j%oOje,-j and Y'a%olgj[ < ~ ;  for some m, the (q + 1) x 1 
vector {e~,e,_,,)' is i.i.d, with finite eighth moments, with Ee, e,-m possibly not 
zero. (See Section 2 on the dating convention, which accounts for a nonzero 
cross-correlation between et and e~_,, occurring when m 4:0.) 

Appendix B 

This appendix outlines the asymptotic theory used to compute the figures in 
Table 1. Let tr 2 = E e  2, F o = E u  2 = ( 1 + 0 2 ) a  2, F~=Eu,u ,_~=O~a 2. From 
Fuller (1976, p. 239) the asymptotic variance of the truncated estimator 
Po+2P~ is V l l + 4 V I 2 + 4 V 2 2 ,  v ~ , = 2 ~ o 2 + 4 r ~ ,  v , 2 = 4 r o r , ,  vzz= 
ro  ~ + 3r~,. 

In this example, the MA-/ estimator is (1-FO~)Z(T--1) -'v?r-t̂ 2/..,,--1 e,+, 
= (1 + 0t)2~ z, where ~ is the NLLS residual. From Fuller (1976, pp. 346-349), 

one can conclude the following. After some rearrangement, a second-order 
mean value expansion of S around S gives x / T ( S - S ) =  #'fir + %(1), 
9 = [2(1 + 01)tr2,(1 + 01)2]  ', 6T = x/T(OI - 01, t~ 2 - t r 2 )  '. For a certain (2 x 1) 
random vector Cr, 6r = Cr + %(1), with limr-,~,~ ECrC'r = C, 
C(1, 1) = 1 - 012, C(1,2) = C(2, 1) = 0, C(2, 2) = 2tr'* =*. the asymptotic variance 
o f g  is o'Co = 4(1 + 0 t ) 2 ( l  - 02)tr 4 + 2(1 + 01)40 "4. 

Appendix C 

Percentage of truncated estimates that were not positive definite: 

Value of 01 

- 0 . 9  - 0 . 6  - 0.3 0.0 0.3 0.6 0.9 

Table 2A 65.3 44.7 5.3 0.1 0.0 0.0 0.0 
Table 2B 93.2 78.5 27.3 1.7 0.0 0.0 0.0 
Table 3A 69.7 48.9 ! 7.6 2.6 0.2 0.5 0.1 
Table 3B 8g.7 78.9 45.3 12.6 1.7 0.2 0.0 

Values of ~b, 0,, 0z 

0.5, - 1.3,0.5 0.5~ - 1.0,0.2 0.5,0.67,0.33 0.9, -! .3.0.5 0.5, - 1.0.0.2 0.9,0.67,0.33 

Table 2C 68.6 63.3 0.0 95.6 93.6 0.0 
Table 3C 72.8 68.6 0.6 94.6 93.4 0.7 
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