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ORDER BACKLOGS AND PRODUCTION SMOOTHING

K. D. West

Woodrow Wilson School, Princeton University, Princeton, NJ 08544, U.S.A.

ABSTRACT

Empirical examination of some aggregate U.S. manufacturing data suggests that
order backlogs may help to explain two puzzling facts: (1) the variability of
production appears to be greater than that of demand, and (2) inventories
appear to be drawn down when demand is low, built up when demand is high.

1. INTRODUCTION

The production smoothing model of inventories suggests that firms hold
inventories mainly to smooth production in the face of random fluctuations in
demand. It is well known, however, that some stylized facts appear to be
inconsistent with both the spirit and the letter of the model. One such fact
is that in virtually all manufacturing industries, the variability of
production is greater than that of shipments (Blanchard (1983), Blinder
(1986a), West (1986)). A second fact is that inventories tend to be accumulated
when demand is high and decumulated when demand is low, precisely the opposite
of the pattern predicted by the production smoothing model (Blinder (1986a),
Summers (1981)).

All the studies just cited assume that physical inventories are the only
buffer between demand and production. Backlogs of unfilled orders, however,
might also serve as buffers. They might be built up when demand is high and
drawn down when demand is low. If so, studies that ignore backlogs may be
misleading.

Indeed, in the presence of backlogs, the anomalous stylized facts probably
are not even directly relevant to at least some versions of the production
smoothing model. As initially stated (Holt et al. (1961)) and recently
generalized (Blinder (1982)), the model does not impose a nonnegativity
condition on inventories. If demand is too high, orders are put on a backlog.
Backlogged orders are implicitly considered negative inventories. If the model
is taken literally, the implication is that empirical studies should follow

Holt et al. (1961) and Belsley (1969) and use "net

" inventories, i.e., physical
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inventories minus backlogs. If backlogs are substantial, the bias from using
physical rather than net inventories may be large.

This paper considers the anomalous stylized facts for some industries
where backlogs in fact are large. It assumes a model like that in Holt et al.
(1961), Belsley (1969) or Blinder (1982). The model implies that the variance
of production is less than the variance of new orders (rather than shipments).
This is empirically true, for the data studied here. The model also implies
that the net inventory stock should buffer production from demand. The stock
should be decumulated when demand is high, accumulated when demand is low.
This, too, holds empirically, in two senses. First, the covariance between new
orders and investment in net inventories is negative. Second, a positive shock
to new orders causes net inventories to be drawn down, with production rising
only gradually. On the other hand, if one ignores backlogs, and examines
physical inventories and shipments instead of net inventories and new orders,
the usual stylized facts result. These facts are, however, irrelevant in the
present production smoothing model.

Net inventories, then, appear to smooth production in the face of random
fluctuations in demand. This suggests that production smoothing may indeed be
a central determinant of production.

It should be emphasized, however, that this paper does not shed direct
light on the determinants of physical inventories: the model used determines
net inventories, with the individual levels of physical inventories and of
backlogs indeterminate. This is, of course, a serious drawback in an inventory
model. Moreover, common sense, as well as some formal time series evidence
(Reagan and Sheehan (1985), West (1983b)), suggest that backlogs are not simply
negative inventories. Further research is required to see whether backlogs and
inventories play their prescribed roles when one allows them to affect costs in
distinct ways. In addition, the evidence here is qualitative in the sense that
while broad time series patterns are established, a precise model is never
estimated, and standard errors are never calculated. I would therefore
characterize the results in this paper as preliminary and suggestive.

Section 2 describes the model and tests performed. Section 3 presents
empirical results. Section 4 concludes. An appendix available on request

contains some algebraic details and empirical results omitted to save space.

2. THE MODEL AND TESTS
The empirical work requires data on backlogs. The Department of Commerce
only collects such data for what are called "production to order" industries.
The model used will therefore be one that is appropriate for such industries.
These are industries in which orders ordinarily arrive before production

is completed. Storage costs for the finished product tend to be relatively
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large and the product line fairly heterogeneous (Abramovitz (1950), Zarnowitz
(1973)). According to Belsley (1969), most two digit industries produce
primarily to order, including virtually all durable goods industries. Backlogs
tend to be substantial, relative either to shipments or to physical
inventories. The backlog to shipment ratio, or the (backlog - physical
inventories) to shipment ratio, suggests that customers typically wait anywhere
from one to five months for shipment.

Let Qt be production, It physical inventories, St shipments, Bt backlogs
(unfilled orders) and Nt new orders. The variables are linked by the

identities

Q=S +AI, ()
N =5 +AB , =>
Q=N +AH , H =I -B..

Ht is the net inventory stock, physical inventories minus unfilled orders.

The model I will use, which is developed in detail in the appendix, is a
slightly modified version of the one in Belsley (1969). The representative
firm minimizes the expected present discounted value of costs,

min Eg thCt (2)
£=0

E0 is expectations conditional on the firm's period zero information, b is a

discount rate, 0<b<l. Apart from inessential constant and linear terms, per

period costs Ct are

= 2 2 T 2
Ct = aO(AQt+u1t) + al(Qt+u2t) + az( Ht a3Qt+u3t) . (3)
The u,, are zero mean, white noise cost shocks. Apart, perhaps, from these
shocks, the first two terms are standard. The cost of changing production,
ao(AQt+u1t)2, represents, for example, hiring and firing costs. The production

2 . . .
cost, al(Qt+u )", can be considered a Taylor series approximation to a concave

2t
cost function.

The final term in (3), 82(-Ht-830t+u )2, is peculiar to a production to

order firm. It balances two costs. The 2§rst is a cost of having a lengthy
delivery period (bad customer relations, loss of reputation, etc.). Given the
rate of production Qt’ this cost increases with -Ht (=backlogs-physical
inventories): the bigger the backlog or the smaller the stock of physical
inventories, the lengthier the delivery period. The second is a cost of having
to rush production (inefficient scheduling of batch production runs, etc.)

Given Qt’ this cost decreases with -Ht: the bigger the backlog or the smaller
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the stock of physical inventories, the greater the flexibility in scheduling
production. See Holt et al. (1961), Childs (1967) and Belsley (1969) for
further discussion. It should be noted that all the tests in this paper are
robust to the possibility that a3=0, in which case the model is similar to that
in Blinder (1982).

I will consider two empirical implications of the model. The first
concerns production variability. The model implies that net inventories are
used to buffer new orders. If variables are stationary around trend, this
suggests

0 € var(N)-var(Q), (4)
where "var" is an unconditional variance. Inequality (4) follows under a
variety of assumptions about market structure and demand, as long as any
effects of net inventories on demand are captured by the az(.) term in (2). In
particular, (4) is implied even if prices adjust in response to demand
fluctuations. See West (1986) and the appendix for a precise argument.1

If the variables are not stationary, var(N) and var(Q) do not exist.
Related literature suggests that empirical tests that nonetheless assume that
they exist may be seriously misleading (Fuller (1976), Marsh and Merton
(1986)). By continuity, this also may be true in a given finite sample, if the
variables are nearly nonstationary. The data used here in fact appear to be
nonstationary or nearly so, even after growth is removed.

Even if the data have unit roots, AHt is stationary. Since Qt=Nt+AHt, Nt
and Qt are cointegrated (Engle and Granger (1987)), and a slightly more
cumbersome restatement of (4) is valid. We have Qt=Nt+AHt’ so
Ni-Qi=-ZNtAHt-AHi. Let "cov" denote an unconditional covariance. Under fairly
general statistical conditions, cov(Nt,AHt) exists, even if Nt has a unit root
(e.g., if (ANt’AHt) follows a finite parameter ARMA process; see Fuller (1976)
and West (1987)). Whether or not there are unit roots, then, one can test

0 < -2cov(Nt,AHt)-var(AHt). (5)

If there are unit roots, one must not estimate cov(N_,AH ) as a sample moment
in the usual way. This would just reduce (5) to (4). Section 3.1 explains how
to get an estimate that (a)is consistent if Nt has a unit root, and (b)is
asymptotically the same as (4) if the data are stationary.

The second of the model's empirical implications that I will consider

concerns whether net inventories buffer production. One test of this is

1. Technically, this requires a,=0 and no cost shocks. If, say, the penalty
for having a large backlog is prohibitive, demand shocks may be passed directly
to production. In addition, if costs vary stochastically, the firm will tend
to produce a relatively large amount when costs are low, thereby inducing extra
variability in production. The spirit of the model, however, is that the
primary role of net inventories is to buffer production from demand. It
therefore seems reasonable to expect (4) to hold, even if 33#0 and there are
cost shocks.
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whether the covariance between new orders and investment in net inventories is
negative (Blinder (1986a)). If so, inventories tend to be decumulated when
demand is high, accumulated when demand is low. Note, however, that
cov(Nt,AHt)<0 is necessary (but not sufficient) for (4) and (5). Since, as we
shall see, (4) and (5) hold in these data, no separate empirical work will be
needed to test this proposition.

A second test of whether net inventories buffer production concerns the
response of production and net inventories to a shock to new orders (Blinder
(1986a)). This is conveniently analyzed under the (over) simplifying
assumptions that the firm uses just lagged new orders to forecast future new

orders, and that the univariate new order process follows an AR(q):
Nt = ¢1Nt-1 + ... +¢N + v, . (6)

In (6), unit roots are allowed (e.g., if g=1, Nt=N is allowed).

e-1"¢
Deterministic terms are suppressed in (6) and below, for notational simplicity.

By algebra such as in Blanchard (1983) or Eichenbaum (1984), (2) and (6)
imply that the decision rule for Ht is

H + SONt + ...+ 8

¢ = Pilleoy et q-1Ne-g+1 T Ve N

The disturbance u, is a linear combination of the cost shocks u, i=1 to 3.

s
The Py depend on b and the a; in a complicated way, the Gi depe;; on b, the a;
and the ¢i in a complicated way. The exact formulas are not of interest,
except perhaps to note that Py is zero of the cost of changing production a, is
zero. Parameter estimates are consistent even if the variables have unit roots
(Sims, Stock and Watson (1986))

Under the identifying assumption that the demand shock Ve and the cost
shock ut are uncorrelated, one can estimate not only (6) but (7) as well by
least squares. One can then trace out an impulse response function, for how
production and net inventories respond to a demand shock v,: GHt/avt=60,
aQt/avt=1+50, aHt+1/3vt=p150+80¢1+81, etc. The model suggests that Ht will be
drawn down in response to a positive demand shock (50<0), with production

rising gradually to meet the increased demand.
3. EMPIRICAL RESULTS
3.1 Data

The data were monthly and seasonally adjusted, 1967-1984. (Data that are
not seasonally adjusted might be preferable (Miron and Zeldes (1986)) but are
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not available for backlogs.) Nominal backlog data were conveniently available
from CITIBASE for aggregate durables and six two digit manufacturing
industries: stone, clay and glass (SIC 32), primary metals (SIC 33),
fabricated metals (SIC 34), non-electrical machinery (SIC 35), electrical
machinery (SIC 36), transportation equipment (SIC 37), and instruments (SIC
38). BEA constant (1972) dollar inventory data on finished goods and works in
progress inventories and shipments were kindly supplied by Jeff Miron.
Inventory data were converted from cost to market as in West (1983a) and
Blinder and Holtz-Eakin (1983).

Constant dollar backlog data were not available. The discussion in Foss
et al. (1980, ppl56-57), as well as a reading of Bureau of the Census's Form M-
3 (Appendix I in Foss et al. (1980)) suggests that it is reasonable to assume
that firms value the entire backlog at current delivery prices. Real backlogs
were therefore obtained by deflating the BEA figure for the nominal stock of
backlogs by the ratio of (nominal shipments/real shipments). New orders were
calculated from the identity Nt=st+AUt' Two net inventory series were used:
finished goods - backlog, and finished goods + works in progress - backlog.
Production was calculated as Qt=Nt+AHt' As a check on the deflation procedure,
real backlogs were also obtained for aggregate durables by deflating by the
producer price index. The resulting second moments of the data were very
similar to those reported in Table 1 below.

Before any estimation, a common geometric trend was removed from all
variables. (This is consistent with the model, as shown in the appendix.) The
estimated common growth rates for finished goods inventories, backlogs and
shipments, in percent per month, for aggregate durables and SIC codes 32 to 38
were: .18, -.01, -.00, -.03, .29, .38, .04, .40. The estimated rates for
finished goods + works in progress, backlogs and shipments were: .17, -.01,
.01, -.04, .28, .40, .07, .42. Before any of the computations reported below
were done, all variables were scaled to remove this growth. For example, all
durables data were divided by (1.0018)t when net inventories = finished goods
inventories - backlogs, by (1.0017)t when net inventories = finished goods
inventories + works in progress - backlogs. Variances and covariances of the
resulting data were calculated around a constant mean. Constant terms were
used in estimation of (6) and (7). To make sure that inference was not
sensitive to the exact estimate of growth rates, the second moments reported in
Table 1 below were recalculated for aggregate durables, with growth rates half
again as big or half as small (i.e., for growth rates of .17 + (.17/2) and .18
+ (.18/2)). Results were similar.
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The Durbin-Watson of each of the regressions to estimate a common trend
was very low, typically under .10. This suggests possible nonstationarity of
the geometrically detrended variables. To guard against possible resulting
biases, the cov(N,AH) term that appears in equation (5) was calculated as
follows. Let T be the sample size. Ignore constant terms for notational
simplicity. If Nt has a unit root, T-l)‘.NtAHt has a nondegenerate limiting

distribution, and thus is not a consistent estimate of cov(Nt,AHt) (Fuller

(1976), West (1987)). We have Nt = ANt + ANt-l + ANt-Z + .... This suggests
calculating cov(Nt,AHt) as cov(ATE,gﬂt) + cov(ANt-l’AHt) + .... Let Cj be an
estimate of cov(ANt_j,AHt), cj=T zt=j+1ANt-jAHt' Consider estimating cov

(Nt’AHt) as z?=06j’ and letting m-->» as T-->». The literature on estimation
of spectral densities (Hannan (1970,p280)) indicates that if (m/Tl/z)-->0 as m,
T --> w, z?=06j consistently estimates cov(N,AH). I set m=20 in the results
reported below. (If Nt is stationary, one could of course set m=T, and just

1

ZNtAHt.)

In equations (6) and (7) the length of the autoregression was set to four.

calculate T

It should be noted that the assumption that firms use only lagged new orders to
forecast future new orders is consistent with a comment in Blinder (1986a)
suggesting that inventories tend not to Granger cause sales.

3.2 Empirical Results

Table 1 contains point estimates of the right hand sides of (4) and (5)
when net inventories = finished goods inventories - backlogs, Table 2 when net
inventories = finished goods + works in progress - backlogs. Units are
billions of 1972 dollars, squared. As may be seen, the production variance is
less than the new order variance, in all specifications except instruments
(columns (4) and (6)).2 As in Blinder (1986a), however, the production
variance is almost always greater than the shipment variance (columns (5) and
7).

Since column (4) is less than one and column (6) is positive, it follows
that cov(Nt,AHt)<0. Net inventories therefore on average are accumulated
during expansions, decumulated during contractions. This is illustrated in
Figure 1, which plots detrended aggregate durables data, for net inventories =
finished goods + works in progress - backlog. The tendency for H to be built
up when N is low, to be drawn down when N is high, is quite apparent. The
plots of B and works in progress + finished goods inventories indicate that the
theoretically predicted pattern of fluctuations for H essentially reflects
procyclical accumulation of backlogs but not countercyclical accumulation of

physical inventories. It is worth noting that while the model does not

2. The only reason the entries for var(N) and var(S) are different in the two
tables is the slightly different estimates of growth rates.
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TABLE 1

Second Moments, H = Finished goods - Backlogs

(1) (2) (3 (4) (5) (6) (7
var(Q) var(Q) -2cov(N,A8H) -2cov(S,AI)
Industry var(Q) var(N) var(8) var(N) var(S) - var(AH) - var(AI)
Aggregate 4.709 8.856  4.540 .53 1.04 6.875 -.156
Stone, Clay .060 .062 .059 .96 1.02 .006 -.002
Glass
Primary .359 .525 . 366 .68 .98 .303 .017
Metals
Fabricated . 167 .272 . 160 .62 1.04 . 196 -.012
Metals
Non-electrical .177 .375 .161 47 1.10 .372 -.021
Machinery
Electrical .081 . 143 .076 .57 1.06 .061 -.008
Machinery
Transportation .880 2.161 . 866 .41 1.02 1.305 -.011
Equipment
Instruments .006 .008 .006 .78 1.08 .000 -.001
TABLE 2
Second Moments, H = Finished goods + WIP - Backlogs
1) (2) (3) (4) (5) (6) (7
yvar(Q) yar(Q) -2cov(N,AH) -2cov(S,AI)
Industry var(Q) var(N) var(S) var(N) wvar(S) - var(AH) - var(AI)
Aggregate 5.604 8.940 4.585 .63 1.22 5.631 -1.417
Stone, Clay . 060 .062 .058 .97 1.03 .006 -.002
Glass
Primary .375 .525 .370 .72 1.01 .280 .008
Metals
Fabricated .193 .279 . 168 .69 1.15 . 164 -.044
Metals
Non-electrical .232 .388 . 172 .60 1.35 .290 -.108
Machinery
Electrical .094 .128 .070 .74 1.35 .049 -.034
Machinery
Transportation .904 1.983 .791 46 1.141 . 115 -.146
Equipment
Instruments .008 .007 . 005 1.11 1.57 -.000 -.004

In Tables 1 and 2, columns (6) and (7) essentially calculate var(N)-var(Q) and

var(S)-var(Q) in a fashion that is robust to the presence of unit roots.

the text.

See
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formally determine a level of inventories separate from that of backlogs, the
actual inventory behavior probably is consistent with production smoothing
behavior in production to order industries. Abramowitz (1950) and Belsley
(1969) suggest that finished goods inventories, at least, are built up in part
because of unavoidable delays in transit. One might therefore expect
inventories to be built up when shipments are high.

Additional evidence on the role of net inventories in buffering production
may be found in the impulse response functions in Table 3. The functions are
calculated from estimates of equations (6) and (7). (These estimates are
available on request. Regression estimates and impulse response functions were
also calculated for net inventories = finished good - backlogs, but are not
reported because they were quite similar to those in Table 3.) Since the
period is a month, the entry for period 12 indicates the response one year
after the shock, for 24 two years after, and so on.

The estimates indicate that from 40 to 80 percent of the initial impact of
a demand shock is absorbed by net inventories, with production adjusting
gradually. If the data are stationary, all variables return to their steady
state levels, with production meeting the increased demand (Z;=0(3Qt+j/8vt) =
Z;=0(3Nt+j/3vt); v, is the demand shock.) Note, however, that the return is
painfully slow, indicating the borderline nonstationary behavior of inventories
and new orders. In fact, the roots of (l-plL-pZLz), with Py and Py defined in
equation (6), were outside the unit circle for two data sets (fabricated metals
and transportation).

By contrast, when physical inventories alone are assumed to buffer

production, similar computations reveal little buffering.

4. CONCLUSIONS

A production smoothing model is qualitatively consistent with some
aggregate data when it is assumed that net inventories (physical inventories
minus backlogs), rather than physical inventories, buffer production. The
variance of production is less than that of new orders, so production is
smoother than demand. The covariance of new orders and investment in net
inventories is negative, so that net inventories are accumulated during
contractions, decumulated during expansions. A positive shock to new orders is
buffered by net inventories, so that production rises only gradually to meet
increases in demand.

These results are in no sense definitive. The model that I used assumed
rather implausibly that backlogs are negative inventories. No standard errors
were calculated in any of the tests. The data were purely for production to
order industries.

One therefore cannot jump to the conclusion that production smoothing is



TABLE 3

Response to Unit Demand Shock, H = Finished goods + WIP - Backlogs

Durables Stone, Clay and Glass

Period N Q H Period N Q H
0 1.00 .36 -.64 0 1.00 .58 -.42

1 .65 .39 -.90 1 .65 .50 -.55
12 .42 .40 -1.92 12 .47 47 -.49
24 .19 .20 -1.91 24 .34 .35 -.41
60 .02 .04 -1.07 60 .13 .13 -.28
120 .00 .01 -.29 120 .03 .03 -.22

Primary Metals._ Fabricated Metals

Period N Q H Period N 0] H
0 1.00 .25 -.75 0 1.00 .38 -.62

1 .89 .37 -1.26 1 .51 .43 -.70
12 .36 .42 -1.74 12 .38 .27 -1.98
24 .13 .18 -1.03 24 .23 .13 -3.24
60 .01 .02 -.18 60 .06 -.09 =-7.36
120 .00 .00 -.01 120 .00 -.37 -21.49

Machinery Electrical Machinery

Period N Q H Period N Q H
0 1.00 .19 -.81 0 1.00 .25 -.75

1 .15 .16 -.80 1 .40 .23 -.91
12 .25 26 -1.27 12 .28 .28 -1.16
24 .15 .15 -1.31 24 .15 .15 -1.23
60 .03 .04 -.98 60 .02 .02 -1.28
120 .00 .01 -.43 120 .00 .00 -1.28

Transportation Instruments

Period N Q H Period N Q H
o] 1.00 .20 -.80 0 1.00 b4 -.56

1 .38 .25 -.92 1 .25 .29 -.53
12 .16 .13 -1.49 12 .29 .30 -.40
24 .05 .04 -1.74 24 .17 .18 -.30
60 .00 -.00 -2.14 60 .04 .04 -.16

120 .00 -.00 -2.80 120 .00 .00 -.07
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the major determinant of both backlogs and inventories. Nonetheless, in
conjunction with the conclusions of other papers, the present results seem
highly suggestive. Theoretical work using more carefully formulated models
than mine indicates that the presence of backlogs may indeed explain apparently
anomalous production behavior (Kahn (1986), Maccini (1973)). Empirical work at
least since Lovell's (1961) seminal research has found an important role for
backlogs; recent contributions include Blinder (1986b) and Maccini and Rossana
(1984). Large and volatile backlogs are perhaps more pervasive than many
researchers, including myself (West (1986)) have assumed: of the six two digit
manufacturing industries classified by Belsley (1969) as production to stock,
two (apparel [SIC 23] and chemicals [SIC 28]) in fact are or have become
largely production to order (Foss et al. (1980, ppl58)).

The fundamental question is whether firms systematically use backlogs as a
buffer between production and demand. If so, it is premature to conclude from,
say, a comparison of production and shipment variances that firms do not smooth
production in the face of fluctuations in demand. Whether or not backlogs can
save the production smoothing model is therefore an important task for future

research.
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