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HYPOTHESIS TESTING WITH EFFICIENT METHOD
OF MOMENTS ESTIMATION*

By WnITNEY K. NEWEY AND KENNETH D. WEST!

1. INTRODUCTION

It is well known that a variety of prodedures are available to test a hypothesis in
a model estimated by maximum likelihood. In maximum likelihood models one
of the trio of Wald, likelihood ratio, and Lagrange multiplier test statistics is
usually used to test a hypothesis (se¢ Engle [1984] for a survey). In some cases
a minimum chi-square hypothesis test (see Rothenberg [1973]) may also be
convenient. All these statistics are asymptotically equivalent, so that insofar as
asymptotic properties are concerned, the researcher has the freedom to choose a
test statistic on the basis of computational convenience. Of course, the statistics
may behave differently in small samples (Berndt and Savin [1977], Evans and
Savin [1982]). The existence of a variety of test statistics then also gives the
researcher the freedom to choose a test statistic that appears, from theoretical or
Monte Carlo studies, to have better properties.

Less well known is the extent to which a similar sort of flexibility is available in
models not estimated by maximum likelihood. The availability of a variety of
procedures in the context of other estimation methods is of potential interest to
many researchers. In many rational expectations models, for example, the
computational burden of maximum likelihood is enormous, since disturbances
are serially correlated and heteroskedastic in complicated ways. Instrumental
variables procedures are therefore often used to estimate these models (e.g., West
[1987a, 1987b, 1987c]).

Our purpose here is to present the form of a variety of test statistics for
hypothesis tests in models that are estimated by using the efficient generalized
method of moments (GMM; see Hansen [1982]) estimator. These estimators
include many of those encountered in practice: ordinary least squares, two stage
least squares, three stage least squares, quasi maximum likelihood, and versions
of these for nonlinear and non ii.d. environments. Others have presented
versions of test statistics that use the efficient GMM estimator in special cases
(Gallant and Jorgenson [1979]) and for special hypothesis tests (Eichenbaum,
Hansen, and Singleton [1984]). Our extension to the general non i.i.d. case
has a wide variety of uses in testing parametric hypotheses in rational expectations
models (e.g., the West papers cited above) and in cross section and panel data
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models where heteroskedasticity may be present (e.g. Holtz-Eakin, Newey, and
Rosen [1987]).

In section 2 we present analogues of the Wald, likelihood ratio, Lagrange
multiplier, and minimum chi-square test statistics. We show that they are
mutually asymptotically equivalent in an environment that allows for disturbances
that are autocorrelated and heteroskedastic, with the form of autocorrelation and
and heteroskedasticity possibly unknown, and for instruments that are not strictly
econometrically exogenous. Section 3 discusses some interesting special cases,
including quasi-maximum likelihood and the case where the econometric model is
linear in the parameters and/or constraints. The working paper version of this
paper, Newey and West [1985], contains proofs of our theorems and has an
empirical example.

2. THE TEST STATISTICS AND THEIR ASYMPTOTIC DISTRIBUTION

Many recent models have been estimated by the techniques developed by Hansen
[1982], Hansen and Singleton [1982], and Cumby, Huizinga, and Obstfeld [1983].
Examples in our own work were given above. The models in these and other
papers imply an orthogonality condition

2.1 E[g(z,, bo)] = O,

where b, is a g x 1 vector of parameters, z, is a px 1 data vector, and g(z, b) is
a rx 1 vector of functions of the data and parameters. A common example is
9(z,, b)=x,-u(z,, b). where x, is a rx1 vector of instrumental variables and
u(z,, b) is a residual. In this case equation (2.1) represents the usual orthogonality
condition for instrumental variables and a residual.

When equation (2.1) is correct, the sample moment

(2.2) gr(b) = X1 9(z, b)/T

should be close to zero when evaluated at b=>b,. It is therefore reasonable to
estimate b, by choosing by so that g.(b) is close to zero, i.e., by solving

(2.3) miny, gr(b) Wrg(b),

where W is a positive semi-definite matrix. The resulting estimator is a member
of the class of generalized method of moments (GMM) estimators that has been
considered by Amemiya [1974], Hansen [1982], and Burguete, Gallant, and
Souza [1982].

2.1, The Test Statistics. It is often the case that 1t is desired to test hypotheses
concerning the vector of parameters b,. In this paper, we will consider a general
null hypothesis of the form

(2.4) Hy: a(b) = 0,

where a(b) is a s x 1 vector. We will consider test statistics of H, that use three
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estimators of b,. One of these estimators is the optimal unrestricted GMM
estimator. As shown by Hansen [1982], the estimator that is optimal in the
sense of having an asymptotic covariance matrix that is as small as possible
in the class of GMM estimators that do not impose equation (2.4), is obtained
from (2.3) when W=V 71; V, is a consistent estimator of the asymptotic covariance
matrix V of \/ Tgr(bo). With this choice of Wy, the unrestricted estimator b, will
be the solution to

(2.5) min, J1(b),

where J1(b)=g(b)'V7'g1(b).

To form J,(b) it is necessary to have a consistent estimator of the matrix V.
One estimator of V that is simple, positive semi-definite, and consistent under
quite general conditions has recently been presented by Newey and West [1987].
This estimator is

(2.6) F=Q0 + Xro w(j, m[Q;+Q)],

where w(j, m)=1—-[j/(m+1)], QJ-E > iv19(z, bPg(z,—;, bF)'|T is the jth
sample autocovariance of g(z,, b¥) and b% is an initial consistent estimator of b,
which can be obtained by solving equation (2.3) for a choice of Wy other than V1.
The riumber of autocovariances m is chosen as a suitable function of T. See
Newey and West [1987] for details and for discussion of other appropriate
estimators of V.

The second estimator that is useful for forming test statistics is the optimal
restricted GMM estimator, obtained by minimizing J(b) subject to the restrictions
on b that are implied by the null hypothesis. Let the restricted estimator b, solve

2.7 min, J(b) subject to a(b) = 0.

The third estimator that will be used in our test statistics is the minimum
chi-square estimator. Let

G = E[0g1(by)/0b], Gr = dg(by)/ob,
0=GVG, Qp=GV:Gy.

As shown by Hansen [1982], Q™! is the asymptotic covariance matrix of the
optimal unrestricted GMM estimator b, so that 05! will be a consistent estimator
of the asymptotic convariance matrix of b;. Then the minimum chi-square
estimator (e.g., Rothenberg [1973]) based on b, which we will denote by by, is
given by the solution to

(2.8) min, (b —b)' Q4(b—b) subject to a(b) = 0.
To present the test statistics some additional notation is required. Let
A = da(by)/ob, A = da(by)/0b,
Gr = 0g(bp)/ob, Or=GiV7'Gy.
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The test statistics we consider are
(2.9) W= Ta(br)[A07' A1 a(by),
D = T[J(by)—J1(b1)]
LM = Tlg+(by)' V716107 [GrV'gr(b1)],
MC = T(by~br1'Qr[br—br].

The statistic W is the usual Wald statistic. Its principal advantage is that it
only requires the unconstrained estimator to compute it. Its principal disad-
vantages are that it is not invariant to reparameterization and in some contexts
(see Hausman and McFadden [1984] for a maximum likelihood example) its
finite sample distribution is not as well approximated by the asymptotic approxi-
mation as are the distributions of other statistics.

The D statistic is made up of an appropriately normalized difference of the
restricted and unrestricted objective functions for the efficient GMM estimator.
The principal disadvantage of this test statistic is that it requires two minimizations
to compute. On the other hand, once these minimizations have been
accomplished it is often trivial to calculate, since J(b;) and J(b;) are often
computed during the course of the minimization. A statistic like D has previously
been presented in the context of instrumental variables estimation in an i.i.d.
environment by Gallant and Jorgenson [1979]. Since D is the difference of
restricted and unrestricted optimal objective functions this statistic is analogous to
the likelihood ratio test and, in the linear model, to the test based on the difference
of restricted and unrestricted sum of squared residuals.

The LM statistic is a Lagrange multiplier, or score, statistic. It uses the gradient
of Jp(b) evaluated at the restricted parameter estimator, like its maximum
likelihood counterpart. Its principal advantage is that it only requires the
restricted estimator.

The MC statistic is the minimum chi-square statistic for imposing the constraints
on the unrestricted estimator. Like the D statistic, it requires two minimizations
to compute.

It is important to note that all of the test statistics use the same estimator of V.
The properties of the test statistics may be affected if different estimates of V are
used to form them. If different estimators of V are used to form the restricted
and unrestricted optimal GMM estimators then the D statistic need not be positive.
Also, the numerical equality results for the linear case discussed below depend on
using the same estimator of ¥V to form each test statistic.

2.2. Asymptotic Properties of the Test Statistics. We begin with the list of
assumptions we make. Our first is one of strict stationarity, ruling out the
kind of moment drift that has been considered by White and Domowitz [1984].
The stationarity assumption is commonly maintained in rational expectations
models. Our assumption 1 also rules out fixed regressors, which essentially
means that the resulting inference is unconditional, rather than conditional on
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a set of exogenous variables.

ASSUMPTION 1. The data z,, (t=1,..., T), are random vectors that are the first
T elements of a strictly stationary stochastic process {z,}i=,, and has a
measurable joint density function f(zi,..., zq, by) with respect to a measure
I1%, v, where v is a o-finite measure on RP.

Note that the data generating process is allowed to depend on the sample size
through the parameter vector by, and that an extra T subscript on z, has been
suppressed for notational convenience.

A problem in deriving asymptotic approximations to the distribution of test
statistics that allow for power calculations is that if the null hypothesis is false
then with probability one the test will reject as the sample size grows. The classical
method of making an approximate power calculation is to subjectthe data to
Pitman [1949] drift, and in assumption 2 we adopt this approach.

ASSUMPTION 2. bp=by+p/\/T.

Our assumption 3 allows us to ignore complications that are introduced when
the model is possibly misspecified. The effect of model misspecification on test
statistics of parametric hypotheses is considered in Burguete, Gallant, and Souza
[1982]. Thus, we will assume that the moment conditions used to obtain the
GMM estimators are satisfied in the population.

ASSUMPTION 3.  For each b in B, a subset of R4, the elements of g(z, b) are
measurable in z and

f 4(z, b)f(z, bydv = 0.

To obtain the asymptotic distribution of the test statistics under a sequence of
local alternatives it is useful to impose further regularity conditions and restrict
the dependence across observations of the data generating process. The set of
regularity conditions in assumptions 4-6 is by no means the weakest possible set
of sufficient conditions for the asymptotic distribution theory, but it is relatively
straightforward to check in parctice.

ASSUMPTION 4. The vector g(z, b) is continuously differentiable on B, almost
everywhere v, and a(b) is continuously differentiable on B. For each positive
integer m>2 the joint density f(z,, z,,, b) is continuous in b almost everywhere
vxv. Also, by is an element of the interior of B, which is compact.

For a matrix C=[c;;], let |C|=max;; [c;;l.

ASSUMPTION 5. There exist measurable functions y,(z) and y,(z), and d>1,
such that almost everywhere v, and for all b in B and m>2,

l9(z, b)I* < 74(2), 10g(z, b)/0bI* < y4(2)
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£z 0) < 92D, [ (20 2 b) < Yal21) Va(zm)
[0 < + o0, [nEds < + .

To restrict the dependence across observations of the data it is useful to employ
mixing conditions. Mixing conditions have recently been discussed in some
detail by White and Domowitz [1984], where definitions and notation for the
following assumption can be found.

ASSUMPTION 6. There exist constants D, >0 such that either
(i) For all bin B, {2}, is uniform mixing with
¢(m) < Dm™*, A >max{2,d/(d-1)};
(ii) For all b in B, {z,}{2, is strong mixing with
om) < Dm~*, A >2d/(d-1).

The next assumption is an identification condition that guarantees that the
minimization problem (2.3) has unique solution asymptotically. Throughout
E[ -] denotes the expectation taken at f(z, b,).

ASSUMPTION 7. For any b in B, E[g(z,, b)]=0 only if b=b,. Also, G has
rank q, V is nonsingular, and A has rank s.

Under these assumptions we can give an explicit formula for V, which is
V=20, + Z‘f’:l [2;+Q;],

where Q;=E[g(z,, bo)g(2,+ ;> bo)'] (see Hansen [1982]). Also these assumptions
are sufficient to guarantee consistency of the equation (2.6) estimator V¥ of V,
under the sequence of local alternatives.

THEOREM 1. If assumptions 1-6 are satisfied, and \/T(b%¥—b,) is bounded in
probability, then plim V¥=V.

All our results are proved in the working paper version of this paper.

The following result gives the asymptotic distribution of the test statistics we
have presented. The distribution will remain unchanged as long as any consistent
estimator of Vis used.

THEOREM 2. If assumptions 1-7 are satisfied, plim Vy=V, and a(by)=0,
then W converges in distribution to a noncentral chi-squared distribution with
s degrees of freedom and noncentrality parameter ['A'(AQ 1A")"1AB. In
addition

(2.10) W—D=o,1), W—LM= o,,(1); W— MC = oy1),

where o,(1) denotes a random variable that converges in probability to zero.
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Equation (2.10) says that all of the test statistics we have presented are asymp-
totically equivalent and distributed in large samples as a chi-squared random
variable. Under the null hypothesis we have =0, so that the noncentrality
parameter is zero, and an approximate size for a hypothesis test that rejects the
null hypothesis if a test statistic is too large can be computed in the usual way from
the chi-squared distribution with s degrees of freedom.

It is important to note that the asymptotic equivalence above includes the D
statistic. The difference between this result and the type of result found by
Burguete, Gallant, and Souza [1982], where the “likelihood ratio’’ test is not
asymptotically chi-squared, is that we have based the test statistics on the optimal
GMM estimator, for which Wy=V7;1. For another choice of W; it will not be
the case that a test statistic based on the difference of unrestricted and restricted
objective functions is asymptotically chi-squared. Also, the form of the LM
statistic would be more complicated, and would in general involve the Jacobian
matrix A of the constraints.

In the next section, we examine some interesting special cases, some of which
result in numerical equivalence of the test statistics.

3. SPECIAL CASES

3.1. The Exactly Identified Case. We will refer to the case when the
number of orthogonality conditions r is equal to the number of parameters g as
the exactly identified case. We use this terminology since in instrumental variables
estimation the number of orthogonality conditions is equal to the number of
instrumental variables. So the exactly identified case occurs when the number
of orthogonality conditions is equal to the number of parameters.

One thing that is special about the exactly identified case is that D and LM are
equal. When r=gq, note that G, will be nonsingular and g(b) will be zero with
probability approaching one. (For expositional ease we will omit the qualifier
“with probability approaching one’’ in the rest of this paper, although this qualifier
applies to all our various results on numerical equivalence of test statistics.) From
inspection of the formulae in equation (2.9) we see that LM =D.

PROPOSITION 1. If the hypotheses of Theorem 1 are satisfied and r=gq, then,
LM=D.

One interesting example of the exactly identified case occurs in the context of
quasi-maximum likelihood estimation. Suppose that b, is obtained by
maximizing Sp(b), where

(3.1) Sr(b) = 211 5(z,, b)/T,

and s(z, b) is some function of the data and parameters that is not necessarily a
log-likelihood. The general properties of such estimators in the independent
observations case have been considered by White [1982b] and Burguete,
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Gallant, and Souza [1982], among others. When b, satisfies the first order
conditions to the problem we see that b, is a GMM estimator with g(z, b)=
0s(z, b)/db. Thus, for this special case the restricted GMM estimator b, would
be obtained by solving

(32)  min, [X7, 8s(z, b)/ob] Vi [ XL, ds(z, b)/0b] st. a(b) = 0.

In the context of quasi-maximum likelihood estimation there is another natural
way of imposing restrictions that gives an estimator that is different than b.
One can obtain an estimator that imposes the restrictions by choosing b to solve

3.3) max, S7(b) subject to a(b) = 0.

b is different than b, and consequently the Lagrange multiplier statistics obtained
by White [1982b] and Burguete, Gallant, and Souza [1982] are different than LM.
When one compares LM =D with these other Lagrange multiplier statistics, it is
apparent that LM is considerably simpler than the other statistics, since the
latter involve the Jacobian of the constraints. There is an interesting explanation
for this difference that involves the properties of the respective constrained
estimators.

It is well-known that in many contexts (e.g., see Ferguson [1958] for the
maximum likelihood case) minimum chi-square estimation is an asymptotically
optimal method of imposing constraints on a vector of estimated parameters.
It turns out that the restricted efficient GMM estimator b, is asymptotically
equivalent to the minimum chi-square estimator by, which was defined in equation
(2.8), while the restricted quasi-maximum likelihood estimator is inefficient
relative to the other two estimators.

PROPOSITION 2. If the hypotheses of Theorem 1 are satisfied and a(b,)=0,
then \T(by—br)=0,(1), while \/T(by—br)=0,(1) if and only if VG'A'=A'H
for some nonsingular matrix H. Otherwise by is asymptotically inefficient
relative to b .

One important case in which b, and b, are asymptotically efficient is when
G=—V. This occurs when Sp(b) is the actual log likelihood of the data (so
that G=Ed%s/0b0b’ and V= E(0s/0b)(0s/0b)"). Under many circumstances likely to
be encountered in practice, however, b, will be more efficient. A simple example
is OLS with disturbances conditionally heteroskedastic. Chamberlain [1982]
discusses this example in the context of minimum chi-square estimation. Thus,
as happens in other contexts (see, e.g., the discussion of tests of overidentifying
restrictions in Hansen [1982]), a simpler form of test statistic results when a
relatively efficient estimator is used to form the statistic. Also, if the restricted
estimator is of intrinsic interest, then the efficient GMM estimator and the
minimum chi-square estimator are the estimators of choice, in terms of asymptotic
efficiency. Chamberlain [1982] has made this point for minimum chi-square
estimators.
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3.2. The Linear Case. Interesting and useful simplifications occur when the
orthogonality conditions are linear in the parameters. Suppose that

(3.4) 9(z, b) = g,(2) — g1(2)b.

The most common example of the linear case arises with linear instrumental
variables estimators. For single equation and an instrument vector X, a linear
instrumental variables estimator would have orthogonality conditions g(z,, b)=
X, -(y,— Wb), where W, is a q x 1 vector of right hand side variables, so that
g1(2)= Xy, and g,(2)= X, W ;.

Note that among the statistics we have presented, only the Wald statistic
involves the Jacobian of the constraints, and that in the linear case G;=G.
The following result on the equality of the other test statistics follows from these
facts.

PrROPOSITION 3. If the hypotheses of Theorem 1 are satisfied and equatlon
(3.4) is satisfied, then D=LM =MC.

When the constraint is also linear, all of the test statistics will be numerically
equal.

PROPOSITION 4. If the hypotheses of Theorem 1 are satisfied, equation (3.4)
is satisfied, and a(b)y=Ab+a, where A and a are a matrix and a vector of
constants, respectively, then W=D=LM =MC.

The exact numerical equivalence may seem puzzling in light of the inequality
that ranks the maximum likelihood Wald, likelihood ratio, and Lagrange multi-
plier test statistics in the linear model with normal errors (Berndt and Savin [1977],
Evans and Savin [1984]). Part of the explanation is that we assume that all
statistics use the same estimate V. of V. For the ordinary least squares estimator
using the same V; means that the same estimate of the disturbance variance is
used. Suppose that in such a case we instead calculate W using the unconstrained
estimate of the variance, LM using constrained estimate, and D in the obvious
way from the constrained and unconstrained estimates. Then we would have
LM =D < W, with LM and W identical to their maximum likelihood counterparts.
The reason for equivalence of LM and D is that D is a “likelihood ratio” test
that is based on the first order conditions for the least squares estimator rather
than the log-likelihood itself, similar to the quasi-maximum likelihood case we
discussed earlier.

The numerical equivalence noted in Proposition 4 means that in the linear
case a choice of a test statistic depends largely on computational convenience.
There is a particularly convenient way to form the D statistic to test a linear
hypothesis in a linear equation that has serially uncorrelated instrumental variable
and disturbance cross-products and (possibly) conditionally heteroskedastic errors,
and which is estimated by instrumental variables. Let a linear equation be
given by
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3.5 Ve= Wby +u,, (=1,..,7T),

where W, is a g x 1 vector of right side variables and u, is a serially uncorrelated
disturbance term. Let a rx 1 vector of instrumental variables be given by X,,
and suppose that the orthogonality condition E[X,u,]=0 is satisfied. The
moment condition vector in this context is then equal to g(z,, b)=X,(y,— W;b),
where z,=(y,, W,, X,).

To calculate D, simply do the following. Get an initial consistent unconstrained
estimate b¥, say, by two stage least squares. Let u¥=y,—X,b* be the residual.
Define XF=ufX,, X*=(X},..., XH, X=(X1,.., X795 YV =/uE, a=Q 155005
Vre)s V= Wi ¥1)s Wi = Wifuf, Wi = (Wi, Wiy,

W=(Wi,..., Wy).

Next calculate by, the two stage least squares estimator for a regression of y, on
W, with instruments X*. Because Vo=YT, g(z,, b¥g(z,, b |T=3 T, (u¥)?*-
X, X;/T=(X*)X*|T, this gives the efficient GMM estimator, which in this context
is equal to White’s [1982a] two stage instrumental variables estimator. Define
Oy =Y — We'bypy 1=l 14,..., ipy). Calculate S, the sum of squares of the
predicted values (i.e., the numerator of the constant unadjusted r-squared) of a
regression of i, on X¥:

S = 0/ XX XX g = (V= Whe) XV X'(y=Wby)|T = T-Jo(by).

Now substitute out the constraint in 3.5, and repeat the previous paragraph for
the restricted estimator. Let S be the result of the last step. Then D is calcu-
lated simply as D=5 —S.

The same method of calculating D is also applicable when a nonlinear constraint
is being tested except that in general it will not be possible to substitute out for the
constraint and use the above two stage least squares calculation to obtain the
residuals for the restricted estimates. The method may be simplified somewhat
if there is no conditional heteroskedasticity or if the estimation technique is OLS.
See Startz [1982] and Domowitz [1983].

Princeton University, U.S. A.

REFERENCES

AMEMIYA, T., “The Nonlinear Two-Stage Least-Squares Estimator,” Journal of Econometrics,
2 (1974), 105-110.

BernDT, E. K. AND N. E. SaviN, “Conflict among the Criteria for Testing Hypotheses in
the Multivariate Linear Regression Model,” Econometrica, 45 (1977), 1263-1278.

BURGUETE, J. F., A. R. GALLANT AND G. Souza, “On Unification of the Asymptotic Theory
of Nonlinear Econometric Models,” Econometric Reviews, 1 (1982), 151-190.

CHAMBERLAIN, G., “Multivariate Regression Models for Panel Data,” Journal of Econometrics,
18 (1982), 5-46.

CuMBy, RoOBERT E., JoHN HUIZINGA AND MAURICE OBSTFELD, “Two Step, Two Stage Least



HYPOTHESIS TESTING 787

”

Squares Estimation in Models with Rational Expectations,
21 (1983), 333-335.

DoMowitz, IaN, “Comment,” Econometric Reviews, 2 (1983), 219-222.

EICHENBAUM, MARTIN S., LARs PETER HANSEN AND KENNETH J. SINGLETON, “A Time Series
Analysis of Representative Agent Models of Consumption and Leisure Choice under
Uncertainty,” Carnegie Mellon University, manuscript (1984).

ENGLE, RoBerT, “Wald, Likelihood Ratio and Lagrange Multiplier Tests in Econometrics,”
in, Z. Griliches and M. D. Intriligator, eds., Handbook of Econometrics, vol. II, (Amsterdam:
North Holland, 1984), 775-826.

Evans, G. B. A. anND N, E. Savin, “Conflict Among the Criteria Revisited: The W, LR and LM
Tests,” Econometrica, 50 (1982), 737-748.

FergusoNn, T. S., “A Method of Generating Best Asymptotically Normal Estimates with An
Application to The Estimation of Bacterial Densities,” Annals of Mathematical Statistics,
29 (1958), 1046-1062.

GALLANT, A. R. AND D. W. JorGENSON, “Statistical Inference for a System of Simultaneous,
Nonlinear, Implicit Equations in the Context of Instrumental Variables Estimation,”
Journal of Econometrics, 11 (1979), 275-302.

HanseN, LArs PETER, “‘Large Sample Properties of Generalized Method of Moments
Estimators,” Econometrica, 50 (1982), 1029-1054.

AND THOMAS SARGENT, ‘‘Instrumental Variables Procedures for Estimating Linear
Rational Expectations Models,” Journal of Monetary Economics, 9 (1982), 263-296.

————— AND KENNETH SINGLETON, ‘Generalized Instrumental Variables Estimation of
Nonlinear Rational Expectations Models,”” Econometrica, 50 (1982), 1269-1286.

HAUsMAN, JERRY AND DANIEL McCFADDEN, “Specification Tests for the Multinomial Logit
Model,” Econometrica, 52 (1984), 1219-1240.

HoLtz-EAKIN, DouGLAs, WHITNEY K. NEWEY AND HARVEY S. RoseN, ‘“Estimating Vector
Autoregressions in Panel Data,” manuscript (1987).

Newey, WHITNEY K., “Generalized Method of Moments Specification Testing,” Journal of
Econometrics, 29 (1985), 299-256.

AND KENNETH D. WesT, “‘Hypothesis Testing with Efficient Method of Moments
Estimation,” Princeton University Woodrow Wilson School Discussion Paper, No. 103
(1985).

———, “A Simple, Positive Definite, Heteroskedasticity and Auto Correlation Consistent
Covariance Matrix,” forthcoming, Econometrica (1987).

PitMmaN, E. T. G., “Notes on Nonparametric Statistical Inference,” manuscript (1949).

STARTZ, RICHARD A., “Computation of Linear Hypothesis Tests for Two Stage Least Squares,”’
Economics Letters, 11 (1982), 129-131.

WEesT, KENNETH D., “A Specification Test for Speculative Bubbles,” forthcoming, Quarterly
Journal of Economics (1987a).

—, “A Standard Monetary Model and the Variability of The Deutschemark-Dollar
Exchange Rate,” forthcoming, Journal of International Economics (1987b).

—_— , “Dividend Innovations and Stock Price Volatility,” forthcoming, Econometrica
(1987c).

WaITE, HALBERT, “Instrumental Variables Regression with Independent Observations,”
Econometrica, 50 (1982a), 483-501.

, “Maximum Likelihood Estimation of Misspecified Models,” Econometrica, 50 (1982b),
1-26.
, Asymptotic Theory for Econometricions (New York: Academic Press, 1984).

AND IaN Domowirz, “Nonlinear Regression with Dependent Observations,” Econo-

metrica, 52 (1984), 143-162.

Journal of Econometrics,






