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DIVIDEND INNOVATIONS AND STOCK PRICE VOLATILITY
By KENNETH D. WEsT!

A standard efficient markets model states that a stock price equals the expected present
discounted value of its dividends, with a constant discount rate. This is shown to imply
that the variance of the innovation in the stock price is smaller than that of a stock price
forecast made from a subset of the market’s information set. The implication follows even
if prices and dividends require differencing to induce stationarity. The relation between
the variances appears not to hold for some annual U.S. stock market data. The rejection
of the model is both quantitatively and statistically significant.
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1. INTRODUCTION

THE SOURCES OF FLUCTUATIONS in stock prices have long been argued. Some
observers have suggested that a major part of the fluctuations results from self
fulfilling rumors about potential price fluctuations. In a famous passage, Keynes,
for example, described the stock market as a certain type of beauty contest in
which judges try to guess the winner of the contest: speculators devote their
“intelligence to anticipating what average opinion expects average opinion to
be” (1964, p. 136). An examination of practically any modern finance text (e.g.,
Brealey and Myers (1981)) indicates that the economics profession tends to hold
the opposite view. Stock price fluctuations are argued to result solely from changes
in the expected present discounted value of dividends.

The subject has received increased attention in recent years because of the
volatility tests of Leroy and Porter (1981) and, especially, Shiller (1981a). These
tests seem to indicate that stock price fluctuations are too large to result solely
from changes in the expected present discounted value (PDV) of dividends. There
is, however, some question as to the validity of this conclusion. Marsh and Merton
(1986) have objected to the tests’ assumption that dividends are stationary around
a time trend; Flavin (1983) and Kleidon (1985, 1986) have argued that in small
samples the tests are biased toward finding excess volatility.

This paper develops and applies a stock market volatility test that is not subject
to these criticisms. The test is based on an inequality on the variance of the
innovation in the expected PDV of a given stock’s dividend stream, and was first
suggested by Blanchard and Watson (1982).” The inequality states that if discount
rates are constant this variance is smaller when expectations are conditional on

' thank A. Blinder, J. Campbell, G. Chow, S. Fischer, R. Flood, L. P. Hansen, W. Newey,
J. Rotemberg, R. Trevor, J. Taylor, the referees, and an editor of this journal for helpful comments,
and the National Science Foundation for financial support. Responsibility for remaining errors is
my own. This paper was revised while I was a National Fellow at the Hoover Institution. An earlier
version of this paper was circulated under the title “‘Speculative Bubbles and Stock Price Volatility.”

2 While Blanchard and Watson (1982) do suggest examining the inequality that is the focus of this
paper, they do not formally establish the validity of the inequality, consider possible nonstationarity
of dividends or prices, or test the inequality rigorously. Subsequent to the initial circulation of this
paper, however, M. Watson sent me a proof of this inequality that is valid when prices and dividends
are stationary.
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the market’s information set than when expectations are conditional on a smaller
information set. It may be shown that this implies that the variance of the
innovation in a stock price is bounded above by a certain function of the variance
of the innovation in the corresponding dividend.

The paper checks whether the bound is satisfied by some long term annual
data on the Standard and Poor 500 and the Dow Jones indices. It is not. The
estimated variance of the stock price innovation is about four to twenty times its
theoretical upper bound. The violation of the inequality is in all cases highly
statistically significant.

It is to be emphasized that the inequality is valid even when prices and dividends
are an integrated ARIMA process with infinite variances, and that the empirical
work allows for such nonstationarity. In addition, the test procedure does not
require calculation of a perfect foresight price; this price appears to be central
to the small sample biases that are argued by Flavin (1983), Kleidon (1985, 1986),
and Marsh and Merton (1986) to plague the Shiller (1981a) volatility test. The
paper nonetheless performs some small Monte Carlo experiments to check
whether under certain simple circumstances small sample bias in this paper’s test
procedure is likely to explain the results of the test. The answer is no.

While one of the purposes of this paper is to apply a volatility test with a
relatively weak set of maintained statistical assumptions, that is not its only aim.
It also consideis the consistency of some of the test’s maintained economic
assumptions with the data, to help determine which among these should be
relaxed, so that the excess price volatility might be explained. To that end, the
paper uses a battery of formal diagnostic tests on the regressions that must be
estimated to calculate the inequality. The test results are in general quite consistent
with the test’s maintained hypotheses of rational expectations and, perhaps
surprisingly, of a constant rate for discounting future dividends. Some additional,
less formal analysis, which considers further the constant discount rate hypothesis,
does not suggest that the excessive price variability results solely from variation
in discount rates.

The evidence, then, does not suggest that the excess volatility is caused by a
simple failure of the rational expectations or constant discount rate assumptions.
This suggests the possibility that the volatility is due either to rational bubbles
(e.g., Blanchard and Watson (1982)) or nearly rational ““fads” (e.g., Summers
(1986)), whose profit opportunities (if any) are difficult to detect. The paper does
not, however, attempt to make a case for bubbles, fads or, for that matter, any
other factor, as the explanation of the excess volatility. Instead what is emphasized
are two empirical regularities that seem to characterize the data studied here.
The first is that prices appear to be too variable to be set as the expected PDV
of dividends, with a constant discount rate; this holds even if prices and dividends
are nonstationary. The second is that it is difficult to attribute the excess variability
to variations in discount rates. Reconciliation of these two points is a task left
for future research.

Before turning to the details of the subject at hand, two final introductory
remarks seem worth making. The first is that the inequality established here may
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be of general interest in that it could be used to test other infinite horizon present
value models. Possible examples include testing whether consumption is too
variable to be consistent with the permanent income hypothesis (see Deaton
(1985), West (1988)) or whether exchange rates are too variable to be consistent
with a standard monetary model (West (1986a)). That the inequality is valid even
in a nonstationary environment makes it particularly appealing in these and
perhaps other contexts. The second remark concerns the estimation technique.
This is in part an application of West’s (1986b) result that it is not always necessary
to difference regressions on nonstationary variables, to obtain asymptotically
normal parameter estimates. The key requirement is that the nonstationary vari-
ables have a drift. Since this is plausible for not only stock prices but for many
other macroeconomic variables as well, the estimation technique applied in this
paper may be of general interest.

The plan of the paper is as follows. Section 2 establishes the basic inequality.
Section 3 explains how the inequality may be used to test a rational expectations,
constant discount rate stock price model. Section 4 presents formal econometric
results. Section 5 considers informally whether small sample bias or discount
rate variation are likely to explain the Section 4 results. Section 6 has conclusions.
The Appendix has some econometric and algebraic details.

2. THE BASIC INEQUALITY

The following proposition is the basis of this paper.

PrOPOSITION 1. Let I, be the linear space spanned by the current and past values
of a finite number of random variables, with I, a subset of I,.,, for all t. It is assumed
that after s differences, all random variables in I, jointly follow a covariance stationary
ARMA (q, r) process, for some finite s, q, r=0. This s’th difference is assumed
without loss of generality to have zero mean. All variables are assumed to be
identically zero for t < q.

Let d, be one of these variables. Let H, be a subset of I, consisting of the space
spanned by current and past values of some subset of the variables in I,, including
at a minimum current and past values of d,. Let b be a positive constant, 0< b <1.
Let P(-|-) denote linear projections, calculated for s >0 as in Hansen and Sargent
(1980). Let

)

(All summations in this section run over j.) Let E denote mathematical expectations.
Then

. X K
Xy = ll(im P( Y b'd,.; I,), X = ll(im P( Y b'd,.;

(1) E[xy — P(x:n | }11—1)]22 E[x, - P(x, | Il—l)]z-
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Proor:* Since d, is in I,,
(2) X1 =d,+bP( z bjdr+j+l|It>
0

=d,+ bxt+l,l —be,.,,

€1 = X101 — < Z b’ dr+j+l l I:) = Xe+1,1 — P(xr+1,l II:)-
0

Equation (2) may be rewritten as
X — dr = bxt+l,l - bet+l-

Recursive substitution for x,., ;, then for x,., ;, etc., yields
k—1 ) B k .

(3) Xg= bld,.;=b"X i1 - ble,.;.
0 1

The assumptions of the proposition insure that as k - oo, bkx,+,(', -0 in mean
square. Consider first the ARIMA (g, s,0) case. The formulas in Hansen and
Sargent (1980) state that x,; is a finite distributed lag on the variables in I,. Since
these variables started up at a finite date in the past, and some arithmetic difference
of each variable has a finite variance, the rate of growth of the variance of each
variable, and therefore of the variance of x,; as well, is some power of t. Since
lim, . b**(t+ k)" =0 for any fixed n =0, lim,_, var (b*x,,, ;) = 0. The argument
for the ARIMA (g, 5, r) case is implied by Hansen and Sargent (1980) since for
j>r P(d.;|1,) is determined by a difference equation that depends only on s
and the autoregressive parameters.

The assumptions of the proposition also guarantee that e, has constant, finite
variance and is serially uncorrelated. For the ARIMA (g, s, 0) case, this follows
directly from inspection of the formula for x,; in Hansen and Sargent (1980).
Once again, this argument immediately extends to the ARIMA (g, s, r) case.
Therefore, Y b’e,.; exists, in the sense that lim, ., E( Z’; ble.;—Y; ble,;)’=0,
var(Y b’e,.;)=b*(1—b*)"'Ee? (Fuller (1976, p. 36)). Equation (3) therefore
implies

(4) Z b d1+_’ Z b e1+]
By a similar argument, involving projections onto H,,

(5) XiH — Z b’ dr+; Z b fl+;,

fH—j = Xe+j,H — P(xH-j,H ' Hr+j—1)a var ( _Z bjf;+j) = b2(1 - bz)ilEf:z-
1

3 J. Campbell suggested the basic idea of this proof. L. P. Hansen and M. Watson have provided
alternative proofs. S. Leroy has pointed out to me that a similar proposition is implied in the stationary
case in Leroy and Porter (1981, p. 568). My own, rather tedious, proof may be found in an earlier
version of this paper (West (1984)).
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Now,

(6) var (—i b’f,.;) =var (x,H -—g bjd,ﬁ)
=var (x,H =X+ X, —§ b’ dH—j)
=var <x,H =X —i b’ e,+,-)
=var (x,y —Xx,; ) +var (—i b’ e,+,->

(e @]
=var (—Z b’ e,+j>.
1

The last equality follows since for j =1, e,,; is uncorrelated with anything in
I,, including, in particular, x,,; — x,;. It follows from (6) that b*(1—b?) 'Ef?=
b2(1 - bz)_]E€$:>E832 Eflza i.e., E[xtH - P(er | I-Itfl)]22 E[X,, - P(xtl l Itfl)]z-

Q.E.D.

A verbal restatement of Proposition 1 is as follows. Suppose we are forecasting
the present discounted value of d,, by calculating x,; and x,,. Each period as
new data become available we revise our forecast. E(x, —P(x,|I,_,)]* and
E(x,y — P(x,1;| H,_,)]? are measures of the average size of this period to period
revision. Proposition 1 says that with less information the size of the revision
tends to be larger. That is, when less information is used, the variance of the
innovation in the expected present discounted value of d, is larger.

It is worth making four comments on the conditions under which (1) is valid.
First, if the random variables in I, are stationary without differencing, Proposition
(1) does not require that the variables follow a finite parameter ARMA (g, r)
process. The ARIMA assumption is maintained because to my knowledge infinite
horizon prediction for nonstationary variables has been developed only for
ARIMA processes. Second, (1) may not extend immediately if logarithms or
logarithmic differences are required to induce stationarity in d,, even if linear
projections are replaced with mathematical expectations. If, for example,
log (d,) =log (d,_,)+¢&,, &~ N(0,0%), and H, is the information set generated
by past d,, it may be shown that [x,,; — E(x,4 | H,_,)]? is proportional to dZ_,.
Third, the inequality need not hold for a finite horizon. That is, it need not hold
if we consider the variance of the innovation in the expected PDV of Z(',' b’d,H
instead of ¥ b’d,,;. An example is given in footnote 4 of West (1986c). The
reason is that terms of the form b""'x,,,.,, and b""'x,, .,  are present. See
equation (3). Fourth, (1) does not hold for arbitrary subsets of I,. If, for example,
H, were the empty set, x,;; would also be the empty set, and the left-hand side
of (1) would be identically zero.

Before developing the implications of (1) for stock price volatility, it may be
helpful to work through a simple example. Suppose I, consists of lags of d, and
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of one other variable, z,. Let H, consist simply of lags of d,. Let the bivariate
(d,, z,) representation be

S o o P sl
Z 0 0lLz, €2
with |¢|<1, £,, and &, i.i.d., Ee,, &5, =0 for all , 5. Let Ee;, =03, Ee5, = o5. The

univariate representation of d, clearlyis d, = ¢d,_,+v,, v,=€,,+ 2z, =&, + &5,_y,
Ev?= 0%+ o3. Let us calculate both sides of (1).

(8) P(dr+j|Ht)=¢jdr

=Xy = P< > bjdt+j Hr) =(1 _b¢)_ldt
0

= E[xu _P(lelHl—l)]2= E[(l _b¢)7lvr]2= (1 _b¢)72(0%+‘7§)'
P(d,|I,)=d,.

P(d.;|1)=¢'d+¢' 'z,  j>0,
=Xy = P( Z bjdr+jllr) =(1 _b¢)—l(dr+bzr)
0

= E[x,; — P(x | I,_)P=E[(1 —b¢) (&4, +bz,)T
=(1-b¢) *(oi+b*a?).

Since b’< 1, o2+ 03> o} + b’03, so (1) holds. Observe that (1) holds even when
¢ =1 so that d, is nonstationary.

3. THE MODEL

According to a standard efficient markets model, a stock price is determined
by the relationship (9) (Brealey and Myers (1981, pp. 42-45)):

) pi=bE[(pi1+di)| L],

where p, is the real stock price at the end of period ¢, b the constant ex-ante real
discount rate, 0<b=1/(1+r)<1, r the constant expected return, E denotes
mathematical expectations, d,,, the real dividend paid to the owner of the stock
in period t+1, and I, the information set common to traders in period t. I, is
assumed to contain, at a minimum, current and past dividends, and, in general,
other variables that are useful in forecasting dividends.

Equation (9) may be solved recursively forward to get

(10) p.=% b’E(d,;| 1)+ b"E(prsn| 1)
1
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If the transversality condition

(11) lim b"E(P:+n|I:):O
holds, then
(12)  p,=Y b’E(d.,|I,).

1

It will be assumed that in forecasts of Z;’O bjd,+j from I,_,, for any k=0,
mathematical expectations conditional on the market’s information set are the
same as linear projections. So x,;, defined in Proposition 1 as the linear projection
of Yo b’d,,; onto a period t set of random variables equals E( Y, b’d..;|1,).
Similarly, the linear projection of x,; onto the market’s period ¢ —1 set of random
variables equals E(x,|I,_,).

Proposition 1 is used to test the model (12) as follows. Since x,;=
E(Y, b’d.;|1), (12) implies that x,=p,+d,. So E[x,—E(x,|I_,))=
E[p.+d,—E(p,+d,|I,_,)], and, therefore,

(13) E[x:H —P(x,H|H,,1)]22 E[Px+d.—E(Pr+dr|I,71)]2-

The intuitive reason that the model (12) implies (13) is as follows. E(x,4 —
P(x,y | H,_,)]? is by definition a measure of the average size of the innovation in
the expected present discounted value (PDV) of dividends, when expectations
are conditional on H,. According to (12), price adjusts unexpectedly only in
response to news about dividends. E[p,+d,— E(p,+d,|I,_,)]* is a measure of
the average size of the innovation in the expected PDV of dividends, with
expectations conditional on the market’s information set I,. Since the market is
presumed to use the variables in I, to forecast optimally, the market’s forecasts
tend to be more precise, i.e., (13) holds.*

To make (13) operational, both sides of it must be calculated. Consider first
E[p,+d,—E(p,+d,|I,_,)]°. A consistent estimate of this is easily obtained by
estimating (9) with the instrumental variables method of McCallum (1976) and
Hansen and Singleton (1982). Rewrite (9) as

(14) P =b(pitdiy) =b[p1td.— E(Pr+l+dt+|‘Ir)]
=b(ps1tdi)t e,
Ui = sz[Pn"‘d, - E(P,+d1‘lz—1)]2~

Equation (14) can be estimated by instrumental variables, using as instruments
variables known at time f. An estimate of E[p,+d,—E(p,+d,|I,_,)] is then
obtainable as b242.

4 Note that inequality (13) holds even for the class of dividend and price processes studied by
Marsh and Merton (1986), as long as arithmetic differences suffice to induce stationarity. This is
because the March and Merton (1984) model implies that H,=I,. When H, = I,, inequality (13)
holds trivially, as a strict equality. See the discussion in West (1984).
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Estimation of E[x,y — P(x,y | H,_,)]’ is slightly more involved. It requires first
of all specification of H,. The simplest possible one is H,={1,d,_; |j=0}, and
H, defined this way is what is used in this paper’s empirical work.’ Choices of
H, that include lags of additional variables might produce sharper results, but
would also entail more complex calculations. With H, ={1,d,_; |j=0}, E[x —
P(x,4 | H,_,)]? can be calculated as a function of d,’s univariate ARIMA param-
eters. Suppose d, ~ ARIMA (g, s, 0),

(15) Asdr+1=ﬂ+d’lAsdz+' : ‘+¢qASdl—q+]+v!+l,

where A°=(1-L)°, L the lag operator. (A moving average component to d, is
assumed absent for notational and computational simplicity.) Then x4 =
P(Y bd,.;|H)=m+Y{"" 8d,_..,. The & are complicated functions of b and
the ¢;. Hansen and Sargent (1980) provide explicit formulas for the §;. In
particular, given b and the ARIMA parameters of d,, one can use the Hansen
and Sargent (1980) formula for 8, to calculate 8;03 = E[x,y — E (x.u | H,—1)1>. To
test the null hypothesis that prices are determined according to (12), then we
calculate

(16) 8l02—-b ol

and test Hy: 8202—b 202 =0. If the estimate of (16) is negative (that is, the
implications of (12) for the innovation variances are not borne out by the data),
a convenient way to quantify the extent of the failure of the model (12) is to
calculate

(17) —100(8%02—b?02) /(b 2al).

When (16) is negative, (17) yields a number between 0 and 100. I will refer to
this somewhat loosely as the percentage of the variance of the innovation in p,
that is excessive. This is of course somewhat imprecise in that b~ >o is the
variance of the innovation in the sum of dividends and prices. But given that
price innovations are much larger than dividend innovations (see the empirical
results below), this terminology does not seem misleading.®

What alternatives might explain a rejection of the null hypothesis that (16) is
positive? Three have figured prominently in discussions of related work: gross
expectational irrationality, of the sort that systematically leads to profit oppor-
tunities (e.g., Ackley (1983)); variation in discount rates (e.g., Leroy (1984)); and
rational or nearly rational bubbles or fads (e.g., Blanchard and Watson (1982),
Summers (1986)), whose profit opportunities (if any) are very difficult to detect.
In light of some empirical evidence yet to be presented, it is of interest to note
that diagnostic tests on the estimates of (14) and (15) can help to distinguish
between bubbles and fads on the one hand, and gross expectational irrationality

5 Proposition 1 assumed that variables had zero mean. If not, H, and I, must be expanded to
include suitable deterministic terms. In the annual data used here, a constant is the only relevant
such term.

© In fact, in some empirical work the variable that is here called d,,, is assumed known at time ¢
and thus has an innovation of zero when forecast at time ¢ (Shiller (1981a), Leroy and Porter (1981)).
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and time varying discount rates on the other, as possible explanations of any
excess price volatility. Technically, when rational bubbles are absent (i.e., the
transversality condition (11) holds), equation (14) and the dividend equation
(15) together imply that (16) is positive. But when rational bubbles are present,
(14) and (15) need not imply that (16) is positive (West (1986c)). So bubbles
provide a logical explanation of any excess price volatility if (14) and (15) appear
to be well specified. More generally, since it may be difficult to detect small
departures from the rational bubble alternative in a eiven finite sample, evidence
that (14) and (15) appear legitimate, despite excess price volatility, is consistent
as well with nearly rational bubbles or fads of the sort considered in Summers
(1986). So an essential part of the strategy used here to distinguish between
rational or nearly rational bubbles or fads versus other alternatives as explanations
of excess price variability is to perform diagnostic tests on equations (14) and
(15). The greater the extent to which these two equations appear to be well
specified, the more persuasive is the inference that bubbles or fads explain the
excess volatility.”

4. EMPIRICAL EVIDENCE
A. Data and Estimation Technique

The data used were those used by Shiller (1981a) in his study of stock price
volatility, and were supplied by him. There were two data sets, both containing
annual aggregate price and dividend data. One had the Standard and Poor 500
for 1871-1980 ( p, is price in January divided by producer price index (1979 = 100),
d, ., is the sum of dividends from that same January to the following December,
deflated by the average of that year’s producer price index). The other data set
was a modified Dow Jones index, 1928-1978 (p,, d,., as above). See Shiller
(1981a) for a discussion of the data.

The following aspects of estimation will be discussed in turn: (i) selection of
the lag length g of the dividend process, (ii) estimation of (14), (15), and (16),
(iii) calculation of the variance-covariance matrix of the parameters estimated,
and (iv) diagnostic tests performed.

(i) It was assumed that the univariate d, process required at most one difference
to induce stationarity. That is, in equation (15), s =0 (the original series was
used) or s =1 (first difference of original series used). No other values of s were
tried.

For both the differenced and undifferenced versions of each data set’s dividend
process, two values of the lag length g were used. One was arbitrarily selected

7 Unless, of course, one has a theoretical presumption that bubbles are not present: a consensus
view on how general are the equilibria that admit bubbles is far from established. For a general
equilibrium model that allows bubbles, see Tirole (1985). For an argument that bubbles are inconsistent
with rationality, see Diba and Grossman (1985). For discussions on the use of volatility tests versus
other techniques in studying present value models, see Hamilton and Whiteman (1984), Hansen and
Sargent (1981), and Shiller (1981b). See West (1987) on the interpretation of the Summers (1986)
alternative as a nearly rational bubble.
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as g =4. The other was the g selected by the information criterion of Hannan
and Quinn (1979). This criterion chooses the value of g that minimizes a certain
function of the estimated parameters. Conditional on g being no greater than
some fixed upper bound, which I set to 4, the correct g will be chosen asymptoti-
cally if the process truly has a finite order autoregressive representation.®

Thus, for each data set up to four sets of parameter estimates were calculated:
q =4, where g =lag length selected by the information criterion, for differenced
and undifferenced data. In one case (Dow Jones, differenced), the Hannan and
Quinn (1979) criterion chose g =4. So only three sets of parameters were calcu-
lated for the Dow Jones.

(ii) Calculation of (16) required estimation of the bivariate system consisting
of equations (14) and (15). Equation (14) was estimated by Hansen’s (1982) and
Hansen and Singleton’s (1982) two-step, two-stage least squares. The first step
obtained the optimal instrumental variables estimator. The g + 1 instruments used
were the variables on the right hand side of (15), i.e., a constant term and q lags
of A°d, (s =0or s =1). Equation (15) was estimated by OLS, with the covariance
matrix of the parameter estimates adjusted for conditional heteroskedasticity as
described in (iii).

With A°d, ~ AR(q), the 8, parameter in the formula (16) is [(1—b)*®(b)] ™",
d(b)=1-%1 b’d)} (Hansen and Sargent (1980)) Thus, formula (16) was calcu-
lated as [(1—5)*(1— Y] b’¢ )] ! ‘z—b

The innovation variances ¢2 and &2 were calculated from the moments of the
residuals of the regressions, with a degree of freedom correction used for &7

(18) G2=(T—-s)" Z TR

t=1

T-—s
G =(T-s—q-1)" Y 0L,,.

t=1

T is the number of observations; T =110 for the Standard and Poor’s index,
T =51 for the Dow Jones index.

The parameter vector estimated was thus 6=(b, Q, iy, ¢>q, 62,6%). 6 is
asymptotically normal with an asymptotic covariance matrix V (see the Appendix
and (iii) below).’ Let f(#) be formula (16) above. The standard error on the

8 The Hannan-Quinn procedure selects the g that minimizes
InG%+ T '2gkInin T,

for g < Q for some fixed Q, with k> 1. 1 set Q=4, k=1.001. The choice of k=1.001 was made
because Hannan and Quinn (1979, p. 194) seem to suggest a value very close to one is appropriate
for sample sizes such as those used in this paper.

° A referee has suggested that I emphasize that West (1986b), the references for the asymptotic
distribution of parameter estimates for differenced specifications, requires E(A4d, + 4p,) # 0. While
this certainly seems reasonable a priori given that the data are from a stock market in a growing
economy, the upward drift in the data is not particularly well reflected in formal statistical tests. See,
for example, the insignificant constant terms in all the differenced specifications in Table 1B. It is
reassuring, then, that the Monte Carlo simulations in West (1986b), which assume data as noisy as
those used here, suggest that the asymptotic normal approximation can be useful even with the sample
sizes used here.
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estimate of (16) was calculated as [(3f/36) V(3f/36)']. The derivatives of f were
calculated analytically.

(iii) The estimate of V, the variance covariance matrix of 6, was calculated by
the methods of Hansen (1982), Newey and West (1987), and West (1986c), so
that the estimate would be consistent for an arbitrary ARMA process for u, and
v,. This is necessary because, for example, the correlation between u, and v,
may in principle be nonzero for all j=0. The Newey and West (1987) procedure
was used to insure that V was positive semidefinite. Details may be found in the
Appendix. It suffices to note here that the procedure for calculating the standard
error on (16) properly accounts for the uncertainty in the estimates of both the
regression parameters and the variances of the residuals.

(iv) The final item discussed before results are presented is diagnostic tests on
equations (14) and (15). Four diagnostic checks were performed.

The first checked for serial correlation in the residuals to the equations, using
a pair of tests. As noted above, u,.,, the disturbance to equation (14), is an
expectational error. If expectations are rational, then u,,, will be serially uncorre-
lated. Equation (15)’s disturbance v,., should also be serially uncorrelated, since
v+, is the innovation in the dividend process.

The first of the pair of serial correlation tests checked for first order serial
correlation in u,,, and v,,;. The calculation of the standard errors for this is
described in the Appendix. The second of the pair of serial correlation tests,
performed only for (15), calculated the Box-Pierce Q statistic for the residuals.
This statistic of course simultaneously tests for first and higher order serial
correlation. See Granger and Newbold (1977, p. 93).

The second of the four diagnostic checks was performed only on equation
(14). This was a test of instrument-residual orthogonality, basically checking
whether the residual to (14) is uncorrelated with lagged dividends (Hansen and
Singleton (1982)). Let Z, be the (g + 1) x 1 vector of instruments and b the estimate
of b. The orthogonality test is computed as:

(19) { fz:[p,—E(p,+1+d,+1)]}<TS‘z>{ z Z,[p,—l;(p.+1+d.+1)]}-

§Z is an estimate of E(Zu,,,)(Zu,,,)’ and was calculated as T (Y Z,Z\i,,),
where 4@, is the 2SLS residual to (14). The statistic (19) is asymptotically distributed
as a chi-squared random variable with g degrees of freedom. This test has the
power to detect irrational expectational errors and variations in discount rates
that are correlated with dividends.

The third of the four diagnostic checks tested for the stability of the regression
coefficients in (14) and (15). Each sample was split in half, a pair of regression
estimates was obtained, and equality of the pair was tested. The resulting statistic
is asymptotically chi-squared, with one degree of freedom for (14) and (q+1)
degrees of freedom for (15). This test clearly has the power to detect shifts in
the discount rate, as well as in the dividend process.

The fourth and final diagnostic check performed is implicit in the estimation
procedure described above. A variety of specifications for the dividend process
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were used—differenced and undifferenced, with a variety of lag lengths. Since
the results did not prove sensitive to the specification of the dividend process,
the likelihood is relatively small that changes in the specification of the dividend
process will affect the results.

B. Empirical Results

Regression results for (14) and (15) are reported in Tables I-A and I-B. The
results in Table I-A suggest that the basic arbitrage equation (1) is a sensible
one. The entries in column (4) do not reject the null hypothesis of no serial
correlation in u,.,, the disturbance to equation (14). The test statistic in all cases
is far from significant at the .05 level. The equation (19) test for instrument-residual
orthogonality also does not reject the null hypothesis of no correlation between

the instruments and the residuals at the .05 level, for any specification. See column
(5)‘10

TABLE 1-A: EQUATION 14
REGRESSION RESULTS

(1) (2)¢ (3)° (4)¢ (5)° (6)°

Data Set Differenced q b p H/sig Stability/sig
Sand P

1873-1980 no 2* 9311 .0695 5.50/.064 4.55/.033
(.0186)° (.0766)

1874-1980 yes 2° 9413 .0670 2.87/.238 .33/.566
(.0170) (.0974)

1875-1980 no 4 9315 0661 6.96/.138 3.69/.055
(.0158) (.0754)

1876-1980 yes 4 9449 0671 3.15/.533 .28/.594
(.0136) (.0984)

Modified Dow Jones

1931-1978 no 3 9402 —.1040 5.42/.144  1.56/.211
(.0301) (.0806)

1933-1978 yes 4 9379 -.1182 520/.267  2.02/.154
(.0188) (.0752)

1932-1978 no 4 9271 —1112 6.08/.108 .49/.483
(.0253) (.1493)

See notes to Table I-B.

'% Some results of Flood, Hodrick, and Kaplan (1986) should, however, be noted. They apply the
test of instrument-residual orthogonality to these data using three lags of d,/p, as instruments, and
estimating (14) in the form 1= b(p,,,+d,,,)/ p, +error. They report x*(3) test statistics with sig-
nificance levels of .03 for the S and P and .08 for the Dow Jones. This suggests some mild evidence
against the model. They also report stronger rejections using some indirect tests of the constant
expected return model. See Section SB for further discussion.
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Most important, the discount rate b is estimated plausibly and extremely
precisely in all regressions. See column (3). The implied annual real interest rates
are about six to seven per cent. These rates are quite near the arithmetic means
for ex post returns: 8.1 per cent for the S and P index (1872-1981) and 7.4 per
cent for the Dow Jones index (1929-1979). The estimates of the discount rate
therefore are reasonable. Moreover, there is little evidence that the rate was
different in the two halves of either sample. As indicated in column (6), the null
hypothesis of equality cannot be rejected at the five per cent level for any
specification except the S and P, undifferenced, g =2. In addition, no evidence
against the constancy of the discount rate may be found in a comparison of the
two halves’ mean ex post returns. For the S and P index, these were (in per cent)
8.09 (1872-1926) versus 8.12 (1927-1981); for the Dow Jones the figures are 7.87
(1929-1954) versus 6.92 (1955-1979).

In general, then, the specification of the arbitrage equation (14) seems accep-
table, with the possible exception of the S and P data set with dividends undiffer-
enced. Let us now turn to the estimates for the dividend process, reported in
Table I-B. Once again, the entries in columns (8) and (9) allow comfortable
acceptance of the null hypothesis of no serial correlation in the disturbance to
equation (15). With one exception, both test statistics in all regressions are far
from significant. The only possible exception was the estimate of the first order
serial correlation coefficient p for the S and P index, undifferenced, lag length =2.
Note, however, that this regression’s Q statistic in column (9) comfortably accepts
the null hypothesis of no serial correlation. Overall, then, no serial correlation
to the residual to (15) is apparent. Also, the estimates of most regression
coefficients are fairly precise, at least when the lag length g was chosen by the
Hannan and Quinn (1979) procedure. Finally, the null hypothesis that the
parameters of the dividend process are the same in the two halves of each sample
cannot be rejected for any specification except the Standard and Poor’s,
undifferenced. See column (10). Overall, then, the specification of the dividend
process seems quite acceptable, again with the possible exception of the S and
P data set, undifferenced.

The null hypothesis that price is the expected present discounted value of
dividends, with a constant discount rate, does not, however, appear acceptable,
for any specification. As may be seen from column (7) in Table 11, formula (16)
is always negative, and significantly so. The asymptotic z-stat (ratio of parameter
to asymptotic standard error) was always larger than 2.5. This means that the
column (7) entries are always significant at the one-half per cent level, using a
one-tailed test. The null hypothesis may therefore be rejected at traditional
significance levels. Furthermore, the fraction of the variance of the price innova-
tion that is excessive is substantial, about 80 to 95 per cent (column (8) of Table
II).

The residual price fluctuation might reflect grossly irrational reaction to news
about dividends, variation in discount rates, or some combination of these and
other factors. For the S and P undifferenced specifications, the econometric
evidence perhaps is not particularly helpful in discriminating among the various
possibilities. It is worth noting, however, that for the other specifications, the
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results of the diagnostic tests were more consistent with the residual volatility
being due to bubbles or fads whose profit opportunities are difficult to detect,
than to a misspecification of the arbitrage or dividend equations."'

5. SOME ADDITIONAL ANALYSIS

This section considers the possibilities that the previous section’s results are
due to (A) small sample bias, or (B) variation in discount rates. It is to be
emphasized that the analysis is informal, and the conclusions are far from
definitive. The goal here is simply to gather some evidence on whether either
possibility explains the results; a complete, rigorous econometric examination of
either possibility would require a separate paper.

A. Small Sample Bias

This section uses two small Monte Carlo experiments to get a feel for the
importance of two types of bias. Part (a) below considers whether under certain
simple circumstances small sample bias is likely to account for the finding of
excess variability. Part (b) studies whether under equally simple circumstances
low small sample power of the equation (19) test of instrument residual volatility
is likely to explain the generally favorable results of the diagnostic tests.

a. Bias in Estimate of Excess Volatility

It is important to consider whether small sample bias explains the finding of
excess variability, in light of the evidence in Kleidon (1985, 1986) and Marsh
and Merton (1986) suggesting that if prices and dividends are nonstationary, the
Shiller (1981a) variance bounds test is strongly biased towards finding excess
variability. To see whether there is a similar bias in the present paper’s test, an
environment similar to that in Kleidon (1985, 1986) and Marsh and Merton
(1986) was assumed. Two Monte Carlo experiments were performed. The first
assumed that dividends follow a random walk, Ad, = u +v,, the second that
dividends follow a lognormal random walk, A(log d,)=f+w,. In both experi-
ments, it was assumed that only lagged dividends were used to forecast future
dividends, so that H, = 1I,.

'! This seems an appropriate place to give the results of another test of this model, suggested to
me by a referee. Equation (6) states that var (x,; — o b'd,;)—var (x, —¥o b'd,.;) —var (x,y —x,) =
0. So, under the null hypothesis that x,, = p, +d,,

8202 —b 202 —b 2 (1-b*) var[p,+d,~(m+¥7"" 8,d,_;,,)]=0.

The formulas for m, 8,,..., 8., which are needed to calculate x,;; under the null, may be found
in West (1987).

I tested this equality constraint for all seven specifications, with the number of lags used in the
calculation of the matrix S (defined in the Appendix) set to 11. The z-statistics for the seven
specifications, presented in the same order as in Table II, were: 1.88, 2.07, 1.71, 2.23, 1.85, 2.17, 1.71.
Thus this suggests some mild evidence against the null hypothesis.

The basic reason for the relatively low statistics was a very noisy estimate of var[p,+d, —
(m+Y{"° 8d,_,»,)]. This was insignificantly different from zero at the five per cent level, for all
seven specifications.
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In the first experiment, u and o, were matched to the S and P sample values
of the mean and variance of Ad,, u =.0373, 02=.1574. b was set to .9413, the
value estimated in line 2 of Table I-A. For each of 1000 samples, the following
was done: A vector of 100 independent normal shocks was drawn, (v, ..., ¥;0),
using the IMSL routine GGNPM. Dividends and prices were calculated as
Ad,=.0373+v,; d,=dy+Y Ad, (dy=1.3); p, =Y (. 9413)!‘Ed,+,|1 =m+68,d, m=
(.0373)*(.9413)/(1—.9413), 6, =.9413/(1 — 9413) p, and &2 were then estimated
by an OLS regression of Ad, on a constant, b and &% by an instrumental variables
regression of equation (14), with a constant as the only instrument. Finally,
formula (17), the percentage of price variability that is excessive, was calculated
from the estimated parameters. Since H, = I,, the population value of (17) is zero.

Table I1I-A presents the empirical distribution of the estimates of formula (17).
Ideally, the median value of this distribution would be zero, with half the samples
yielding a positive value to (17). Instead, there appears to be a very slight bias
towards finding excess variability, with 53 per cent of the estimates being positive.
The bias is not, however, particularly marked, and fewer than 5 per cent of the
simulated regressions produced the extreme values of the sort found in all of the
Table II specifications.

The second experiment assumed that log differences are required to induce
stationarity, as in the Monte Carlo evidence in Kleidon (1986). It was noted
earlier that the proof of Proposition 1 assumes that arithmetic differences suffice
to induce stationarity. Since this is not true in the present Monte Carlo experiment,
it is not clear what value (if any) formula (17) will converge to as the sample
size grows.'? The aim of the experiment, then, is not to evaluate the small sample
divergence of estimates of (17) from a population value, but to see if this form
of nonstationarity is likely to account for the large values found in column (8)
of Table II.

The experiment assumed that A (log d,) = f+ w,, with f and o2 matched to the
S and P sample values for the mean and variance of A(log d,), f = .013, o =.016.
b was again set to .9413. The log d, data were generated by the obvious analogue
to the procedure described above for the first experiment, with d, = exp [log (d, )]
and p,=8d,, =exp (f+07,/2)/[b™" —exp (f+02/2)]=24.82. This experiment
used a different seed than did the first to initiate the generation of the random
w,. The parameters needed to calculate (17) were estimated exactly as in the first

TABLE III-A

MONTE CARLO DISTRIBUTION OF FORMULA (17) FOR ARITHMETIC
RANDOM WALK

Percentile 1 5 50 s3

Formula (17) 100.0 31.1 1.7 0.0

'2 In this model one can, however, place a theoretical lower bound on the variance of the innovation
in the first difference of log dividends. I tested this in West (1987) and, once again, found that this
variance is so small that it is unlikely that a lognormal random walk model generates the data.
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experiment. So, for example, arithmetic first differences of d, were regressed on
a constant, even though logarithmic first differences were in fact required to
induce stationarity.

Table II1-B presents the results of the experiment. This time, over four fifths
of the estimates of (17) were positive, suggesting a tendency to find excess
volatility. Once again, however, fewer than 5 per cent of the simulated regressions
produced the extreme values found in all the Table II specifications. This indicates
that it is unlikely that the basic results of the empirical work are attributable to
the small sample effects of the misspecification considered in this experiment.
More generally, in conjunction with the other Monte Carlo experiment and the
empirical results in the previous section, this indicates that the apparent incon-
sistency of the simple efficient markets model with the S and P and Dow Jones
data is unlikely to result from the nonstationarity that is central to Kleidon’s
(1986) critique of Shiller (1981a).

That the estimates for the artificial data rarely display the extreme Table II
excess variability suggests more strongly than might be immediately apparent
that small sample bias does not explain the Table II results. This is because Table
ITI-A, and possibly Table 111-B as well, contain worst case figures, since they are
based on simulations in which H, = I,. Proposition 1 implies that for any giver
b and univariate Ad, process, o will be smaller when I, contains additional
variables useful in forecasting d, than when I, = H,. This suggests that when [
contains these variables estimates of o2 and of formula (17) will be smaller as
well. But a simulation with such variables in I, does not seem worth undertaking
because even under worst case circumstances assumed here, there is little tc
suggest that small sample bias explains the extreme excess variability reportec
in Table II.

b. Bias in Test of Instrument-Residual Orthogonality

It is possible that the diagnostic tests reported basically favorable result
because the tests have low power against some interesting alternatives; se
Summers (1986), for example, on tests for serial correlation. It is particularl
difficult to consider this comprehensively, even if only one of the diagnostic test
is analyzed. This is because Monte Carlo experiments here are potentially quit
burdensome computationally. This will be true if p, or d, are generated nonlinearl
under the alternative, as will be the case, for example, in most formulations ¢
the Lucas (1978) asset pricing model.

TABLE III-B

MONTE CARLO DISTRIBUTION OF FORMULA (17) FOR LOGNORMAL
RANDOM WALK

Percentile 1 S 50 83

Formula (17) 81.0 739 41.1 0.0




DIVIDEND INNOVATIONS 55

So this section has a relatively modest aim, of using a single diagnostic test
and a single, simple form of misspecification, to suggest whether the data and
sample size are such that the diagnostic tests are unlikely to detect plausible
misspecifications. The test that is used is the equation (19) test of instrument
residual orthogonality. The misspecification that is assumed is that expectations
are static rather than rational, Ed,+j|I, =d,. In such a case, the disturbance to
the arbitrage equation (14) is —b(A4p,.,+A4d,.,). So the test must pick up a
correlation between Ap,,,+ Ad, ., on the one hand and lagged Ad, (the instru-
ments, assuming a differenced specification) on the other. Note that there are
variations in (mathematically) expected returns.

Under this alternative, p,=[b/(1—-b)]d,; b=.9413 was again assumed.
Dividends were assumed to be generated by an ARIMA (2, 1, 0) process, with
the parameters given by line (2) of Table I-B. The following was done 1000 times.
A vector of 100 independent normal disturbances was generated, with the variance
of the disturbances equal to that reported in line (2), column (6) of Table II,
and with a different random number seed than those used in the other experiments.
One hundred Ad,’s, and then one hundred d,’s and p,’s, were computed, with
initial conditions matching the initial values of the S and P (4d_, = .16, Ad,= .11,
dy=1.61). b was then estimated by two-step, 2SLS, with a constant, Ad,, and
Ad,_, as instruments. Finally, the equation (19) statistic was calculated.

The distribution of this statistic, which is a x*(2) random variable under the
null, is reported in Table III-C. In over three fourths of the samples, the statistic
was above 5.99, the ninety-five per cent level for a x*(2) random variable. In
over nine tenths of the samples, the statistic was over 2.87, the value reported in
line (2), column (5), in Table I-A.

Against this alternative, then, the test of instrument residual orthogonality
appears to have reasonable power. Whether this applies to other alternatives or
to the other diagnostic tests performed is uncertain. But the limited amount of
evidence presented here at any rate does not suggest that the favorable results
of the diagnostic tests result solely from low power of the tests.

B. Variation in Discount Rates

One possible explanation for the excess variability found in Section 4 is that
discount rates are time varying, so that the error in equation (14) reflects not
only news about dividends but also about discount rates (or, equivalently, ex-
pected returns). Special consideration of the plausibility of this variation as an
explanation seems warranted, given theoretical work such as Lucas (1978) and

TABLE I11-C
MONTE CARLO DISTRIBUTION OF EQUATION (19)

Percentile 5 10 50 77 95

Equation (19) 006.57 14.83 8.86 5.99 2.89
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empirical evidence such as in Shiller (1984) and Flood, Hodrick, and Kaplan
(1986).

This will be done in two separate exercises. The first (part (a) below) assumes
as in, e.g., Hansen and Singleton (1982) that a consumption based asset pricing
model determines expected returns, with the representative consumer’s utility
function displaying constant relative risk aversion. For small values of the
coefficient of relative risk aversion, this permits exact calculation of formula (17),
the percentage excess variability. The second (part (b) below) does not model
expected returns parametrically but instead uses Shiller’s (1981a) linearized
version of a completely general model. This permits calculation of a lower bound
to how large a standard deviation in expected returns is required to explain the
excess variability reported in Table II.

a. Consumption Based Asset Pricing Model

Consider the class of models (e.g., Hansen and Singleton (1982)) in which the
first order condition for the return on a stock is E{{BC,.,/C,) “[(p+:1t
d..1)/ p} I} =1, where B, 0< B <1, is the representative consumer’s subjective
discount rate, C, is his real consumption, « his coefficient of relative risk aversion,
with E, d,, p,, and I, defined as above. This may be rearranged as

(20) ﬁI=BE[(ﬁI+]+JI+])|II]’
pi=pCi", d=dC".

Equation (20) is of the same form as equation (9). R. Flood has pointed out
to me that if d, is stationary, perhaps after one or more differences are taken,
the statistics computed in the constant discount rate case can be computed in
this model as well. Repetition of the entire procedure is beyond the scope of this
paper (and, in light of the results about to be presented, seems pointless). Instead,
I will focus on obtaining a point estimate of formula (17), the percentage excess
variability, for various imposed values of 8 and a.

The C, variable used in these calculations was the Grossman and Shiller (1981)
annual figure on real, per Capita consumption of nondurables and services,
1889-1978. d, and p, were calculated using the S and P data for various values
of a. A simple plot of d, suggested that d, in neither levels nor first nor higher
differences is stationary for « much bigger than one. The problem is that for big
a, d, displays a marked secular decline, because annual C, growth was slightly
higher than annual d, growth.

I nonetheless calculated (17), the percentage excess variability, for a wide
range of «, just in case d, really is stationary for large «. This was done for
B =.95 and B =.98, with very similar results. In all cases the lag length of the d,
autoregression was set to four. Table IV-A contains the figures that resulted for
some of the a, with B =.98. Since (17) was not only positive but large, the price
and dividend data are as inconsistent with the model implied by (20) as they are
with the constant expected return model assumed in Sections 3 and 4. There is
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TABLE 1V-A
PERCENTAGE EXCESS PRICE VARIABILITY

a 5 1 2 3 10 25 50

Formula (17) 96.5 97.5 80.9 88.4 99.6 100.0 100.0

therefore no evidence supporting the hypothesis that the excess variability dis-
played in Table II is explained solely by the sort of variation in expected returns
predicted by this asset pricing model."

Since d, does not appear stationary for @ much bigger than unity, it is equally
true that Table IV-A contains no evidence against the hypothesis that the Table
II excess variability is explained by variation in expected returns associated with
a coefficient of risk aversion greater than, say, one. Table IV-A does, however,
suggest if the model of expected returns assumed here is correct, that the Table
IT excess variability is unlikely to be due to variation in expected returns associated
with a coefficient of relative risk aversion of less than, say, one.

b. Linearized Model

Let us now consider a general model that does not parameterize expected
returns, linearized as in Shiller (1981a) to make the analysis tractable. Let r,,;
be the one period return expected by the market at period ¢ + j, assumed covariance
stationary. Suppose p,=E{{¥ ", [ I, (1+ rivic1) ' 1dij}| 1} Let us linearize
the quantity in braces around 7 and d. 7 is the mean of r,; selection of d is
discussed below. Define b=(1+7)"', a=—d/7 Then (Shiller (1981a)) p,=
E{{Zjil bj[a(’rﬂ'—l -P+ dt+j]}|11}- Let u,.;=p,—b(p,+1+d,+1). Proposition 1
may be used to show that in this linearized model

(21) 8ioi—b o= —[a’+(1-b)"a’lol-[2(1-b7)""?ad,0,]0,,

where o, is the standard deviation of r,, and 8, and o, are as defined in formula
(16). The algebra to derive (21) is in the Appendix.

The left-hand side of (21) is precisely the quantity studied in Sections 3 and
4. If this is positive, as it will be in the model (12), o, =0 would of course satisfy
the inequality. The empirical estimates of (16), in Table II, column (7), however,
were negative; the minimum return variability needed to explain the Table II
results is given by the positive o, that makes (21) hold with equality.

This lower bound o, was calculated for all seven of the specifications. o2, o
8,, and b were set equal to the estimated values reported in Table II. When
dividends were assumed stationary, d was set equal to mean dividends, d =
T7'Y d,. When dividends were assumed nonstationary, d was set equal to average

2

v

13 Note that the entries in the table are not a monotonic function of . To make sure that the
entries were representative, I calculated the percentage excess variability for a in steps of 0.1 from
0 to 3.0, in steps of 1.0 from 3.0 to 10.0, and in steps of 5.0 from 10.0 to 50.0. The results were quite
similar to those reported in the table. The lowest percentage happened to occur at a =2.0.
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TABLE IV-B
MINIMUM o, NEEDED TO EXPLAIN EXCESS VARIABILITY

Data Set S&P S&P S&P S&P DJ DJ DJ
Differenced no yes no yes no yes no
Lags 2 2 4 4 3 4 4
o, .146 222 .146 .201 127 176 .169

expected discounted dividends, d=(1-b)Y,., b' 'Ecd,, where: E.d, =
Eydy+ tEAd,, Eydy= d,, d, the level of dividends at the beginning of the sample,
and EAd, calculated as T™'Y Ad,. The parameter a was in all cases set to —d/F
with 7 defined implicitly by (1+7)~' =b.

The resulting lower bound values may be found in Table IV-B. They are rather
large. None of the estimates are less than .12. With o, =.12 and 7=.07, a two
standard deviation confidence interval for the (real) expected return is about —17
per cent to +31 per cent. This would seem to be an implausibly large range.

In the linearized model considered here, then, Table IV-B suggests that vari-
ations in ex ante discount rates do not plausibly explain the excess variability of
stock prices. How well this conclusion applied to any given nonlinear model of
course depends on how well the linear model approximates the nonlinear one.
An example in Shiller (1981a) suggests that if dividends are stationary the
approximation can be quite good, even when changes in expected returns are
larger than are typically considered reasonable. It is of course debatable that the
approximation makes any sense, let alone is very accurate, if dividends are
nonstationary. But the results here can in any case be said not to lend support
to the hypothesis that the excess price variability reported in Table II is solely
due to variation in expected returns.

6. CONCLUSIONS

This paper has derived and applied a stock price volatility test. The test required
neither of two strong assumptions required by the Shiller (1981a) volatility test:
that prices and dividends have finite variance, and that a satisfactory approxima-
tion to a perfect foresight price can be calculated from a finite data series.

The test indicated that stock prices are too volatile to be the expected present
discounted value of dividends, with a constant discount rate. Among the explana-
tions for the test results are that discount rates vary and that there are rational
or nearly rational bubbles or fads. The possibility that the excess volatility is
caused by discount rate fluctuations has been considered in detail, with largely
negative results. The possibility that the excess volatility is due to bubbles has
received little direct attention. But since this alternative is consistent with the
econometric diagnostics, it seems worthy of further investigation.

A detailed case for bubbles, or, for that matter, any other factor as the
explanation of the excess volatility is, however, beyond the scope of this paper.
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A challenging task for future research is to make such a case, explaining the
apparently excessive price volatility.

Woodrow Wilson School, Princeton University, Princeton, NJ 08544, U.S.A.
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APPENDIX
A. CALCULATION OF THE VARIANCE-COVARIANCE MATRIX

This describes the calculation of the variance-covariance matrix of the parameter vector 6 =
(b, ¢,0%,00)=(b, u, b1, - .., bpy 05, 0.

Let Z,=(1,4°%,,...,4%d,_,,,) be the (g+1)x1 vector of instruments, s=0 or s=1, n,, =
(d,+1+p.+1) be the right-hand side variable in (14). One way of describing the estimation technique
is to note that 6 was chosen to satisfy the orthogonality condition

T T L nZ)S.)" L Z(p,— 1,4y b)
T7'Y Z(A%d,,,—- Z)$)
- T_l Z (pr _"1+lb)2
G -T'Y (A%, —Z,)

0=T"'Y h(b)=

(The degrees of freedom corrections in 62 and 2 are suppressed for notational simplicity.) The

summations in the orthogonality condition run over f, from 1 to T —s. S is an estimate of EZZ,u,H,
calculated as described below equation (19). Thus b is estimated by two-step, 2SLS, ¢ by OLS, 2
and 62 from moments of the residuals.

Since Eh,(6) =0, where 6 is the true but unknown parameter vector, it may be shown that under
fairly general conditions, C;(6—60) is asymptotically normal with a covariance matrix V=
(plim F7' ¥ hoF7)7'S(plim F7' Y h'gF7')~! (Hansen (1982), West (1986¢)). Cr and F; are (g +4) X
(g+4) diagonal normalizing matrices, C;=Fr=diag(T"? ..., T"?) for undifferenced
specifications, Cr=diag (T*2, TV2,..., T"?) and Fr=diag(T, T"? ..., T"?) for differenced
spemﬁcatlons. h, is the (g+4)x(g+4) matrix of derivatives of h, with respect to 6 and S=
Eh h’+Z L[Ehhi_;+(Ehh;_;)]. hg is straightforward to calculate. Calculation of S is slightly
more mvolved Newey and West (1986) and West (1986¢) show that in general S and thus V are
consistently estimated if $= ﬂ +Z, w(i, m)(.() +D 1), where m->c0 as T>c0 and m is o(T"/?);
w(i,m)=i/(m+1); ;=T 'Y th’ . b, =h,(6), 0 an initial consistent estimate (2SLS and
OLS). The weights W(l m) insure that S is positive semidefinite. In the absence of any theoretical
or Monte Carlo evidence on the small sample properties of various choices of m, I tried various
values: m=3, 7, or 11. The value of m that led to the largest standard error in column (7) of Table
I1 is what is reported in Table I1. For all specifications, this turned out to be m=11.

It is easy to show that the T*2 rate for b when s =1 implies that uncertainty about b can be
ignored when calculating the standard error for g in column (5) of Table I-A. I therefore did so,
and used the OLS standard error of the regression of the 2SLS residual on a lagged residual. The
standard errors for the undifferenced specifications in Table I-A were calculated according to equation
(50) in Pagan and Hall (1983). All standard errors in column (8) of Table I-B were calculated
according to Theorem 3 in Pagan and Hall (1983).

B. DERIVATION OF EQUATION (21)

In the linearized model the analogue to equation (9) is p,=bE[a(r,—7)+d,.,+p,4|1,]. Let
Viaj=al(r4j—F)+d,; and redefine x,, = E(Y bjy,+j|1,). (Of course, if expected returns are con-
stant, r, = F for all t, x,, as defined here reduces to its Proposition 1 counterparts.) To simplify the
argument, it will be assumed throughout this section that linear projections and mathematical
expectations are equivalent. The efficient markets model considered in Section 3 implies x,, =d,+p,;
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the one currently under consideration implies x,, =y, + p, = a(r,_, —7)+d, + p,. Sowith r,_, an element
Of Il—l! Xy — E(X,, |Ir—1) = dr +pl - E(dr +pr | Il-l)' NOW,

(A.1) U =p,—b(d s+ ps) =[ba(r, - F)+bE(pey+dy|1)=b(d sy +p,si)]
=b{a(r, = F)=[xp1,; = E(x1 [ 1)1}
:b_zai = 02‘73*‘ E[x1+1_l - E(XH»I,I | I')]Z

:E[xr+|,l - E(xH-l,l | II)]2 = b_zgi - azaf'

Now define J, as the information set determined by a constant and all current and lagged dividends
and expected returns, x,; = E( ¥ b'y,4;|J,). Let x,; — E(x,; |J,_,) = aw,, + w,,, where w,, and w,, are
the innovations in the expected present discounted values of r, and d,. Shiller (1981a) shows that
o2, <02/(1-b?). Assume that d, or Ad, follows the autoregression (15). Then since H, is a subset
of J,, Proposition 1 tells us that aﬁ.zs 820?% where, as previously, o2 is the variance of the univariate
dividend innovation and §, is defined above formula (16). So
(A2) Elx,; — E(x,,|J,_))* = a’d% +2ac0

wywy

+ol,

2

<(1-b»)"'a*0?+2a(1-b*)""28,0,0,+ 8202.

Since J, is a subset of I,, Proposition 1 tells us that E[x,, — E(x,, |I_)P<E[x,, - E(x,|J_)]
With a little rearrangement, (A.1) and (A.2) together imply equation (21) in the text.

= azo%,.| +2a0,0,,t0
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