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Bubbles, Fads and Stock Price Volatility Tests: A
Partial Evaluation

KENNETH D. WEST*

ABSTRACT

This is a summary and interpretation of some of the literature on stock price volatility
that was stimulated by Leroy and Porter [28] and Shiller [40]. It appears that neither
small-sample bias, rational bubbles nor some standard models for expected returns
adequately explain stock price volatility. This suggests a role for some nonstandard
models for expected returns. One possibility is a “fads” model in which noise trading
by naive investors is important. At present, however, there is little direct evidence that
such fads play a significant role in stock price determination.

NEARLY SEVEN YEARS HAVE passed since the publication of the original LeRoy
and Porter [28] and Shiller [40] volatility tests. The number of papers analyzing
or developing volatility tests on stock prices has now grown to the point that a
nonspecialist may have trouble getting even a general sense of the current state
of the volatility debate. This paper is intended to help such a nonspecialist, by
summarizing and interpreting the literature.

Section I summarizes the techniques and conclusions of some volatility tests
that assume constant expected returns. Section II considers whether small-
sample bias is likely to explain the excess price volatility found in most of the
studies summarized in Section I. The presence of near or actual unit-root
nonstationarity in stock prices certainly causes substantial small-sample bias in
the test in Shiller [40], and quite possibly in other studies that assume station-
arity. Subsequent studies that explicitly allow for unit roots find excess volatility
that is typically an order of magnitude smaller than for studies that assume
stationarity—but they do still tend to find substantial excess volatility. While
not much is known on small-sample bias in tests that allow for unit roots, it does
not seem that such bias explains the persistent finding of excess volatility.
Indeed, I present a little evidence that certain tests that do not find excess
volatility have poor small-sample power against interesting alternatives.

The rest of the paper proceeds under the tentative conclusion that stock prices
are more volatile than can be explained by a standard constant-expected-return
model. Section III considers explaining the excess volatility by adding to the
usual constant-expected-return stock price an explosive rational bubble (Blan-
chard and Watson [3], West [52]). For a variety of theoretical and empirical
reasons, this does not seem to produce a satisfactory explanation.

* Princeton University. This paper was prepared for an AEA/AFA meeting on “The Volatility
Debate,” December 28, 1987. I thank Ben Bernanke and John Campbell for helpful comments and
discussions and the National Science Foundation for financial support.
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If bubbles are ruled out, so that any deviations from the constant-expected-
return stock price are transitory, these deviations will give rise to predictable
variations in returns. Section IV considers whether stock price volatility is
adequately explained by some standard models for expected returns. The evidence
here is somewhat limited, but the answer appears to be no (Campbell and Shiller
[7], West [53]). This seems to be true at least in part because such models do
not generate sufficient variability in expected returns.

This suggests that it might be useful to consider some nonstandard models for
what determines expected returns. Section V interprets “fads” models as arguing
that trading by naive investors creates nondiversifiable risk that sophisticated
investors must take into account (Campbell and Kyle [5], DeLong et al. [11],
Shiller [43]). It follows that an appropriate model for expected returns will reflect
such trading. The fads literature is, however, rather new, and has yet to model
risk as precisely as have the traditional models discussed in Section IV. There is
little direct evidence that trading by naive investors plays a substantial role in
stock price determination. Such evidence as there is in favor of fads is largely
indirect, and consists of negative verdicts on traditional present-value models.
One would prefer a parametric model, so that the model potentially could be
rejected because of implausible parameter estimates or painfully large test statis-
tics.

I conclude that the most important direction for future research on stock price
volatility is therefore not still more volatility tests, but development of parametric
models to explain the excess volatility that some, including me, believe to be
reasonably well established. My own sense is that consideration of fads is likely
to be productive. But someone skeptical about fads models could reasonably
conjecture that any such models will be in as much conflict with the data as are
traditional present-value models, and that refinements of these latter models are
a more promising avenue for research.

Before turning to a detailed discussion, it is well to remind the reader that this
is a partial evaluation of volatility tests, in two senses. First, space constraints
preclude detailed discussion of many relevant issues. I give relatively short shrift
to some of the topics covered in detail in the survey paper of Gilles and LeRoy
[20], which focuses on potential problems with Shiller’s [40] test, and of Camerer
[4], which discusses in detail how imperfect aggregation of information can lead
to seeming excess volatility of stock prices. Second, as a participant in this
literature, I am hardly unbiased. While I have attempted to represent all points
of view, I have of course emphasized those that I find most compelling.

I. Overview of Empirical Results

Table I summarizes the results of some volatility tests that assume constant ex
ante returns. To make this task manageable, I have limited myself to empirical
results that in my somewhat arbitrary opinion could be cast in the form V/V*,
where V measures the volatility of the market’s forecast of fundamentals, V* the
volatility of the econometrician’s measure of fundamentals, and V/V* > 1
indicates excess volatility. This means that while most of the papers cited below
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Table I
Volatility Tests, Constant Expected Return
(1) (2) (3) 4) (5)

Author Sample V/Vv* p-value unit root?
A. Asymptotically valid under stationarity:
(1) Blanchard and Watson [3] annual, 1871-1979 72 .00 no
(2) Kleidon [25] T =100 25 .05-.50 logarithmic
(3) Leroy and Porter [28] quarterly, 1955-73 16-148 .01-.50 no
(4) Shiller [40] annual, 1871-1979, 31-176 n.a. no
1928-1979
(5) Shiller [45] T =100 25 .00-.01 logarithmic
B. Asymptotically valid with unit arithmetic roots:
(6) Campbell and Shiller [6] annual, 1871-1985 1-67 .00-.50 arithmetic
(7) Mankiw et al. [32] annual, 1871-1984 0-12 n.a. arithmetic
(8) West [53] annual, 1871-1980, 5-10 .00-.01 arithmetic
1929-1979
T =100 . 5 .05 arithmetic
T =100 5 .05 logarithmic
C. Asymptotically valid with unit logarithmic roots:
(9) Campbell and Shiller [7] annual, 1871-1986, 2-14 .00 logarithmic
1926-1986
(10) Kleidon [25] annual, 1926-1979 0-1 .50 logarithmic
(11) Leroy and Parke [27] annual, 1871-1983 0 n.a. logarithmic
(12) Shiller [42] annual, 1871-1979 2 .01 logarithmic

Notes: A column (2) entry of “T' = sample size” indicates a Monte Carlo study rather than an
empirical point estimate. In column (3), entries were rounded down to zero if V/V* < 1, but otherwise
were rounded to the nearest integer. See the text for how V/V* is calculated for a given entry. Entries
in column (4) were rounded as follows: .00 means that the reported p-value is less than .005; .01,
between .005 and .01; .05, between .01 and .05; .10, between .05 and .10; .50, greater than .10.

test a number of implications of the model being studied, I will consider only
those tests that seem to me to be similar in spirit to the original LeRoy and
Porter [28] and Shiller [40] comparison of the variance of a stock price (V) to
that of a certain function of dividends (V*). My sense is that my self-imposed
restriction probably selects from the studies cited below the less rather than the
more striking evidence; the equality tests in LeRoy and Porter [28] and Mankiw
et al. [32], for example, yield sharper results than do the inequality tests reported
below. Analyses that supply neither new empirical nor Monte Carlo estimates
(e.g., Marsh and Merton [33]) are ignored in this section but will be discussed
later.

To facilitate the discussion below of whether inappropriate accounting for
unit-root nonstationarity explains the results of the volatility tests, the papers
in Table I are grouped according to whether the test is asymptotically valid only
under stationarity, with a unit arithmetic root (AP, stationary), or with a unit
logarithmic root (A log(P,) stationary). Listings within each group are alphabet-
ical. In Table I, column (2) gives the sample period. Most of the studies use
Shiller’s [40] long-term annual data, which splices Cowles Commission data
beginning in 1871 to more recent data from the Standard and Poor’s Composite
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Stock Price Index. For convenience I will refer to this as simply the S&P data.
Shiller [40] and West [53] also use the Shiller’s modified Dow-Jones. Campbell
and Shiller [7] also use the New York Stock Exchange equal- and value-weighted
indices. With the exception of LeRoy and Porter, all the studies cited in the
Table use annual data, in part to avoid dealing with seasonality in dividends. See
the cited papers for additional detail on the data.

Column (3) reports the empirical value of V/V* calculated for a given paper
as described below. The p-value in column (4) gives the probability of seeing the
column (3) value for V/V*, under the null that the model is equation (4) below
and unit roots, if any, take the form indicated in column (5). For Monte Carlo
studies, indicated by “T' = sample size” in column (2), the V/V* value is not the
median but instead matches an estimated empirical value.

A brief discussion of the models and tests now follows. This may be skipped
by readers familiar with this literature. This is intended to suggest the basic ideas
involved, but not to spell out the precise details. I will slur over inconsequential
differences between the models and tests described-below and those in the papers
cited (e.g., whether current dividends are known when price is set). Some authors
have reported asymptotic p-values for test statistics other than V/V* (e.g., West
[53] reports the p-value for Hy: V* — V = 0, for V* and V defined below). In
such cases, I have felt free to associate those p-values with V/V*  even though
the statistic for V/V* would of course be numerically different. Detailed refer-
ences to the sources of the entries in Table I may be found in the Appendix.

The constant-expected-return model supposes

P, = bE(Pt+l + Dt | It), (1)

where P; is a real stock price, b a constant discount rate, b = 1/(1 + r), r is the
constant real expected return, E(- | I;) is mathematical expectation conditional
on the market’s period-t information set I, and D, is the real dividend on the
stock. I, is assumed to contain, at a minimum, current and past P, and D,.
Substituting recursively for P, P:+2, etc., and using the law of iterated expec-
tations, gives

P,=E(X§ ' 4" Dy + b"Piyn | 1) = E(PF. | I,). (2)
Suppose that the terminal condition
lim, .o E(b"Pyin|I;) = 0 3)
holds (this rules out rational bubbles, as explained below). Then (2) implies
P, = E(XF b""'Dw;| I,) = E(P¥| L), (4)
where P} is used rather than P¥. to match Shiller [40]. Since P, is the conditional

expectation of P},
var(P,)/var(P¥) < 1, (5)

if the unconditional variances exist. LeRoy and Porter [28] and Shiller [40]
estimate (5), using different techniques to calculate the ratio. Kleidon [25] and
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Shiller [45] use Monte Carlo methods to determine the finite-sample behavior of
(5) when log(D, ) follows a random walk and I, consists solely of lagged dividends.
These studies are summarized in lines (2) to (5) of Table I, with V/V* an estimate
of the left-hand side of (5).

The Blanchard and Watson [3] test, in line (1), compares variances of inno-
vations rather than levels. Let H, = {D,, D,—;, ---} be the information set
determined by current and lagged dividends; H; is a subset of I,. Let Py =
E(}Y, b'*'D.+;| H;) = E(P¥| H,). Then since more information tends to lead to
more precise forecasts (West [53]),

{E[P; — E(P;| -))"/E[Ps — E(Pw | H-1))*} < 1. (6

The left-hand side of (6), which Blanchard and Watson [3] calculate assuming
stationarity of dividends, is reported as V/V* in line 1.

One of the major problems of the initial volatility tests, emphasized in partic-
ular by Kleidon [25] and Marsh and Merton [33], was of course the assumption
that variables do not have unit roots. Lines (6) to (8) of Table I summarize some
tests that are appropriate if the nonstationarity results from a unit arithmetic
root. In such a case, the model (4) implies that P; and D, are cointegrated (Engle
and Granger [13]), and P, — b(1 — b)™'D; is stationary (Campbell and Shiller
[6]). Basically, a unit arithmetic root causes a linear (but not exponential)
stochastic trend in dividends and prices, so subtracting a suitable multiple of D,
from P, removes this linear trend in P, and leaves a stationary random variable.
Mankiw et al. [32] show that as a result

{E[P. — b(1 — b)"'D.F/E[P}, — b(1 — b)"'D,J’} = 1 (7)

for any finite n, with P¥, defined in (2). The V/V* reported in line (7) results
when n = T — ¢, T the last period in the sample.

Campbell and Shiller [6] (line (8)) calculate statistics similar to (6) and (7),
expanding H, to include lagged P, and D,. West [563] calculates (6), with H,
defined as in Blanchard and Watson [3] to consist of just lagged dividends, but
allows for unit arithmetic roots.

Lines (9) to (12) in Table I report studies that have accounted for nonstation-
arity by allowing for unit logarithmic roots. Kleidon [25] and Shiller [42] both
assume that log(D,) follows a random walk, with I, consisting of only lagged
dividends. The model implies that P, is proportional to D,, so that

var(P,/P;-,)/var(D,/D;-,) = 1. (8)
Kleidon notes that the model (4) also implies that for finite n
{var(Pt+,,/Pt)/var(P;ﬁ,n/Pt)} =L 9)

Estimates of the ratios in (8) and (9) are reported in lines (12) and (10).
LeRoy and Parke [27] also assume that log(D, ) follows a random walk. By the
logic used to develop (5) above, the model (4) implies

{var(P,/D,)/var(P}/D,)} < 1. (10)

Line (11) reports this ratio, calculated assuming that P,/D, follows an AR(1)
process.
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Campbell and Shiller [7] work with a linearized logarithmic version of (4),
assuming stationarity of the log dividend price ratio and log differences of
dividends and prices. Line (9) reports estimates of

var{log(D./P;)]/var{[log(D./P.)]u}, (11)

where log[(D,/P;)]x is the variance of the log dividend price ratio when the ratio
is calculated as a forecast from an information set H, consisting of lagged
log(D,/P,) and A log(D;).

II. Small-Sample Bias

The initial tests, in lines (1), (3) and (4) of Table I, found extreme excess
volatility, with the variance of stock prices or their innovations exceeding a
theoretical upper bound by orders of magnitude. The statistical significance of
the excess volatility was, however, unclear. For example, LeRoy and Porter [28],
using the asymptotic distribution, found a violation significant at the five percent
level in only one of their four data sets. As is evident from a glance at the
estimates of V/V* for lines (6) on, allowing for unit roots results in considerably
smaller estimates of excess volatility. It seems that these initial tests tend to find
spuriously large estimates, at least if unit roots are present.

For the Shiller [40] technique for calculating V/V* = var(P,)/var(P¥), reasons
for this are developed in Flavin [16], Kleidon [23, 25] and Mankiw et al. [32].
Assume first that P, and D, are stationary, so that the population variances of P,
and P} exist. Even though V/V* can be estimated consistently, Shiller’s [40]
procedure tends to produce finite-sample estimates that are spuriously high, with
the bias likely to be quite pronounced for the relevant sample sizes. Kleidon [23]
(pp. 20-21), for example, reports a simulation with a sample size of 100 in which
the population value of V/V* is .81 but the mean estimated value is 2.2. The
Marsh and Merton [33] nonstationary example in which the sample estimate
var(P;)/var(P¥) is greater than one with probability one, for any size sample,
might be interpreted as simply a nonstationary limiting case of the biases noted
by Flavin [16] and Kleidon [23] (Mankiw et al. [32]).!

While the logic of Flavin [16] and Kleidon [23] does not apply directly to the
Blanchard and Watson [3] or LeRoy and Porter [28] tests, the dramatic fall in
V/V* when unit roots are allowed suggests that similar arguments are likely to
be relevant for those tests. Indeed, the Monte Carlo simulations in Mattey and
Meese [35] indicate that the Blanchard and Watson [3] procedure will tend to
spuriously find V/V* > 1 if unit roots are present but, as in Blanchard and
Watson [3] (but not West [53]), are not imposed. Similarly, Gilles and LeRoy
[20] (p. 64), seem to concede that biases similar to those in Shiller [40] are
probably present in LeRoy and Porter [28].

This leaves open the question of whether these biases are so large as to explain
the entire excess of V over V* reported in the various tests in Table I. Whether
they even totally explain the Shiller [40] results is debatable. Shiller [45] argues
that Kleidon’s simulation results (line (2)) are very sensitive to the assumed

! See Gilles and LeRoy [20] for an excellent exposition.
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dividend/price ratio. Kleidon allows a range for this ratio of about 1.5 percent
(p-value of V/V* = .50) to about 4 percent ( p-value = .05). If the empirical mean
dividend/price ratio of about 5 percent is used, the p-value suggested by Kleidon’s
simulation falls to .01 (line (5)).

While another iteration of the Kleidon-Shiller debate may well suggest that
the p-value of .01 is too low, it seems to me unlikely that small-sample biases
will suffice to overturn the conclusion that stock prices move more relative to
dividends than is consistent with the model (4). I conclude this for two reasons.
First, while there is some conflict among the papers summarized in Table I, there
often are differences in assumptions and approach that suggest why some tests
find excess volatility while others do not. These differences usually seem to me
to argue for the plausibility of the tests that find excess volatility. Specifically,
the “1” and “0” entries in rows (6) and (7) tend to result when expected returns
of less than 4 percent are assumed. Expected returns closer to the actual sample
mean of about 8 percent result in the larger, and statistically more significant,
figures in these rows. More importantly, as documented below, the Kleidon (line
(10)) and LeRoy and Parke (line (11)) tests, which stand out from the other
entries in the Table for finding little or no excess volatility, appear to have poor
power against a Shiller [43] “fads” alternative (see Gilles and LeRoy [20] (p.
45)). Since it is just such an alternative that has been proposed as an explanation
of the results of other volatility tests (Shiller [43]), the Kleidon (line (10)) and
LeRoy and Parke (line (11)) results are not persuasive evidence that the results
of other tests are misleading.

The second reason I think it unlikely that small-sample biases will overturn
the finding of excess volatility is that the other tests in Table I that allow for
unit roots do tend to find violations of the relevant variance bounds. While these
violations typically are an order of magnitude smaller than those of the initial
tests, they still are numerically large. Since these tests directly allow the (near
or actual) nonstationarity that probably is central to the small-sample problems
with papers in panel A, there does not seem to me to be a reason to suppose any
particular bias. In fact, while there is of course some small-sample bias in these
tests (Mattey and Meese [35], West [51, 53]), the evidence on this does not
suggest that such bias explains the excess volatility that those tests tend to find.
See the entries for West [53] in Table I.

The rest of this section contains a small study of the power of the Kleidon
(line (10)) and LeRoy and Parke (line (11)) tests against a Shiller [43] “fads”
alternative, or, more generally, any alternative that generates slowly decaying
deviations of stock prices from the constant-expected-return price determined by
(4). Suppose that

log(D,) = p + log(D;—;) + &, (12a)
log(P;) = 7 + log(D,) + a;, (12b)
a; = ¢a,—; + Uy, (12¢)

where
lo| <1, e ~ N(0, ¢2), v, ~ N(0, 62), Eeuv,=0 forallt,s.
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Equation (12a) says that dividends follow a logarithmic random walk, as in
Kleidon [25] and LeRoy and Parke [27]. Equations (12b) and (12¢) say that the
mean log price/dividend ratio 7 is perturbed by the stationary AR(1) random
variable a,. The Kleidon [25] setup is a special case of (12) with a;, = 0. In the
spirit of O’Brien [37], Shiller [43] and Summers [48], one can interpret a; as a
“fad” that drives the stock price away from the value that would result if the
data were generated by a model consisting of (4) and (12a).2

The S&P data (1871-1985) were used to calculate point estimates of the
parameters in (12). The numbers at the foot of Table II result when u and o2
were set to the mean and sample variance of A log(D;), 7 to the sample mean of
log(P;) — log(D,), ¢2 = var(a;) to the sample variance of log(P;) — log(D,), ¢ to
the sample estimate of cov(a;, a;-1)/0% and o2 = (1 — ¢2)o2. There are several
ways to emphasize that with these parameter estimates, the data generated by
(12) are rather different from those generated by a model with constant expected
returns and a lognormal random-walk dividend process. First, a shock to a; that
pushes log(P,) — log(D,) from its mean has a half life of nearly four years (¢* =
.83* = .48). In the sense suggested by Summers [48], this can be argued to be a
significant deviation from the constant dividend/price ratio predicted by Klei-
don’s [25] model. Second, more than half (57 percent, to be exact) of the implied
variance of A log(P;) is due to shocks to a; rather than to log(D,). Third, the
implied standard deviation of the one-period expected return E[(P.., +
D,)/P,|I,] is quite substantial, about .05.> (The implied unconditional mean
return is about 1.08.) For any or all of these reasons, one would hope that a
volatility test would distinguish between data generated by (12) on the one hand
and (4) and (12a) on the other.

Consider first the LeRoy and Parke test. Computing var(P,/D,)/var(P#/D,)
requires estimates of just four moments: the mean ex post return, the variance
of P,/D, and the mean and variance of D,/D,_, (LeRoy and Parke [27]). But with
the parameters listed at the bottom of Table II, data generated by (12) will imply
essentially the V/V* computed by the LeRoy and Parke [27] test, since such
data imply essentially these four sample moments. See Table II, panel A. A
finding of V/V* < 1 using the LeRoy and Parke [27] test therefore does not in
general distinguish the model (4) from the alternative (12).*

2 As emphasized in Section V below, other interpretations are possible. To prevent misunderstand-
ing, I should note that I am not proposing to take (12) as a serious model of stock prices, or even as
an adequate characterization of the S&P data: Table 4a in Campbell and Shiller [7] indicates that
the assumption that A log(D,) and log(P,) — log(D,) are independent is false. I am merely using (12)
to get a quick idea of whether the LeRoy and Parke [27] and Kleidon [25] tests have power against
the alternative that there are slow-moving divergences of stock prices from a constant-expected-
return fundamental value.

3 Sketch of algebra: Let I, consist of past ¢ and v,. Since P,.,/P, and D,/P, are lognormal, and a,
and log(P;) — log(D,) are independent, it is straightforward to show that E[(P.+, + D.)/P.|I,] =
explp + (¢ — 1)a, + .5(¢? + o2)] + exp[—7 — a.]. The expected return is thus the sum of two lognormal
random variables, and one can grind through standard formulas to compute its variance.

* My estimate of V/V* is considerably higher than that of LeRoy and Parke [27], even though
data are quite similar. This is basically because the LeRoy and Parke method of calculating
var(Pf/D,) is very sensitive to the estimated value of the following: [mean expected return]™* X
[mean value of D..,/D,]. They compute this to be .9548, I get .9427. Were I to use the .9548 figure,
V/V* would fall from .63 to .38, much closer to LeRoy and Parke’s estimate of .29.
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Table I1
Power Against Mean-Reverting Fad
A. Leroy and Parke [27]

Estimate from S&P Estimate Implied by Alternative
V/V* .63 .63
B. Kleidon [25]
n Estimate of V/V* from S&P Monte Carlo Estimates
Median Prob V/V*>1

1 .34 40 .006

2 .69 7 .303

5 1.66 1.43 781
10 4.18 1.90 920

The alternative data-generating process is (12), with: p = .012, o, = .1244, 7 = 3.0,
¢ = .83, o, = .1347. One thousand samples were drawn to generate the Monte Carlo
estimates in panel B. Additional details are in the text.

Evaluation of the power of the Kleidon [25] test seems to require a Monte
Carlo experiment. The simulation generated 1000 samples of size 115, with the
presample values of log(P;) and log(D;) matched to those of the S&P data in
1871, and the presample value of a; drawn from its unconditional distribution
(with a different draw for each simulation). P} was generated recursively, as in
Kleidon [25]. The sample estimates of var(P..,/P:) and var(P#.,/P;) were
calculated in the usual way. As stated in Table I, panel B, the median estimates
of var(P,.,/P;)/var(P}../P,) = V/V* were less than 1 for n = 1, 2, more for n =
5, 10. The question is whether the small values for n = 1 and 2 are comforting
evidence concerning a model consisting of (4) and (12a). The answer appears to
be no. In the Monte Carlo simulations for n = 1, for example, only 6 of the 1000
samples produced a V/V* greater than 1. It appears, then, that Kleidon’s [25]
test, like LeRoy’s and Parke’s [27], has poor power against this alternative.’®

I certainly do not consider this a definitive statement on the power of the
various tests in Table I, and fully agree with LeRoy and Parke [27] that additional
study of the power of volatility tests is of great interest. Nor do I consider the
question of small-sample bias completely resolved. Nonetheless, for the reasons
summarized above, it seems unlikely to me that small-sample bias provides the
bulk of the explanation for the excess volatility reported in Table I1.®

5 My estimates of V/V* are notably bigger then Kleidon’s [25] for n = 5, 10. Two minor reasons
are choice of discount rate (I use the inverse of the mean ex post return, Kleidon tries various imposed
values) and sample period. The major reason is that Kleidon calculates var(P.../P.) and
var(P¥./P.) by taking the sum of squared deviations not around the respective sample means but,
for both, around an estimate of E(P,.,/P;). If I had mimicked his procedure, the Table II value of
V/V* for n = 10, for example, would be 1.80 rather than 4.18. Because the sample means of P,..o/P;
and P#,o/P, are rather different, Kleidon’s technique sharply raises the estimate of var(P#.,o/P.) and
thus sharply lowers the estimate of V/V*. Although Kleidon’s technique is appropriate under his
null, it clearly results in substantial bias under the present alternative.

1 should note that the Marsh and Merton [33] dividend-smoothing argument seems to me to be
one of small-sample bias induced by inappropriate treatment of unit roots, as suggested above. Marsh
and Merton [33] (p. 485), however, seem to suggest that a desire of managers to smooth dividends by
itself invalidates volatility comparisons. This is not correct. A key to the validity of the variance-
bounds methodology is a stable set of decision rules by market participants, and a sample large
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III. Rational Bubbles

Stochastic difference equations such as (1) have a multiplicity of solutions. The
solution (4) is unique provided that the terminal condition (3) holds. But if not,
there are an infinity of solutions

P, = E(E bj+1Dt+j|Ir) + G
= P{ + C,. (13)

C, is any variable that satisfies E(C,|I,-;) = b7'C,-; = (1 + r)C,—4, ie., C, =
(1+r)Ci—y+ V,,E(V,| I;-1) = 0. C,is by definition a rational bubble, an otherwise
extraneous event that affects stock prices because everyone expects it to do so.”
Since the solution (13) satisfies the first-order condition (1), expected returns
are constant and there are no arbitrage possibilities. (Rational bubbles are
possible with time-varying expected returns. See Flood and Hodrick [17]. I use
a constant-expected-return model for simplicity.) The “f” superscript on P/ is
present because P/ depends only on fundamentals.

Blanchard and Watson [3] note that it is possible to have bubbles that grow
and pop. The following example of a strictly positive bubble is from West [52]:

_ (Ci—y — C*)/xb with probability =
C*/[(1 — m)b] with probability 1 — =

where 0 <7 <1,C*>0.

C: (14)

The bubble bursts with probability 1 — w, and has an expected duration of
(1 — 7)~%. While the bubble floats it grows at rate (bx) ™' =1 + r)/r > 1+ r:
investors receive an extraordinary return to compensate them for the capital loss
that would have occurred had the bubble burst. Whether or not the bubble bursts
can depend on fundamentals (e.g., # = Y2, with the bubble bursting if there is
bad news about budget deficits). Alternatively, whether the bubble bursts or not
can depend on extraneous “sunspots.” It is possible to have a composite bubble,
consisting of a linear combination of bubbles like (14), with each (14) bubble
having its own = and C*. Also, w can vary over time (West [52]).

Rational bubbles therefore seem consistent with the recent (1987) pattern of
extraordinary stock price increases followed by a dramatic collapse. Rational
bubbles also seem a potential rationalization of excess-volatility tests. Even if
the bubble is uncorrelated with fundamentals, stock prices move more than the
model (4) predicts; if this correlation is positive, so that the market overreacts
to news about fundamentals (Shiller [43], DeBondt and Thaler [9]), excessive
stock price movements are even easier to rationalize. Moreover, this can be done

enough for the data to accurately reflect the functioning of those rules. See Kleidon [23, 25]. Note
that if this key condition is not met, any statistical inference on the joint dynamics of the dividend
process, including that in Marsh and Merton [34], is not valid. See Shiller [41] on the related issue
of biases that might result when market participants anticipate events that never occurred.

"It should be emphasized that, throughout this paper, the term “bubble” refers to the explosive
process C,. By contrast, many authors (e.g., Ackley [2]) use bubbles to refer to any deviation from
fundamentals induced by speculation.
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with small or even no variations in ex ante returns. The rational-bubble expla-
nation was one that I favored in West [52] and in the initial version of West [53]
(which, in fact, was initially titled “Speculative Bubbles and Stock Price Volatil-
ity”). I no longer find this interpretation particularly appealing. I will explain
this by first reviewing the theoretical literature on bubbles, and then discussing
some empirical results.

One immediate theoretical restriction on rational bubbles is that they cannot
be negative. If C; < 0 and the stock price is lower than its fundamental, the
possibility of an extraordinary capital gain when the bubble bursts must be
compensated for by a potential capital loss if the bubble continues to float
downward. Since stock prices must be nonnegative, there will be, for any bubble
process, a low enough stock price that precludes any further capital loss. Since
such a stock price is inconsistent with a bubble, so, too, is any higher stock price
that can lead to such a low stock price. By a backwards recursion, there cannot
be a negative bubble on a stock, because any such bubble leads to an infeasible
price with nonzero probability.

Are positive bubbles similarly inconsistent w1th rationality? In models where
agents have infinite horizons, the answer appears to be yes (Tirole [49]).% Any
agent who sells a stock at a price higher than its fundamental can exit the
market, leaving negative present value for whomever buys it. Bubbles are ruled
out when agents have infinite horizons even if traders have differential infor-
mation and if short sales are prohibited (Tirole [49]).

Positive bubbles are not, however, ruled out in models with finite-horizon
agents. Tirole [50] studies this in a nonstochastic, perfect foresight, overlapping-
generations model. Each generation will be willing to pay more than fundamental
value for an asset, provided the succeeding generation is similarly willing. It is
necessary that the bubble not inflate the stock price so fast that stock market
wealth ends up exceeding GNP (to take an extreme example). Otherwise, a
backwards recursion will rule out bubbles. In Tirole’s [50] model, this means that
the rate of growth of the economy must be greater than the return on the stock.
In such a case,.the steady-state per capita bubble may be positive.

While I am not aware of a stochastic version of Tirole’s model, intuition
suggests (to me, at least) that such a generalization can be accomplished. Some
unpleasant issues would, however, have to be handled. Diba and Grossman [12]
note that if there ever is a bubble, it would have to be present from the first day
of trading: E(C;|I,-;) = (1 + r)C,-, and C, nonnegative means that if C,_; = 0,
then C; = 0 with probability one. Merton [36] notes that there must be some
mechanism to limit managerial issues of new stock.

More fundamentally, one must ask how reasonable is Tirole’s necessary con-
dition that the mean growth rate of the economy be greater than the mean return
on the stock price (assuming, again, that this is a necessary condition in a
stochastic version of Tirole’s model).” The mean annual real ex post return on
S&P data 1871-1986 is about 8 percent; the mean growth rate of real GNP is

8 But see Gilles and LeRoy [19], which apparently concludes that bubbles can in principle exist in
such models.
? See Abel et al. [1] for a discussion of conditions that rule out bubbles in a stochastic environment.
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about 3 percent.'® In the case of a bursting bubble such as in (14), moreover, the
relevant comparison is probably between one plus the growth rate and (1 + r)/=
> 1 + r rather than 1 + r: one presumably must insure zero probability that the
stock price exceeds the value of national output. While taxes and so forth muddy
the issue, the excess of the mean ex post return on aggregate stock price indices
over the mean growth rate of the U.S. economy does not suggest that Tirole’s
necessary condition will apply. See Abel et al. [1].

Is the seeming excess volatility of stock prices nonetheless strongly suggestive
of rational bubbles? There are several reasons why the answer seems to me to be
no. First, Flood and Hodrick [18] argue that at least certain stock market tests,
including Mankiw et al. [32], implicitly allow bubbles under the null.!'! Some
tests for finite-maturity bonds also find some evidence of excess volatility (e.g.,
Singleton [46]), which, if true, cannot be due to bubbles; there cannot be a bubble
on the final date when the bond matures, and therefore by a backwards recursion
there cannot be a bubble at any earlier date. One would like to have a common
explanation for the excess volatility that seems to-be found in these various tests
applied to various assets. Second, as discussed in West [52], while my tests are
perfectly capable of finding something that looks roughly like a bubble, they are
probably not able to discriminate between a bubble and “noise” that is almost
but not quite a bubble: E(C; | I,-;) = ¢C;—1, ¢ = (say) .99 instead of ¢ = (1 + r)
=~ 1.08. Third, bubbles suggest that stock prices should grow at a rapid rate. If
dividends grow more slowly than the rate of return (an assumption implicitly
made when E(}, b/ D,.; | I,) was assumed to be well defined in (13)), the dividend/
price ratio should fall and capital gains should take an increasingly large share
of ex post returns. But for the S&P data, 1871-1986, this does not seem to be
the case. The mean ex post return in the first half of the sample, 1872-1928, is
8.6 percent, with a mean dividend/price ratio of .053; in the second half of the
sample the figures are 8.3 percent and .051.'2

In sum, theory for rational bubbles is still at a preliminary stage. But the
theory so far developed suggests conditions for bubbles that are too stringent to
make bubbles particularly attractive: the growth rate of the economy must be
greater than the return on the stock; any asset with a bubble must have always
had a positive bubble; factors other than bubbles must explain any excess
volatility on finitely lived assets and perhaps some of the excess volatility on
stock prices as well. In addition, the evidence for explosive bubbles in West [52]
is at best suggestive and consistent as well with deviations from fundamentals
being borderline stationary.

19T computed this using the figures for GNP in 1875-1985 in Gordon [21] and for GNP in 1986 in
the October 1987 issue of the Federal Reserve Bank of St. Louis’s National Economic Trends.

! The Mankiw et al. [32] test is, however, likely to be unreliable in the presence of bubbles, even
though these are allowed under the null. Confidence intervals will be large: in the presence of bubbles,
the variance of the Mankiw et al. [32] estimates is blowing up, for exactly the reasons the variance
blows up in the presence of a logarithmic random walk (Merton [36]).

12 As usual, there is also potentially a peso problem, where anticipations of a never-realized shift
in the dividend process can look like a bubble that grows and pops. See Flood and Hodrick [17],
Obstfeld and Rogoff [38], and Smith [47].
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IV. Variations in Expected Returns

A natural candidate to explain any excess price volatility is movements in
expected returns. This was of course among the explanations proposed in some
of the first published comments on volatility tests (Long [30]), and has been
argued more recently by Flood et al. [18]. Indeed, the model (4), and therefore
the variance bounds that follow from it, requires only the terminal condition (3)
and a constant expected return. So if, in population, there is excess volatility,
and bubbles are ruled out, with deviations from the constant-expected-return
stock price fundamental being transitory it follows that mathematically expected
returns are varying. See Campbell and Shiller [8] and Flood et al. [18] for
interpretations of volatility tests as especially powerful tests of the null of
constant expected returns.
A general form for a model with time-varying expected returns is

P, = E[E;‘;O (H{=0 t+irt+i-t-1)Dt+j | It], (15)

where ,.;r.i+1 is the one-period return expected by the market in period ¢ + ¢
(e.g., :7e41 = E[(Pir1 + D,)/P;| I.]). What sorts of movements in expected returns
must be occurring to explain the results in Table I?

First of all, these movements apparently must be large. Using a linearized
version of (15), but modeling expected returns nonparametrically, Shiller [40]
finds that annual real expected returns would have to have a standard deviation
of more than 4 percent. West [53] and Poterba and Summers [39], also using
linearized models but allowing for unit roots, conclude that even larger move-
ments in expected returns are necessary to rationalize stock price movements."
These authors seem to consider this a wider range than is typically considered
reasonable.

Second, two volatility tests that allow for time-varying expected returns do not
suggest that the excess volatility in Table I is adequately explained by some
standard intertemporal models. One study, Campbell and Shiller [7], uses a
linearized version of (15) to compute (11), allowing for three different models for
expected returns: the return on short debt plus a constant; the consumption-
based asset-pricing model (Lucas [31]) with constant relative risk aversion, U(C,)
= C;*; and the return on short debt plus a term that depends on the conditional
variances of stock returns. The information set used to calculate equation (11)’s
var{[log(D./P;)]u} consists of lagged log(D,/P;), A log(D,) and lagged ex post
returns.

A second study, West [53], uses (15) with expected returns determined by the
consumption-based asset-pricing model, with constant relative risk aversion and
a coefficient of relative risk aversion less than two. This model implies a condition
li~ke (6), with P, and D, replaced by B, = P,C;* and D, = D.C;%, and H, = {D,,
Doy, -}

The results of the two studies are reported in Table III. Neither finds that the
assumed model of expected returns adequately rationalizes stock price move-

13 Unlike Shiller [40], however, neither West [53] nor Poterba and Summers [39] give any evidence
on the accuracy of their linearizations. West’s [53] in particular is unlikely to be very reasonable in
the presence of unit roots.
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Table II1
Volatility Tests, Varying Expected Return
1) (2) (3) 4) (5)

Author Sample V/V*  p-value return model
(1) Campbell and Shiller [7] annual, 1889-1986, 2-8 .00 constant premium
1926-1986 1-8 .00-.50  consumption
: 2-12 .00-.50  return volatility
(2) West [52] annual, 1889-1978 5-30 n.a. consumption

Notes: See notes to Table I. As explained in the text, in column (5), “constant premium” means
expected stock returns have a constant premium over that on short debt; “consumption” means
expected stock returns are determined by the consumption-based asset-pricing model; “return
volatility” means expected stock returns have a premium over that on short debt, with the premium
dependent on the volatility of stock returns.

ments. Campbell and Shiller [8] further find little theoretically plausible connec-
tion between stock prices and their measures of expected returns and suggest (p.
35) that the smaller and less significant estimates of V/V* are found in specifi-
cations that seem to pick up certain spurious correlations. It should be noted
that both papers allow for unit roots, so that there is no obvious reason to believe
that small-sample bias explains the excess volatility.

Now, one could argue about the accuracy of the linearizations used, or about
the validity of the models of expected returns assumed in the parametric tests in
Table III, or about how well official consumption data capture the utility flows
really necessary to test the consumption-based asset-pricing model. There are
many nontrivial problems associated with the test just described. But the evidence
to date does not suggest that traditional models of return determination success-
fully explain the seeming excess volatility of stock prices, even in conjunction
with small-sample bias.

V. Fads

The tentative conclusion that neither rational bubbles nor traditional models of
return determination can explain stock price volatility suggests that a nontradi-
tional model for return determination might be required. In “fads” interpretations
of the volatility tests, noise trading by naive investors plays a significant role in
stock price determination. Shiller [43] and DeBondt and Thaler [9] argue that
psychological and sociological evidence is consistent with individuals following
“irrational” trading rules, overreacting to news. Potentially, this both generates
wide variations in expected returns and renders inadequate traditional models
for return determination.

One simple way to think through the possible effects of fads is to add a factor
due to noise trading to the level or log of what would be the fundamental price if
expected returns were constant (Campbell and Kyle [5], Poterba and Summers
[39], O’Brien [37], Shiller [43]). Equation (12) is a simple example of this (though
to capture investor overreaction one might want the innovation in a; to be
positively correlated with the innovation in log(D;)). Recall that the equation
(12) example, with parameters matched to the S&P estimates, does indeed
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generate wide swings in expected returns, with a standard deviation of about .05.
Also, one could of course capture the 1987 runup and then collapse of stock
prices by allowing a stationary version of the explosive bubble (14). For example,
if @, = (¢/7)a;—1 + v, with probability =, a; = v, with probability (1 — =), 0 < ¢,
7w <1, and E(v,| I;-;) = 0, then E(a; | I,-1) = ¢a;—, and a, is stationary. As in the
Blanchard and Watson [3] explosive bubble, investor overreaction is reflected if,
say, # = % and the fad “bursts” if there is bad news about fundamentals.

In one interpretation, fads mean that even after risk adjustments there are
profitable opportunities, at least for smart investors with long enough horizons.
This apparently is the conclusion of some readers of Shiller [40] (e.g., Ackley
[2]).

Another interpretation is that while some fraction of trading is done by naive
traders, another fraction of trading is done by sophisticated investors who ensure
that there are no extraordinary expected returns once risk is properly accounted
for (Campbell and Kyle [5], DeLong et al. [11]). This does not mean that stock
prices are driven to whatever level they would be in the absence of fads. Risk is
created by naive investors, which sophisticated investors must take into account.
Such risk might not, however, be captured by traditional models. See especially
DeLong et al. [11], which contains a highly stylized model in which nondiversi-
fiable risk created by noise trading causes the prices of two seemingly identical
assets to diverge.'*

There is of course much anecdotal evidence of fads, including the famous
beauty-contest passage in Keynes [22]. More formal evidence consistent with
stories of investor overreaction may be found in DeBondt and Thaler [9, 10] and
Lehmann [26]. These papers find that abnormally high returns can be earned by
following a contrarian strategy of buying stocks that recently have had relatively
poor returns and shorting stocks that recently have performed well.”” See DeLong
et al. [11] and Camerer [4] for additional examples.

At a more aggregative level, a growing number of studies suggest that there is
a significant stationary component to stock prices (Lo and McKinley [29], Fama
and French [15], Poterba and Summers [39]). This component (a; in equation
(12)) is associated with econometric predictability of stock returns, using vari-
ables such as lagged dividend/price ratios or earnings. The predictability is
particularly marked at long horizons, say, over two years (Campbell and Shiller
[8], Fama and French [14, 15], Flood et al. [18]).

Poterba and Summers [39] and Shiller [43] interpret this as evidence of slowly
mean-reverting fads. But the only unambiguous interpretation of evidence that
stock prices do not follow a random walk is that expected returns are time
varying. Whether or not the studies just cited imply movements in expected
returns that can best be explained by fads is debatable (Fama and French [14]);
one can trivially define a, in equation (12) as simply the log of the ratio of the

14 Tt should be noted that in this interpretation of fads, many of the traditional tools of financial
analysis are still applicable, with the presence of noise trading an additional constraint facing rational
investors. It therefore seems extreme to conclude (Kleidon [24], Merton [36]) that we can allow for
fads only by ignoring much of our accumulated knowledge about financial markets. See Shiller [44].

15 Whether these seeming pricing anomalies reflect not idiosyncratic risk but mismeasured nondiv-
ersifiable risk is, however, unclear.
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stock price (15), with returns determined by some standard model, to a constant-
expected-return price. So evidence of a stationary component is at best suggestive
of fads. This applies as well to Campbell and Kyle [5], a fully articulated empirical
study that allows for fads. It estimates an explicit model of trading by sophisti-
cated investors, when a residual noise process affects stock prices. It finds that
the noise process accounts for over one fourth of stock price movements in the
S&P data, 1871-1984, but does not present any evidence that this process results
mainly from trading by naive investors.

Traditional present-value models (e.g., those discussed in Section IV) are well
enough specified that one can potentially argue that these models cannot ade-
quately explain stock price volatility. I do not believe that the same can be said
for fads models that have been developed so far. The quantitative evidence in
favor of fads as an explanation of stock price volatility is largely indirect, in the
form of negative verdicts on bubbles and on traditional models for returns.

More direct evidence on fads, and tests of restrictions implied by fads, may
well be forthcoming shortly. But at present there is little formal positive evidence
to sway someone unsympathetic to fads models.

Appendix

This gives detailed sources for Tables I and III. Notation matches that in the
cited paper. )

Table I: Line (1): Blanchard and Watson [3] (p. 18), V/V* = ratio of V, to
Vrax | Line (2): Kleidon [25] (p. 983), Table 2, case (ii); p-value computed from
“No. of Gross Violations” column. Line (3): Leroy and Porter [28] (p. 572), Table
III, V/V* = ~,(0)/v3(0); p-value is that associated with f3. Line (4): Shiller [40]
(p. 431), Table 2, V/V* = square of ratio of line (5) to line (6). Line (5): Shiller
[45] (p. 7), Table 1, Case C; p-value computed from column (2). Line (6): Campbell
and Shiller [6] (p. 1078), Table 3, panel B, V/V* = var(SL)/var(SL’) and var(§)/
var(¢’). Line (7): Mankiw et al. [32] (pp. 685, 688), Tables I and II, V/V* = ratio
of E(P — P°)? to E(P* — P°)2 Line (8): West [53], Table II, V/V* = [1 — (.01 X
col(8))]7%, for differenced specifications, with p-value in col. (7); Monte Carlo
results are from Tables IIIA and IIIB. Line (9): Campbell and Shiller [7] (p. 40),
Table 4b, V/V* = [¢(8/)/o(5;)] 2, with p-value for Ho: 0(8/)/0(6.) = 1. Line
(10): Kleidon [25] (p. 986), Table 3, V/V* = square of “Standard and Poor’s
Ratio” column; p-value computed from “Number of Simulation Violations > 1”
column. Line (11): Leroy and Parke [27] (p. 22), V/V* = square of reported ratio
of standard deviations. Line (12): Shiller [42] (p. 237).

Table III: Line (1): Constant premium: Campbell and Shiller [7] (p. 41), Table
5, V/V* = [a(6!)/0(5.)]7% with p-value for Hy: (6{)/a(6,) = 1. Consumption
and return volatility: V/V* = [¢(8/)/c(5,)] 2, with p-value for Hy: ¢(8/)/c(5;) =
1; these figures are not reported in the paper but were given to me by John
Campbell. Line (2): West [53], Table IVA, V/V* = [1 — (.01 X percentage excess
variability)] ™ for a < 2.
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DISCUSSION

ALLAN W. KLEIDON*: Suppose that, seven years ago, research was reported
showing that expected returns on stocks were not constant, and that consequently
the results of tests that assumed constant expected returns showed apparent
violation of (otherwise) rational valuation models. What would have been the

* Stanford University.





