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ASYMPTOTIC NORMALITY, WHEN REGRESSORS HAVE A
UNIT ROOT

By KENNETH D. WEsT!

Under fairly general conditions, ordinary least squares and linear instrumental variables
estimators are asymptotically normal when a regression equation has nonstationary right-
hand side variables. Standard formulas may be used to calculate a consistent estimate of
the asymptotic variance covariance matrix of the estimated parameter vector, even if the
disturbances are conditionally heteroskedastic and autocorrelated. So inference may pro-
ceed in the usual way. The key requirements are that the nonstationary variables share a
common unit root and that the unconditional mean of their first differences is nonzero.

KEYWORDS: Unit root, nonstationary, random walk.

1. INTRODUCTION

LET y, BE A SCALAR TIME SERIES whose first difference is stationary with a nonzero
unconditional mean. This paper is concerned with ordinary least squares and
linear instrumental variables estimation of models that can be written

(1.1) w,=X/,a+ vy +e,.

In (1.1), X}, and e, are stationary, with X;, a (k X 1) vector of observable
regressors and e, an unobservable disturbance; the (k X 1) vector a and the
scalar y are unknown coefficients. The dependent variable w, is stationary if
y =0, nonstationary if not. In most applications of interest y # 0 and w, is
nonstationary.

Equations of the form (1.1) occur first of all in atheoretical or reduced form
time series regressions. One example is estimation of a unit autoregressive root
(e.g., Dickey and Fuller (1979, 1981), Evans and Savin (1981, 1984), Fuller
(1976), Said and Dickey (1984)). In this case, y,=w,_;, X;, consists of a constant
and, possibly, lags of Aw, (but not a trend term, since Xj, is stationary), and e, is
the serially uncorrelated innovation in Aw,. A second example occurs in estima-
tion of the nonzero “cointegrating parameter” y when the ARIMA process for
(w,, y,) is assumed to be such that w, — vy, is stationary (e.g., Campbell (1987),
Campbell and Shiller (1986), Engle and Granger (1987), Stock (1987)). Here, X,
is either identically zero or is simply the constant term, and e, is in general
serially correlated.

Potentially of equal or greater importance than such reduced form regressions
are regressions when an equation of the form (1.1) is implied by a structural
macroeconomic model. With a little rearrangement, many, many macroeconomic
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models can be written in the form (1.1). Consider, for example,

n
(12)  w=Xga*+yw  + LYt Yo te,
i1
n
|v:| <1, rootsof v,,,+ 3 v,,,2' outside unit circle,
i=1

X¥ avector of observed stationary regressors,

e, an unobserved stationary disturbance.

Examples include: flexible accelerator models of investment, e.g., w, is invento-
ries, y, is sales (Rowley and Trevedi (1975)); present value models of asset prices,
e.g., w, is stock price, y, is dividend (West (1987)); dynamic linear rational
expectations models, e.g., w, is labor demand, y, is real wage (Sargent (1978)). It
is easy to see that a linear transformation of the regressors in (1.2) puts the
equation in the form (1.1). One such transformation, for example, rewrites (1.2)
as

(13)  w=Xra+y(w =)+ L via(_i—y)+1w. +e,
i=1

n+1

EXI’,a+yy,+e,, 75(1_71)_1 ZY:’+1'
i=1

(Stationarity of w,— yy,, and therefore of w,_, —yy,, follows from subtracting
v,w, from each side of (1.3) and dividing by (1 —v,).) Since I will be concerned
only with linear estimators, analysis of the properties of equation (1.1) will suffice
to establish the properties of estimators of equation (1.2).

Now, macroeconomists have recently recognized that unit autoregressive
roots may exist in many U.S. macroeconomic time series, including among others
GNP (Nelson and Plosser (1982)), stock prices (Kleidon (1985)), real wages
(Altonji and Ashenfelter (1980)), and personal disposable income (Mankiw and
Shapiro (1985)). Standard theorems in time series, however, rule out unit roots
(e.g., Hansen (1982)). This leaves open the question of how to interpret regres-
sions with variables with unit roots.

Perhaps the most familiar environment in which this question has been
answered is in estimation and test for cointegration and for a unit autoregressive
root. With X, and e, described as in the second paragraph in the text, this work
has established the properties of the least squares estimate of y, emphasizing the
case when 0 = EA y. In this case, this estimate is such that 7' ~%(9 — y) converges
in probability to zero for any 8 > 0. The limiting distribution of T(§ — y) is not
normal (Dickey and Fuller (1979, 1981), Engle and Granger (1987), Evans and
Savin (1981), Fuller (1976), Said and Dickey (1984), Stock (1987)).

These results presumably carry over to structural models that imply an
equation of the form (1.1). But they leave open the question of what happens if
0+ EAy, for either a reduced form or structural equation. Since most macroeco-



ASYMPTOTIC NORMALITY 1399

nomic time series tend to drift (upwards) over time, it will often be reasonable to
model the first differences of such series as having nonzero means.

This paper considers ordinary least squares and linear instrumental variables
estimates of (1.1) when 0 # EA y. It does so under assumptions about X;, and e,
more general than those of the papers cited above, including allowing e, to be
serially correlated and conditionally heteroskedastic, with the form of the correla-
tion and heteroskedasticity unknown. It is shown that the estimate of y is such
that convergence is even more rapid than when 0= EAy: T®/2-%(4 — y) con-
verges in probability to zero for any 6 > 0. In addition, and more importantly,
T°/*(§ —v) and T'*(&@ — a) are asymptotically normal. In models where e, is
iid, the usual computer output standard errors can be used for inference. And
even in more general models, standard formulas may be used to calculate the
variance covariance matrix of the estimated parameter vector. So inference about
Y and a may proceed in a fashion that is robust to possible nonstationarity in y,.
A small Monte Carlo experiment suggests that when y, is nonstationary, the
asymptotic distribution can provide a useful approximation to the actual small
sample distribution.

It may seem surprising that the asymptotic distributions of estimates of y are
so sensitive to whether the means of the first differences are zero. In a stationary
environment, means in general do not affect the asymptotic distribution of
estimates of parameters of economic interest. In theoretical econometric analyses
it is therefore harmless to assume that means are zero if it is convenient to do so.
A basic implication of this paper is that this is not at all true in the nonstationary
environment considered in this paper.2

Section 2 of the paper analyzes ordinary least squares estimates of (1.1) when
X}, is simply the constant term. Section 3 is a compact generalization of Section 2
to allow for stochastic X),, which may be correlated with e,. I have treated the
case of X, being the constant term separately for two reasons. The first is to
illustrate the basic ideas involved, in an environment where the algebra is
relatively uncluttered. The second is because this special case is an important one,
appearing in the empirical estimates in several of the papers cited above. Section
4 presents the results of a small Monte Carlo experiment. Section 5 has conclu-
sions.

2. ESTIMATION, WHEN X, IS THE CONSTANT TERM

Along with the scalar a, the constant (possibly zero) unconditional mean of
W, — YJ,, the scalar v is in this section assumed to be estimated from the equation

(2.1) w=a+vyy+e,.

>In least squares estimators of a unit autoregressive root, with iid disturbances, asymptotic
normality when EAy # 0 was noted in Dicker and Fuller (1979) and Evans and Savin (1981), and was
emphasized in some papers that [ was not aware of when this paper was first written (Fuller, Hasza,
and Goebel (1981), Fuller (1985)).
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This is precisely the environment in the “cointegration” papers of Campbell
(1987), Campbell and Shiller (1986), and with the constant term suppressed, in
the “cointegration” papers of Engle and Granger (1987) and Stock (1987). This
equation is also appropriate if an investigator wants to check whether w, has a
unit root, but does not wish to model the Aw, process parametrically (Said and
Dickey (1984)). In this case, y,=w,_;, and, under the null hypothesis that y =1,
a=EAw, e,= Aw,— EAw.

ASSUMPTION 1: (1.a) Ay,— EAy, is a regular, zero mean, strictly stationary
stochastic process. (1.b) 0+ p=EAy, (l.c) For t>0, y,=Y._,Ay,, where the
moving average representation of Ay is Ay, = p+ X3_0,v._,, v, the innovation in
Ay, 0,=1.

ASSUMPTION 2: (a) e, is a regular, zero mean, strictly stationary stochastic
process. (b) The spectral density of e, is strictly positive at frequency zero. (c) Let I,
be the o-algebra determined by e, for s<t, vj2 the unconditional variance of
E(e|l,_;)— E(e,|I,_;_1). Then L5_v; < oo.

ASSUMPTION 3: Ay, and e, have finite fourth moments. In addition, second
central moments and fourth cumulants of the (Ay, e,) process are absolutely
summable. For the Ay, process, this means: (a) L2 _ |E(Ay,— p)(Ay,.,—p)| <

i=

005 (b) L%~ _ |A(i, j, k)| < 0, where (Hannan (1970, p. 23))

A, j k) =E(Ay,—p)(Ayi = 1)(Ay, = 1) Ay — 1)
—E(Ay, = p)(Ay, =) E(Ay ;= w)(Ayup— 1)
—E(Ay,—1)(Ayi, = ) E(Ayei = 1) Ay — 1)
—E(Ay,—p)( Ay k= w)E(Ay,—p) Ay, — 1)

The infinite sums in (a) and (b) are finite as well when one or more of the Ay, — p
are replaced by e,.

As noted in the introduction, Assumption (1.b) is key to insuring asymptotic
normality. This appears to be reasonable for many of the series that have been
used when (2.1) was estimated, including, for example, consumption/income
(Campbell (1987), Engle and Granger (1987), money /income (Engle and Granger
(1987)) and stock prices/dividends (Campbell and Shiller (1986)). For other
series, the assumption may not be appropriate. If not, the analyses in, e.g.,
Dickey and Fuller (1979, 1981), Engle and Granger (1987), Fuller (1976), Said
and Dickey (1984), and Stock (1987) are applicable (although this paper provides
a generalization that may be useful in some contexts). Assumption (1.c) simulta-
neously states that for > 0 the Ay, are drawn from the stationary distribution
for Ay, and that the initial value of y, can be ignored in the analysis
(e.g., because y, is nonstochastic). This allows inference to be unconditional. The
assumption is maintained in muchof the work on estimation of unit autoregres-
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sive roots (e.g., Dickey and Fuller (1979, 1981), Fuller (1976), Said and Dickey
(1984)).

Assumptions 2(a) and 2(c) are maintained because these are necessary to
exploit a central limit theorem of Hannan (1973). The statement about the
spectral density in Assumption (2.b) is made to guarantee that the asymptotic
variance-covariance matrix is not identically zero (see below). If e, follows a
finite parameter ARMA process, the assumption rules out, for example, a factor
of (1 — L) in the MA polynomial, but leaves the AR polynomial unconstrained.
This restriction is of course commonly maintained in time series analysis.

Assumption 3 bounds the second and fourth moments of Ay, and e,. It is used
in establishing not only asymptotic normality but even consistency of the
estimator. Note that it does not constrain y, and e, or Ay, and ¢, to be
uncorrelated. It is to be stressed that Assumption 3 is implied whenever the
(Ay,, e,) process has an absolutely summable moving average representation and
iid innovations (Hannan (1970, p. 211)); this summability and independence
assumption is maintained in Dickey and Fuller (1979, 1981), Engle and Granger
(1987), Fuller (1976), Said and Dickey (1984), and Stock (1987). I maintain the
more general Assumption 3 because it allows heteroskedasticity of the innova-
tions in Ay, and e, conditional on their past values; independence does not. Such
heteroskedasticity is often found in empirical work (e.g., Engle (1982)).

The (2 X 1) parameter vector 8 = [ay]  is assumed to be estimated by OLS. Let
X, =[1y], X=[X/], W=[w,]. Xis(T X2), Wis(T X 1), where T is the sample
size. Then £ is estimated as A= (X'X) ' X'W.

Let C,=diag[T'/?,(Xt*)"/?] be a 2 x 2 diagonal matrix. The summations in
(Xt*)'/? and throughout run over ¢, from 1 to T, unless otherwise noted. Then

cr(B-B)=[crxxc;t] 'crixe

. 1 Zy,/[TZzZ]”z 7 Ye, [TV
ZY:/{TZIZ]I/Z Zy,z/(th) Z)’,e,/(th)l/z

where e=[e,]is T X 1.

To establish asymptotic normality of Cp( B — B), it suffices to show that
C;'X’e is asymptotically normal and that C;'X'XC, ! converges in probability
to a nonsingular matrix of constants. Let

(22)  R= : “mz’/[TZ’Z]m{l Wz’
' lim ¥ o/[ L] 1 2

1 0 1 u(¢3/2)’
ptoo |

M:‘O " 1(,3/2)

‘, B=MRM =

o(h)=Fee, ,, s= 3 a(h).
h= —o0
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(See Anderson (1971, p. 83) for limXr/(TLt?)'/?= /3/2.) s is of course the
spectral density of the e, process at frequency zero. So s > 0 by Assumption 2.

LEMMA 2.1: Under Assumptions 1 to 3, C;'X'e converges in distribution to a
N(0, sB) random variable.

To illustrate the role played by Assumption (1.b) in the analysis, I will sketch
the proof of Lemma 2.1 here in the text, with some details relegated to the
Appendix. Proofs of all other propositions are entirely in the Appendix.

Let AY, be the indeterministic portion of the A y, process, Ay, = p + AY,. Since
=4y, +A4y,+ --- +Ay, by Assumption (1.c), y,=pt+ (X'_,AY,). So

Cri'X'e= [T'I/ZZe,,(th)_l/ZZute,

T t
+HX)' Y ( AYs)e,}’.
t=1\s=1
The Appendix proves that plim[7~!°%Y7_ (X!_,4Y,)e,] = 0 for any 8 > 0, gener-
alizing Stock’s (1987) proof of this fact for the iid case. Since (X¢?) /2 is of
order T73/2 it follows that plim[(Xr2)~/2LT_ (X!_,AY,)e,] = 0. Therefore

(2.3) plimC;'Xe= plim[T‘l/ZZe,,(th) _1/2Zute,]’.

It follows from the proof of Theorem 2(a) in Hannan (1973) that
[T~ '2%e,,(t?)"1/?Lte,]’ converges in distribution to a N(0, sR) random vari-
able. So (2.3) implies quite trivially that C;'X’e converges in distribution to a
N(0, sB) random variable. Q.E.D.

Any correlation between y, and e, does not matter asymptotically, because y,
is dominated by its deterministic component: y, figures into plim C;'X’e just as
would a trend term of the form pz. It figures into plim[C;'X'XC; '] the same
way:

LEMMA 2.2: Under Assumptions 1 to 3, [C;'X'XC;!] converges in probability
to B.

Lemmas 2.1 and 2.2 combined imply the following theorem.

THEOREM 2.1: Let f = (X'X) 'X'W. Then under Assumptions 1 to 3, Cr(ﬁ -B)
converges in distribution to a N(0, sB™') random variable, B = plim[C;'X'XC; ).

Note that Lemmas 2.1 and 2.2, and therefore Theorem 2.1 as well, hinge
crucially on p = 0. Note also that ¥ — vy is approaching its asymptotic distribu-
tion at the unusually rapid rate of (Xz%)!/?, i.e., at rate T3/2 So if, as in Campbell
and Shiller (1986), the investigator wishes to use w,— ¥y, in subsequent regres-



ASYMPTOTIC NORMALITY 1403

sions in which all estimates are bounded in probability at the usual rate of /T, the
uncertainty in ¥ may be ignored in conducting inference on the results of the
subsequent regressions. Note, finally, that & —«, by contrast, approaches its
asymptotic distribution at the usual rate of /T.

For hypothesis testing and confidence intervals, a consistent estimate of sB ™'
is required. B~! is consistently estimated by [C;'X’XC;']~!. Estimation of s is
also straightforward if the number of nonzero autocorrelations of s is known
a priori; see Section 3. In practice, however, the number of nonzero autocorrela-
tions of s may not be known a priori. This is in general the case when the
investigator is attempting to estimate the cointegrating parameter for the (w,, y,)
process. In such a case, the basic idea is to estimate o(/) from the moments of
the OLS residuals for A= —m, ..., m and let m — oo at a suitable rate. Let é, be
the OLS residual, é,=w,— X;/B. Let 6(h)=T 'TI_ , 168, \n» k(h,m)=
1 —[|k]|/(m + 1)] for m a positive integer, T > m > |h|. As in Newey and West
(1987), let

(24) = _f k(h,m)a(h)=a(o)+z)"_ik(h,m)a(h).

The dependence of § on m is suppressed for notational simplicity. The weights
k(h, m) are present to insure that §> 0. Other choices of weights also insure
§ > 0; see Newey and West (1987).

LEMMA 2.3: Let § be calculated as in (2.4). Under Assumptions 1 to 3, if m — oo
as T — oo in such a way that m is o(T"/?), then plim § = s.

Lemma 2.3 gives a convenient way to calculate the usual finite sample
approximation to the asymptotic variance-covariance matrix. A standard com-
puter program calculates 6(0)[ X’X] !. Simply scale this by §/6(0). So the “r
statistic” on H,: y=17,, for example, is calculated by dividing the computer
output ¢ statistic for this test by [§/6(0)]'/%

3. ESTIMATION WITH GENERAL X,

The results from the previous section may be extended to linear models with
stochastic X;,. Consider equation (1.1), repeated below for convenience:

(3.1) w,= X/ a+vyy +e,.

The model of the previous section is a special case of (3.1). Many structural
macroeconomics models also imply (3.1); see the introduction for examples.

It is possible that X;, will be correlated with e,. So instrumental variables
estimates may be required. To make the exposition concise, I will always assume
that X|, is instrumented by a r X 1 (r > k) vector Z,, of variables uncorrelated
with e,, with X, = Z,, allowed.
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ASSUMPTION 4: (4.a) { X,,, Z,,, A4y, e,} is strictly stationary and ergodic, with
absolutely summable second central moments. (4.b) EZ,,Z| and the matrix A
defined in Lemma 3.2 are of full row rank.

ASSUMPTION 5: (5.a) The {Z],e, e} process is a regular, zero mean process.
(5.b) The spectral density of {Z}e, e} evaluated at frequency zero is positive
semidefinite; those of {Z]e,}' and e, are positive definite. (5.c) Let I, be the
o-algebra determined by {(Z{e, e,)|s<t}. Let v, be the unconditional variance-
covariance matrix of E[(Z{e,e)|I,_;]— E[(Zl,e,,e)|1, —i—1)s with ||v||
largest eigenvalue. Then L%_||v,|| < co.

ASSUMPTION 6: (6.a) Let z,, be an element of Z,,. Then E(z,e,)*< oo, i=
1,...,r. In addition, the {Z]e,e,} process has absolutely summable second
moments and fourth cumulants. (6.b) Let z,, be an element of Z,,, x,, an element of
X, Then Ez} < o0, i=1,...,r, and Ex} <oo n=1,..., k.

Assumption 4 is new. It was automatically satisfied under last section’s
assumption that X,, = Z,, = constant term. Assumption 5 replaces Assumption 2.
Assumption 6 is also new. It is used only in establishing consistency of estimators
of the variance covariance matrix, and not in establishing asymptotic normality
of the estimators of the regression parameters. It may be worth remarking again
that Assumption (6.a) is implied whenever (Z},e,, e,)’ has an absolutely summa-
ble moving average representation and iid 1nnovations with finite fourth mo-
ments. If the constant term is one of the Z,,, variables, reference can be made to
just Z/ e, rather than to (Z{e,, ¢,) in Assumptions 5 and 6.

Let B=(a’,y) be the (k+ 1) X1 parameter vector, X be the T X (k + 1)
matrix of regressors, with [ X},, y,] in its zth row, Z be the T X (r + 1) matrix of
instruments, with [Z{,, y,] in its ¢th row, C, = diag[T'/?,..., T/% (Xt*)"/?] be a
(k+1) X (k+1) diagonal matrix, D,=diag[T'/?,...,TV? (Xr*)'/?] be a
(r+1)X(r+1) diagonal matrix. Let o,,(h)=EZ,,e(Z,,_,e,_,), op(h)=
EZ ee, ,, o(h)=Ee,e,_,. Let

1%

(o] [>¢] o0

S = Z an(h), Spp= Z on(h), s= Z a(h).

h=—o h=—o0 h=— o0

So S, is the spectral density matrix of the {Z/e,}’ process, evaluated at
frequency zero. S, and s are the same quantity for, respectively, the off diagonal
block of the { Z/,e, e,}’ process and the e, process.

LEMMA 3.1: Under Assumptions 1, 3, 4, and 5, D;'Z’e converges in distribution
to a N(0, S') random variable, where S is the positive definite matrix

_ Si (»/3/2)1-"812
(y3/2)pS, ps
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It may be helpful to write out S in the special case where (Z;,e, e,)’ is serially
uncorrelated. This holds if, as in the stock price model analyzed below, e, is an
expectational error and e,_; and Z,, for s <t are in the information set used in
forming expectations. In such a case,

(32)  S= EZ,Z{e} (y3/2)REZ, €}
(3/DnEZ{e}  pa(0)

The formula for this specific case was written out mainly to make clear something
that holds in general: heteroskedasticity of e, conditional on Z,, is manifested in
the usual way in the upper left hand block of S. But any possible dependence of
e, on past Ay,’s is not reflected in S:? y, looks like a trend term, asymptotically,
and the variance of e, does not depend on .

LEMMA 3.2: Under Assumptions 1, 3, 4, and 5,

EX,,Z}, 3/2)uEX,,
A=plim[CT‘1X'ZDT1]=‘ e (3/DrEX,

(y3/2)REZ], TS ’

EZ,Z,, 3/2)uEZ,,

B = plim [ D;'Zz'zD; 1] = wZio 3/ )2” L)
(y3/2)pEZ,, p

B is positive definite.
THEOREM 3.1: Let ,é be estimated by two stage least squares
f=xz(zz) zx| 'xz(zz)'2W.
Then under Assumptions 1, 3, 4, and 5, CT(,é — B) converges in distribution to a
N{0.(4B"'4’) 'AB~'SB~'A(AB~'4') ')
random variable.

The formula for the asymptotic covariance matrix is especially simple if the
common regression assumption of iid disturbances is made. Suppose that e, is
distributed independently of e,_, and Z,; for all s <. Then the equation (3.2)
formula for S reduces to S =0(0)B, B defined in Lemma 3.2. The asymptotic
variance covariance matrix of C,(8— B) is o(0)[4B 'A’]"\, i.e., the asymptotic
variance covariance matrix of the normalized estimator is as usual the variance of
the disturbance times the plim of the normalized [ X'Z(Z’Z) 'Z’X]~" matrix. If
Z,,= X,, and OLS is run, 4 = B and the asymptotic covariance is o(0)B~ %, i.e.,
the variance of the disturbance times the plim of the normalized ( X’X) ™! matrix.

3 )
Unless, of course, some past Ay,’s are elements of Z,,.
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To conduct inference, an estimate of S is required. As in the previous section,
define k(h, m)=1—[|h|/(m+1)] for T>m> |h|.

LEMMA 3.3: Let S=X7_ , k(h, m)R(h), where

(3.3) Ii(h)= Z (Z18,, yé)(Z], 8. wo Veenbion) (h=0),

t=h+1
R(h)=R(-h) (h<0),

and &, is a residual calculated using a g for which C1( g - B) is bounded in
probabzlzty Let S = D;'SD;". Then under Assumptions 1, 3, 4, and 6, if m — oo

as T — oo in such a way that m is o(T'/?), plim S = S.

In Lemma 3.3, the dependence of S on m is suppressed for notational
convenience. The residual é, used in computing S may of course be calculated
from the Theorem 3.1 estimator, using any instrument matrix that satisfies the
assumptions of the theorem.

It is not difficult to show that if the number of nonzero autocorrelations of
(Z],e,e,) is known a priori to be, say, m*, then, under Assumptions 1, 3, 4, and
6, plim D7 'SD; ! = S, where

m*

(34) S= Y R(h)=2z90z,

and £ is a band diagonal matrix with é €, in its (¢, s) position for 0 < |¢ — 5| < m*,
zero elsewhere. Note that since S as deﬁned in equation (3.4) may not be posmve
definite in any given finite sample, it may be desirable to use the Lemma 3.3
estimator even when the number of nonzero autocorrelations is known a priori.

If Eleel(thfhelfh)/ = EZIIZl/t—hEetet—h and EZII€,€,,h= EerEetetfh for
all h, the formulas in Lemma 3.3 and equation (3.4) may be changed so that
normalized cross products of instruments enter separately from sample moments
of residuals. Since this will be convenient in the important special case when
m* = 0, it seems worth noting this as a separate proposition for that case.

LEMMA 3.4: Suppose that S =0(0)B, B _defined in Lemma 32. Let 6(0)=

T~ '%é2,é, the residual calculated using a ,B for which C1( B-RB ) is bounded in
probabllzty Let S = 6(0)Z2'Z, S = D, 1SD . Then under Assumptions 1, 3, and 4,
plim S = §.

In the remainder of this section it will be useful to maintain the following
assumption:

ASSUMPTION 7: S is an (r+1) X (r+ 1) matrix such that plim D;lS~D;1 =S.
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Candidates for S include those defined in Lemmas 3.3 and 3.4, and equation
(3.9).

LEMMA 3.5: Let
~ _ -1 1~ _
v=|xz(zz)'zx| xz(zz)'S(zz)'zX
x|xz(zz)'z’x]|

Then under Assumptions 1, 3, 4, and 7, CTI7CT is a consistent estimate of the
covariance matrix of the Theorem 3.1 estimaror, plim[C;VC;] =
(AB™'A’)YAB'SB~A'(AB'4A) .

It is well known that in a stationary environment, the two stage least squares
estimator is not optimal in general (Hansen (1982)); if the equation is overidenti-
fied (r > k) and the assumptions of Lemma 3.4 do not hold, a two step estimator
is preferable. This holds true here as well.

THEOREM 3.2: Let B be calculated by two-step, two-stage least squares, g=
(X'ZS~'Z'X] 1x'ZS~'Z'W. Then under Assumptions 1, 3,4, 5, and 7, CT(B B)
converges in distribution to a N{0,(AS~'A’)~'} random variable. The asymptotic
variance covariance matrix is consistently estimated by C TVC 7> Where

v=[xz$'zx]"'
THEOREM 3.3: Let ,é be estimated as in Theorem 3.2. Let é= W — Xﬁ be the

corre~sponding vector of residuals. Then under Assumptions 1, 3, 4, 5, and T,
8'ZS 17’6 converges in distribution to a x*(r — k) random variable.

Theorem 3.3 establishes that Hansen’s (1982) test of instrument residual
orthogonality can be used as usual.

The following theorem establishes that the usual Wald test of linear restrictions
yields legitimate test statistics.

THEOREM 3.4: Consider testing Hy: GB—g,=0, where G is a g X (k+1)
matrix of known constants of rank q and g, is (q X 1) vector of known constants.
Let B be estimated under the assumptions of Theorem 3.1 or 3.2, and let V be such
that C VCT is a consistent estimate of the asymptotic variance-covariance matrix of
C(B — B). Then if the null hypothesis GB — g, =0 is true,

(GB-2,)'1GVG"] (G - g)
converges in distribution to a x*(q) random variable.
It was noted in the introduction that analysis of equation (1.1) makes it

straightforward to analyze an equation that has multiple nonstationary regressors
with a common unit root. This follows formally from Corollary 3.1.
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COROLLARY 3.1: Let P be (k+1)X(k+1), Qbe (r+1)X(r+1), with P and
Q nonsingular matrices of constants. Let Z* = ZQ~ ', with tth row Z*', X* =
XP~1, B* = PB, so that the regression model can be rewritten W = X*B* + e. For
B* defined below, let &* = W — X*B*. Let S* =Y7_ _ k(h, m)R*(h), R*(h)=
STy (ZFeXNZXErY.

(a) Let

a — -1 —

Br = xvzx(zvz*)'zv x| xvzH(ZvZ*) 'ZW,

~ _ -1 1. —

AR D A VAV A NYAD G I CrAIV AV ARSI VAT ANV AD S

_ -1

x[x+zx(zrz*) tzv x|
Then under Assumptions 1, 3, 4, 5, and 6, if m — o0 as T — oo such that m is
o(TY/?), TY/?(B* — B*) converges in distribution to a normally distributed random

variable with covariance matrix plim TV*.
(b) Let

Br = [ x»Z*S'zvx*] X2 S \Z¥W,

V= [ xvz*$-1zv x+]
Then under Assumptions 1, 3, 4, 5, and 6, if m = o0 as T — co such that m is
o(TY?), TV/2(B* — B*) converges in distribution to a normally distributed random
variable with covariance matrix plim TV*,

(c) Let BA* be calculated as in (b). Then under Assumptions 1, 3, 4, S, and 6,
éx'Z¥'S* ~17*%'6* converges in distribution to a x*(r — k) random variable.

(d) Let /§* and V* be calculated either as in (a) or (b). Let G be gXxX(k+1)
matrix of known constants of rankq, g, a qX1 vector of known constants.
Then if H,: GB* —g,=0 is true, under Assumption 1, 3, 4, 5, and 6,
(Gé* —go)’(GV*G’)‘l(Gl?* — g,) converges in distribution to a x*(q) random
variable.

Suppose we are estimating W = X*B* + e, with an instrument matrix Z*.
Corollary 3.1 implies that if there are nonsingular P and Q that transform X*
and Z* such that X = X*P and Z = Z*Q satisfy the relevant assumptions, least
squares and linear instrumental variables estimation and inference on B* can
proceed as usual. While not stated explicitly in Corollary 3.1, the usual formulas
for estimating V* apply when e, is iid [e.g., if X* = Z*, V*=(0)*(X*' X*)"},
6(0)* = T~ 'Le*?), or if the number of nonzero autocorrelations of (Z;,e/, e,)’ is
known a priori to be m* < o0 [S* = ;,";"_m*l'é*(h)].

It is not relevant that P and Q are not uniquely defined, and may depend on
unknown parameters. All that matters is that it is known a priori that such P and
Q exist. There may be multiple nonstationary instruments in Z*. If so, the fact
that Z = Z*Q has only one such instrument means that Corollary 3.1 is applica-
ble only if there are stationary linear combinations of the nonstationary instru-
ments. That is, the nonstationary instruments must be cointegrated. Similarly,
nonstationary regressors in X* (if there is more than one) must be cointegrated.
This is the case with a wide class of structural models; see equations (1.2) and
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(1.3). If there is more than one nonstationary regressor, each regression coeffi-
cient has a nondegenerate limiting distribution when normalized by T'/%.* Of
course, a certain linear combination of regression coefficients has a nondegener-
ate limiting distribution when normalized by (Xz2)/? (specifically,
(00...01)P~Y(B* — B*) = (¥ — v)). Note that if there is more than one nonsta-
tionary instrument then, in general, all such instruments must be uncorrelated
with e, for there to exist Q such that the resulting Z,, is uncorrelated as well.

In connection with this last remark, a simple extension of these results is worth
noting. Asymptotically equivalent estimators of B, and consistent estimators of
its covariance matrix, are obtained when the instrument vector is [Z],, ]’ or
[Z{,, y,_;]" instead of [Z], y,]'. Asymptotic equivalence of [Z], t]' is useful to
note because this instrument vector may have better small sample properties; see
Section 4. Asymptotic equivalence of [Z],, y,_;]’ is useful to note in application
of Corollary 3.1 to models with multiple nonstationary instruments. Suppose, for
example, that w,= B* + BFy,_, + By, +e, and e, is correlated with y, but
uncorrelated with y,_; for j> 0. Let X* be the T x 3 matrix whose tth row is
(1, y,_1, »,)). Corollary 3.1 will not apply directly for analysis of ordinary least
squares estimates of this system: no matter what Q matrix one uses to transform
X*, EZ,e,+0 since Ee,y,# 0. Suppose instead that one estimates using 7' X 3
instrument matrix Z* whose rth row is, say [1, y,_y, ¥,_,). Then EZ, e, =0 if O
transforms Z* so that Z has, say, tth row [Z/,, y,_,], with Z{,=[1, y,_; — ¥, _,]
Since using an instrument vector [1, y,_; — y,_,, ¥, ,]" is asymptotically equiv-
alent to using [1, y,_; —¥,_5, »,J, Corollary 3.1 may be applied, and one may
conduct inference as usual on

a _ -1 _
B* = [X*'Z*(Z*'Z*) IZ*'X*] X*/Z*(Z*/Z*) Loy

4. MONTE CARLO EVIDENCE

This section describes the results of a small Monte Carlo experiment. The aim
is to see whether the asymptotic approximation to the finite sample distribution
can be useful for hypothesis testing and inference, and not to determine with a
high degree of precision the small sample distribution of the estimators. It
therefore was sufficient to use only a small number of parameter values, chosen
for their empirical plausibility.

The model used in the experiment states that expected returns on a stock are
constant:

(41) W, = bEz(W:+l +y1+1) = (1 + r) ~1Et(wHLl +y1+1)*

4 Let B* be the ith element of B*. It follows from Corollary 3.1 that T'/2(8,* — B,*) has a limiting
normal distribution (possibly degenerate, with zero variance), i=1,..., k + 1. Since the (k +1) X
(k + 1) matrix plim TV* is positive semidefinite of rank k (see the proofs of Corollary 3.1 and
Theorem 3.4), either k or k + 1 of the regression coefficients have nondegenerate distributions (i.e., at
most one of the diagonal elements of plim TV* is zero). It is straightforward to show that there are k
such distributions if there is exactly one nonstationary regressor, k + 1 if there is more than one such
regressor. Incidentally, this T'/2 convergence can also occur in models with multiple nonstationary
regressors with zero drift. See Theorem 8.5.1 in Fuller (1976).
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where w, is the real stock price, y, is the real dividend, b is the constant disc
rate, 0 <b <1, r the constant expected return, r>0, E, the mathema
expectation of the market. Equation (4.1) may be written as
(42) wr=r—lyt+r‘1Et(Awt+1+Ayr+l)=>
w,=a+vyy+e,
a:rilE(Aw1+1+Ayt+1)’ 'er—lv
€= r_l[El(AwH»l + Ayl+1) - E(AW1+1 + Ayt+1)] .
v (and «) can be estimated from (4.2), if y, satisfies the Section 2 assumpti
This is done in Campbell and Shiller (1986).
Consider instead rewriting (4.1) as
(43) Wtzb(wz+1+yl+1)+ut+1’

U= —bug,

V1= (W1+1 +yx+1) - Ez(wz+1 +y1+1)
= (sz+1 + Ayr+1) - Ez(AWH-l + Ayz+1)-

The parameter b can be estimated from (4.3), if w,,; + y,,, satisfies the Secti¢
assumptions for y,. This is done in West (1987, 1988).
In the experiment, the (w,, y,) process was generated by

(448) )’r=l‘+)’z—1+‘11—1+77m
(44b) qz = ¢ q1—1 + Ubre
(44c) w=a+7yy+e,

a=pb/(1-b)*, y=b/(1-b),
e,=kq, k=b/[(1-b)(1-0b¢)],
Enym,,=0 forallz,s, 7;1,~N(O,02); 7)2,~N(0,02).

The values of «, y, and k written out above are such that w,= L b’E,)
where E,y,, ;= E[y,,,I1, y,_1, W,_1,---» Yo, Wo]- This simple parameterization
chosen because it implies that A y,” ARMA(1,1), e,” AR(1), both of which apr
to be reasonable characterizations of Shiller’s (1981) long-term annual data
the Standard and Poor’s index.’

The parameters b, n, ¢, and o were set to round numbers that were roug
consistent with these data. The parameter b was set to .95, u to .04. Two val
of ¢ were tried, ¢ =.1 and ¢ =.7. The former is roughly consistent with
sample autocorrelations of Ay,, the latter with those of w,—vyy, (=w,—19
Two values of o were tried, o =.1 and o = .2. The latter is roughly consist

* This is not to say that 4.4(a) to 4.4(c) adequately describe these data: the empirical estimatc
4.4(a) are not consistent with those of 4.4(c) if, indeed, the model is the overly simple one presume
the experiment. See West (1987, 1988).
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with the sample variance of Ay, (using var[Ay,] =02/[1 — ¢*] + 0?); the former
was tried for comparison.

In sum, then, four sets of parameter values were tried: ¢ =.1and ¢ =.7, 6 = .1
and o= .2, with b=.95 and p = .04 throughout. For each of the four sets of
parameter values, the following was done 1000 times. Two vectors of 100
independent N(0, o2) variables were drawn. These were the values of 7,, and 7,,.
Y q,» and w, were generated by (4.4a), (4.4b), and (4.4c), with y,=g,=0.°
Equations (4.2) and (4.3) were estimated by OLS and IV. This produced four sets
of estimates for each random draw and each set of parameter values. A constant
and trend were the instruments used in IV estimation of (4.2), a trend the sole
instrument used for (4.3).

For the two estimates of y from (4.2), calculation was done of ¥ — 19 divided
by the estimated standard error of . (19 is the true value of vy, since b= .95.)
The standard error was computed as described in Section 2, using 9 lags of the
autocovariances of é, (m =29, m defined as in Lemma 2.3; 9 is approximately
T'/2 = 10). For the two estimates of b from (4.3), calculation was done of b — .95
divided by the estimated standard error of b. The usual standard error was used
here. All four ¢ statistics of course are asymptotically distributed as standard
normal random variables.

Table IA has information on the empirical distributions of the ¢ statistics for
OLS estimation of (4.2), Table IB for IV estimation of (4.2), Table IC for OLS
estimation of (4.3), Table ID for IV estimation of (4.3). To illustrate how to read
the tables, consider the entry in the first line of Table IA. The “Percentile”
columns say that of the 1000 sets of w, and y, generated with ¢ =.1 and o = .1,
OLS estimates of (4.2) yielded a ¢ statistic less than —2.81 in 25 samples, less
than —2.50 in 50 samples,...,less than 1.92 in 975 samples. The “Size of a
nominal five percent test” column says that when § — 19 was divided by its
estimated standard error, the resulting statistic was greater than 1.65 in about 3
percent of the samples, less than —1.65 in about 15 percent of the samples, and
greater than 1.96 in absolute value in about 13 percent of the samples. The
comparable values for a standard normal variable, which are reproduced for
convenience at the foot of the table, are —1.96, —1.65,...,1.96 for “Percentile,”
.05, .05, .05 for “Size.”

A comparison of the entries in the tables to those for a standard normal
variable suggests that ¢ statistics from OLS estimates of (4.3) (Table IC) are
sharply biased downwards, those from OLS estimates of (4.2) (Table IA) and IV
estimates of (4.3) (Table ID) are slightly biased downwards, those from IV
estimation of (4.2) have no noticeable bias. Actual sizes of tests, then, appear
unlikely to equal nominal sizes. The divergence between actual and nominal size
is probably larger for one tailed than for two tailed tests. The downward bias of

® Strictly speaking, to be consistent with Assumption 1l.c, g, should have been drawn from its
steady state N[0, 02 /(1 — ¢?)] distribution. Stock’s (1987) results for iid innovations can, however, be
combined with the argument of Lemma 2.1 to show that the OLS and IV estimates generated with
go = 0 are still asymptotically normal.
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TABLEI
EMPIRICAL DISTRIBUTION OF t STATISTICS

Table IA
OLS, Equation (4.2)

Percentile Size of nominal 5% test
® o 25 5 50 95 975 y<19 y>19 y=19
1 1 — 2381 ~250 -50 141 19 03 15 13
1 2 —-3.13 —2.65 — .81 1.08 1.33 .01 21 15
7 1 -231 ~1.89 -31 15 19 04 08 07
v 2 -2.29 —-1.90 -.35 1.37 1.85 .03 .08 .06
Table IB
IV. Equation (4.2)
Percentile Size of nominal 5% test
) o 2.5 5 50 95 97.5 y<19 y>19 y=19
1 1 —223 ~200 -0l 187 226 07 07 10
1 2 —-1.95 -1.72 —-.00 1.72 1.99 .06 .06 .05
7 1 —2.22 -1.90 .00 1.78 2.17 .07 .08 .08
7 2 —-224 —1.86 .04 1.83 2.19 .06 .07 .08
Table IC
OLS. Equation (4.3)
Percentile Size of nominal 5% test
¢ o 2.5 5 50 95 97.5 b< 95 b> 95 b=.95
1 1 - 218 —1.86 —31 120 146 01 07 05
1 2 —-2.62 -2.39 -.75 .38 .49 .00 .19 12
7 1 -2.39 —-2.15 -.72 37 .49 .00 15 .09
7 2 -2.74 —2.53 -120 .-.15 -.03 .00 27 .16
Table ID
1V, Equation (4.3)
Percentile Size of nominal 5% test
¢ 4 2.5 5 50 95 97.5 b < .95 b> 95 =95
1 1 —-2.03 - 1.65 -.02 1.64 1.90 .05 .05 .05
1 2 -2.19 -191 —-.14 1.40 1.66 .03 .07 .06
7 1 -2.09 -1.83 -.21 1.23 1.48 .01 .07 .04
N 2 —-2.40 —-2.06 —.40 1.09 1.33 .01 10 .07

Note: Distributions are from 1000 replications with a sample size of 100, with » = .95, u = .04. Figures for a standard
normal random variable:

Percentile Size of nominal 5% test
25 S 50 95 97.5 <> =
- 1.96 - 1.65 _()- 1.65 1.96 .05.05.05

course means that OLS estimates of y (from (4.2)) and IV and OLS estimates of
b (from (4.3)) tend to be low. This is especially true of OLS estimates of b (Table
10).7

7 Incidentally, while the Table I ¢ statistics for OLS were in general less satisfactory than those for
IV, the OLS point estimates were generally more satisfactory (i.e., closer to the true parameter value).
So if one’s only aim is to obtain a point estimate of b or y to use in subsequent regressions, the OLS
estimator appears to be preferable.
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While the asymptotic normal approximation is far from perfect, Table I
suggests that inference using the approximation is unlikely to be terribly mislead-
ing. Indeed, the approximation seems more accurate here than in some stationary
environments (Evans and Savin (1984)). The adequacy of the approximation
seems especially reassuring since the data in the experiment were fairly noisy.
The population ratio of the mean to the standard deviation of A y,, for example,
ranged from about .1 to about .3; an arbitrarily small value of this ratio of course
results in a small sample distribution of ¥ arbitrarily similar to the nonnormal
distribution that results when the ratio is exactly zero. In Monte Carlo simula-
tions using less noisy data (e.g., quarterly aggregate U.S. consumption data, for
which this ratio is about .6), the asymptotic normal approximation appears to be
even more accurate (Stock and West (1988)).

CONCLUSION

The basic result of this paper is that under fairly general circumstances
ordinary least squares and linear instrumental variables estimators of a model
that can be transformed to have a single nonstationary right hand side variable
are asymptotically normal. This applies even if the disturbance is conditionally
heteroskedastic and serially correlated, with the heteroskedasticity and serial
correlation of unknown form. The usual formulas for calculating the variance
covariance matrix are correct. So hypothesis tests and confidence intervals are
easily constructed, and test statistics yield asymptotically correct inferences
whether or not the regressor is nonstationary. This applies not only to tests about
the coefficient on the nonstationary variable, but to hypotheses about the model
as a whole. In estimation and test of such a model, there is no need to take
special steps to handle the assumed nonstationarity. See West (1987, 1988) for
illustrations of these points.

Useful extensions of the present paper’s environment include allowing for
systems with multiple equations, multiple unit roots, and with nonstationary
variables whose unconditional mean is zero. OLS estimators of such systems are
studied in Phillips and Park (1986) and Sims, Stock, and Watson (1986). See
Phillips and Park (1986) for systems in which none of the regressors are
cointegrated, Sims, Stock, and Watson (1986) for systems with disturbances that
are conditionally homoskedastic and serially uncorrelated.

Woodrow Wilson School, Princeton University, Princeton, NJ 08544, U.S.A.

Manuscript received May, 1986, final revision received September, 1987.

APPENDIX

The Appendix of the working paper version of this paper has more detailed versions of the proofs.
The following notation is used below: AY, = Ay, — p is the indeterministic portion of the Ay, process;
Y, =), —tp=2X,_,AY, is the indeterministic portion of the y, process; E, var, cov are unconditional
expectations, variances, and covariances; “dy < N(0, G)” means “the random variable D; converges
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”

in distribution to a N(0, G) random variable;” unless otherwise noted, all summations run over ¢
from 1 to T; all limits and probability limits are taken as the sample size 7 — oc. Whenever it i
necessary to show that a random variable, say, d;-, converges in probability to a constant, say, d, thi:
is done by showing that lim Ed=d, limvar(d;) = 0.

The proofs to Lemmas A.1 to A.3 may be found in the working paper version of this paper.

LEMMA A.l: Let z, be a zero mean, fourth order stationary random variable such that the (4Y,, z,)
process has ahsolule/y summable second central moments and fourth cumulants. Then
lim E(T~'7°%%LY,z,) = limvar (T~ ! 7°%Y,z,) =0 for any § > 0.

LEMMA A.2: Let AY, have absolutely summable second central moments and fourth cumulants. Ther
plim 77 27°LY, =0 for any § > 0.

LEMMA A3: Let z, be stationary and ergodic, with absolutely summable second central moments, and
let the Ay, process have absolutely summable second central moments and fourth cumulants. Then

plim(TLe?) '/2Ly,z, = (3/2)pEz,.
LEMMA 2.1: Special case of Lemma 3.1.

LEMMA 2.2: What must be shown is that (a) plimZy,/[TEL¢?]'/? = u(y3/2), and (b) plimZy,/Lt?
= u?. Point (a) follows from Lemma A.3, with z, equal to the constant term. Point (b): We have

= (pt+ Y)Y =g 2uY 4 V= Y 2 =2y 2 2uy ey, + Y VR

The limit of (%)~ ' times the first term is u*>. The expectation of the second term is zero; xt is
straightforward to show that since 2} O\EAYAY, ;1 < oo, limvar [(Te?) 'ZeY) =

(Zr*) " 12uX1Y,]1 5 0. By Lemma A2, [(Z:2)'ZY] 5

THEOREM 2.1: Special case of Theorem 3.1.

LEMMA 2.3: Special case of Lemma 3.3.

Lemma 3.1: Dy'Z'e= [T V2L Zle,, (Lt}) V2Zye,] = [T VX Z{e, (L1?) V2Zpte, +
(Z13) 125 Ye,Y. But

plim( Y 2) * Y ve, =0

by Lemma A.1. So

plim D;'Z’e = plim [T’l/zzZ{,e,. ( th) B 1/22’”6’] .

Asymptotic normality of this last random vector follows directly from the proof of Theorem 2(a) in
Hannan (1973).

To show that S is positive definite, I need to show ¢’Sc > 0 for any nonzero (r + 1) X 1 vector c.
Let ¢ =[c{c,] where c, is a scalar. Since S, is positive definite by Assumption 5.b, ¢’S¢ > 0 if ¢, = 0.
So assume ¢, # 0. Let K be the (r + 1) X (r + 1) spectral density matrix of { Z{e,, e, }" evaluated at
frequency zero, which is posmve semldeﬁmte by Assumption 5.b. Then ¢'Sc =
[e][(y3/pe; 1K [c](y3/2pc,] + s(1/4)u2c3 > 0 since the first factor is nonnegative and the second is
strictly positive.

LEmMMaA 3.2: By definition

'Y X, Zi, (TZ:Z)'UZZXI,.V,
(rT0) Eaz (Z0) 'Tw |

Assumption 4.a implies that plim T ZXl,Zl, = EX\,Z/,, Lemma A3 implies that
plim(TX:? )’I/ZZle —(‘/3/2);LE21,, plim(TXs%)~ l/2):,/\’l,y,—(,/3/2);1E/\’1, Lemma 2.2 shows
that plim(X¢?)~'L)? = p*. This establishes that plimC;'X’ZD;!=4. A similar argument estab-
lishes that plim DT‘Z ZD;'=B.

Cr'X'ZDst =
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B may be shown to be positive definite by an argument like that used in the proof of Lemma 31to
show that S is positive definite.

THEOREM 3.1: Let A(T) = C7'X'ZD;', B(T)= D;'Z’'ZD;'. Then Cr(f - B)=
[A(T)B(T)~'A(T Y]~ *4(T)B(T) 'D;'Z’e. The result now follows from Lemmas 3.1 and 3.2.

LeMMA 3.3: It is necessary to show that S j» the (i, j) element of S, converges in probability to S; J»
the (i, j) element of S for 1 <i, j<r+1. Let z, be the ith element of the instrument vector, with

z,.1.,=)- Then §;; is

T m T
fT_l{ Z zitzj!elz + Z k(h’ m)[ Z (zllz_/l—h+ zithzjt)étél~h]}
=1 h=1

t=h+1

T
=fT_l{ Z Zilzjr(élr2 - erz)
=1

m T
+ Z k(h’m)[ Z (Zirzjrh+zuhzj1)(ététh_ererh)]}
h=1

t=h+1

t=h+1

T m T
+le{ Z Zuz/relz + Z k(hy m)[ Z (Zitzjt—h +zn—hzjr)elelh]}
=1 h=1

where (2) fr=T if 1<i, j<r, ®) fr=St* if i=r+1=j,(0) fr=(TL*)/? if i=r+1#jor
i#r+1=j. By considering cases (a), (b), and (c), separately, it is straightforward though extremely
tedious to show that the first term in braces after the equality converges in probability to zero, the
second to S; ;. The details are in the Appendix to the working paper version of this paper.

LemMa 3.4: By Lemma 3.2, D;'Z’ZD;' 5 B = it suffices to show 6(0) 2, 6(0). Let 6= W — XB.
We have
6(0) =T ee=T"Y(w— XB) (W - XB) =T [e— X(B-B)][e-X(B-B)]
=T lee—2[T'Xe)(F-B) +(B-B)(T'XX)(B-B)
=T Yee-2[T'C7iXe]'Cr(B-B)
+Cr(B-BY[T'crixxcrt]c (B~ B).

The first term converges in probability to ¢(0), by ergodicity. We have T~ 1c;'X’e 5 0 since
T=12[T-'L X,,,] % 0 by ergodicity and 7~ ![¢*)~'/?Ly,e,] > 0 by Hannan (1973) and Lemma
A.2. Arguments similar to those in Lemma 3.2 can be used to establish that C;-'X’XC7 ! converges in
probability to a matrix of constants = T~ '[C;'X'XC7']% 0. Since Cr(B—B) is bounded in

probability, the second and third terms in the last line of the equation for 6(0) converge in probability
to zero.

LEMMA 3.5: Follows immediately from Lemma 3.2 and Theorem 3.1.

THEOREM 3.2: Let A(T)=_C7'X'ZD;', B(T)= D;'Z'ZD;'. Then Cr(B-B) =
[A(T)D;S Dy A(T Y] "A(T)D;S Dy (D5 'Z’). Since Dy 'SD;! converges in probability to a

nonsingular matrix by Assumption 7, and Dr is nonsingular, Dr-S ~1D, converges in probability to
plim(D;'SD;1)"! = 1. The result now follows from Lemmas 3.1 and 3.2.

THEOREM 3.3: Let A(T)= Cy'X'ZD;', V=[X'ZS1Z'X]~!. We have
é=e— X(ﬁ—ﬁ) —e— XVX'ZS 'Ze
=Z'e=[1-ZXVX'Z§)Ze
= D;'26=[1-A(T)CrVCrA(T) DS 'Dr | D' Ze.
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So Dy 17'é converges in distribution to a N(0, Q) random variable,
Q=[I-AVAS '|S[I-AVAS '] =S - A'VA,
V=plimC,VCr=(AS™'4")

Let $™'/2 be such that plim S~ /2D, = §~ /2, where (§~'/2yS~ /2= 8§~ ! Then (S~ /2D;) D; ..
is asymptotically normal with variance-covariance matrix / — S~ !/24'VA(S /2y Since this cov:
ance matrix is idempotent and of rank (r — k) (see Hansen (1982)), the result follows.

THEOREM 3.4: This will first be shown for two cases, which are not necessarily mutually exclusi
It will then be shown that the assumptions of the Theorem imply that all tests fall in at least one
the two cases. . .

Case (a): The rank of the first k columns of G is ¢. Partition V' so that C;-V'Cy can be writi

CoiC - TV, (Tzf )1/_1712
o (thz)l/zl;llz (2’2)522 4

Note that because C,rVC, converges in probability to a matrix of constants, plim(7V,,)
plim (75,,) = 0. Define the (k + 1) X (k + 1) matrix Q as
plim ( ™V, ) 0
0 0

SoVT (B - B)is asymptotically normal with variance covariance matrix Q (Rao (1973, p. 122, x(«¢

Under the null hypothesis, ‘/T(GB 8) = Gﬂ‘(B B)= plxm[‘/T(GB g0)] = G plim [‘/T(B -
2 N(0,GQG"). GQG’ is nonsingular since plim(T¥,,) and the first ¢ columns of G each have rank
So ,/T(Gﬁ £20)I'GOG'T™ l[‘/T(GB 20)] is asymprotically x*(q), as is ‘/T(GB g)'[TP] ' [/T(
— &o)] for any matrix P such that plim[TP — GQG’] = 0 (White (1984, Corollary 4.24 and Theor:
4.30)). It is easy to verify that this is satisfied in particular for P = GVG’, since plim(TV,,)
plim (73,,) =0

Case (b): There is a nonsingular (¢ X ¢) matrix R such that RG has zeros in (i) row ¢, column.
to k, and (ii) column k£ + 1, rows 1 to ¢ — 1.

Let Fr=diag[T'?,...,T?,(Zt*)"/?] be g X g (s0, e.g., g=k + 1 = Fr= C;). Then Fr(RG)
(RG)Cy by the assumed diagonal structure of RG. So

plim [ FrR(GB - go)] = plim FRG[(B - B)]
= RG[plimCr (B - B)] 2 N[0, RG(plimC,PC, ) G'R]

= [FR(GB - g)] [RGC,VCrG'R] [ FrR(GB - g))]

0=

is asymptotically x2(gq). But
%) ’ % ]! 5]
[ FrR(GB - g)] [ RGCPCrG'R) [ FrR(GB - g5)]
%) ’ S ) %)
= (GB_go) [GVG ] (GB’SO)~

To show that all tests fall in at least one of the two cases: Suppose that the rank of G(a), t
(g X k) matrix consisting of the first k columns of G, is less than ¢. There is then one row in G (¢
say, the last row, that is a linear combination of the other (¢ — 1) rows. Then there exists
nonsingular (¢ X ¢) matrix, say, H, such that HG has zeros in row g, columns 1 to k, and, since G
of rank ¢, a nonzero number in row ¢, column k + 1. Given this, there is a nonsingular (g X

matrix, say, J, such that the last row and column of JHG have zeros everywhere except for row
column k + 1. R=JH is then a matrix that satisfies case (b).

COROLLARY 3.1: (a) As in Theorem 3.1, let B=[X'Z(Z'Z) 'Z'X] 'X'Z(Z'Z) 'Z'W. Sin
B*=PB, 6* =¢é,= V*=PVP’. Since TV*(f— B)2 N(O.plimTV) (see the proof of Theorem 3.
T'2(B* — B*) £ N(O, plim TV*).

(b) Similar to the proof of (a).

(c) This statistic is algebraically identical to the Theorem 3.3 statistic.

(d) This statistic is algebraically identical to the Theorem 3.4 statistic for H,: GPB — g, =0.
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