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This paper develops and applies a novel test of the Holt et al. linear
quadratic inventory model. It is shown that a central property of the
model is that a certain weighted sum of variances and covariances of
production, sales, and inventories must be nonnegative. The weights
are the basic structural parameters of the model. The model may be
tested by seeing whether this sum is in fact nonnegative. When the
test is applied to some nondurables data aggregated to the two-digit
SIC code level, it almost always rejects the model, even though the
model does well by traditional criteria.

I. Introduction

The linear quadratic inventory model, originated by Holt et al.
(1960), has been the basis of much theoretical and empirical work on
manufacturers’ inventories of finished goods. The model argues that
the basic reason firms hold finished goods inventories is to smooth
production in the face of randomly fluctuating sales. In some versions
of the model a desire to avoid sales backlogs provides an additional
motive for holding inventories.' That firms might hold inventories
for these reasons seems theoretically compelling (Blinder 1983), and
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much empirical work has been interpreted as being supportive of the
model (e.g., Blanchard 1983).

Some basic facts about finished goods inventories, however, seem to
contradict the spirit if not the letter of this model. The model suggests
that firms will smooth production by building up inventory stocks
when sales are low and drawing down stocks when sales are high
(Summers 1981). As is well known, however, manufacturers generally
do precisely the opposite. Stocks tend to be decumulated in cyclical
downturns and accumulated in cylical upturns (Blinder 1981a). In
addition, it has been suggested that the fact that production has a
larger variance than sales in many industries is inconsistent with the
model (Blinder 1982, 1983; Blanchard 1983). The argument presum-
ably is that firms could always make production exactly as variable as
sales by holding no inventories. So if firms are holding inventories to
smooth production, they do not appear to be doing so very success-
tully.

It is, however, somewhat difficult to evaluate this seemingly un-
tavorable evidence and to balance such evidence against the favorable
results found in recent econometric studies such as Blanchard (1983).
None of the authors cited in the previous paragraph formally estab-
lishes any implications of the production smoothing model for vari-
ances and covariances of inventories, sales, and production. Still less
does any try to quantify the economic or statistical significance of the
aspects of inventory behavior apparently inconsistent with the pro-
duction smoothing model. Therefore, whether these aspects provide
no or considerable evidence against the model has not yet been estab-
lished.

This paper formally establishes an inequality summarizing the im-
plications of the production smoothing model for the variances and
covariances of inventories, sales, and production and then uses some
aggregate data to test the inequality statistically. It turns out that the
model is consistent both with accumulation of inventories in cyclical
upturns and with production being more variable than sales, at least
when a desire to avoid sales backlogs provides a motive for holding
inventories (Blanchard 1983). But even the model that allows for such
a desire restricts the movements of inventories, sales, and production
so that only a certain amount of excess variability of production is
consistent with the model. The inequality that this paper derives sum-
marizes these restrictions.

The inequality is derived by comparing how much better off the
firm could have expected to have been by ignoring random sales
fluctuations and simply letting inventories increase from period to
period at their trend rate of growth. This may be calculated as the
difference between expected costs under this static policy and the



376 JOURNAL OF POLITICAL ECONOMY

policy that is optimal according to the model. This difference, which
should be nonnegative if the model is correct, may be expressed as a
simple weighted sum of certain variances and covariances of inven-
tories, sales, and production. The weighted sum includes in particular
the excess of production over sales variability. The weights are the
basic structural parameters of the model, obtainable in standard fash-
ion from a Euler equation. Even if all the estimates of parameters are
right signed and significant, the estimate of this difference in princi-
ple may be insignificantly positive or even negative.

If the difference is negative for a given set of data, it seems unlikely
that inventories truly are chosen in accordance with the supposedly
optimal policy and therefore unlikely that the model is correct. The
inequality quantifies the cost savings produced by the optimal inven-
tory policy; that is, it quantifies the extent to which firms cut costs by
adjusting inventories in response to random sales fluctuations. If the
model is correct, a violation of the inequality indicates nonsensically
that firms adjusted inventories to increase costs. Such violation would
therefore mean that there is no evidence that production smoothing
provided the motive for holding inventories.

And in fact, for almost all of the aggregate nondurables industries
studied here, the inequality us violated; that is, the allegedly optimal
policy for almost all the industries could have been expected to in-
crease costs relative to the static one. The increase is statistically
significant about half the time. Moreover, it is economically large,
with expected deviations of costs from trend that are up to 50 percent
higher than under the static policy. This strongly suggests that in
these industries production smoothing does not provide the only mo-
tive for holding inventories.

The conclusion that the model does not adequately explain the data
considered here seems particularly compelling since the test per-
formed here requires relatively few economic or statistical assump-
tions. The test, for example, is consistent with but does not require
the assumptions about market structure, causality, and demand made
in the recent studies of Eichenbaum (1982) and Blanchard (1983).
Also, and again in contrast to Eichenbaum (1982) and Blanchard
(1983), it is computationally straightforward, requiring only linear
estimation. In fact, in some cases, it could be concluded that the static
inventory policy would be expected to cost less than the supposedly
optimal policy without even calculating any of the model’s parame-
ters. All that was required was the calculation of certain variances and
covarlances. Since the test easily extends to cover other linear qua-
dratic models, and perhaps some nonlinear models as well, it may be
of general interest.

This is especially so since the test appears to be economically more
informative than the usual test of cross-equation restrictions, at least
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in the present case. The significance of a rejection or acceptance of
the variance bounds test can be measured not only in statistical but
also in economic terms, by the calculation of the increase in expected
costs mentioned above. In addition, the test itself suggests a reason
for any rejection that occurs: some unexplained factors are making
production too volatile. This indicates that the model needs to be
modified to account for such excess volatility, and the concluding
section to this paper briefly discusses some possible modifications. In
contrast, statistical rejections of tests of cross-equation restrictions of-
ten appear to be difficult to interpret in economic terms (e.g., Blan-
chard 1983, p. 387).

To prevent misunderstanding, it should be emphasized at the out-
set that the innovation in the present paper is not in the model used
but in the test performed. Two general formulations of the model are
studied, both drawn from the existing literature on the linear qua-
dratic inventory model. The two are motivated only briefly and un-
critically. A critical evaluation of the model may be found in Blinder
(1983) and West (1983a). The two were chosen because they are
representative of the many versions of the model that have been
formulated. Both are not only quite similar to most versions studied
but are even identical to or strictly more general than some (e.g., Holt
et al. 1960; Belsley 1969).

But the two of course do not incorporate all aspects of all formula-
tions of the model. It is worth mentioning in particular that both
follow the mainstream of work in the model and assume that inven-
tories are held to cut production and possibly backlog costs in the face
of randomly fluctuating sales. Some recent formulations of the model
such as Blinder (1983) allow inventories also to serve to cut produc-
tion costs in the face of randomly varying production costs. Exten-
sions of the present paper to cover this and other major extensions to
the linear quadratic model are left for future work.

The paper is organized as follows. Section II develops the test,
Section 111 contains empirical results, and Section IV contains conclu-
sions. An Appendix contains econometric details.

II. The Test
This section first describes the model and then derives an inequality
that is central to the test.

A. The Model

The model under consideration is intended for finished goods inven-
tories in so-called production to stock industries (Abramovitz 1950;
Rowley and Trevedi 1975). Its precise formulation varies from author
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to author, and this paper’s empirical work tests two versions. Both
may be derived from the following general model. Firms producing a
single homogeneous good maximize expected discounted real profits:

x

max E, 2(1’,{(1),5,) — dblap(AQ ) + a(Q))*

=0
+ as(H, — (1381+l)2]} (1)
st.Q, =S, +H, —H,_,,

where £, = mathematical expectations, conditional on information
available at time 0; d, = fixed real discount rate, 0 < d, < 1; do =
fixed rate of technological progress, 0 < dy = 1; p, = real price in
period ¢; S, = units sold in period ¢; Q, = units produced in period ¢;
H, = units of finished goods inventories at the end of period ¢; and q;
= strictly positive parameters.

Two general comments on equation (1) will be made before the
individual terms of the equation are briefly discussed. First, the firm’s
choice variables have been left unspecified intentionally. The estima-
tion here is consistent with any of the standard ones: output only
(Belsley 1969) or inventories only (Blanchard 1983) in models in
which sales are exogenous; output, inventories, and sales in models in
which the firm is a perfect competitor (Blanchard and Melino 1981;
Eichenbaum 1982);> output, price, and inventories in models in which
the firm is a monopolist (Blinder 1982). The firm’s information set
has been left unspecified for the same reason.

Second, for the present, all variables should be assumed to be devia-
tions from trend (where trend should be understood to encompass all
deterministic components, seasonal as well as secular). This assump-
tion is made for algebraic simplicity and will be relaxed shortly. We
wish to derive some restrictions that are implied for arbitrary trend,
and the algebra is less cluttered when trend terms are set to zero.

The first term in parentheses in equation (1) is revenue; the term in
brackets is costs. Although the revenue function will play no role in
the bulk of this paper, it is worth pointing out some of the implica-
tions of its presence at this initial state to emphasize the generality of
the tests performed here. The market may be perfect (Eichenbaum
1982) or imperfect (Blinder 1982). Price speculation on the supply
side (Eichenbaum 1982) or perhaps even on the demand side may be

? The Blanchard and Melino (1981) and Eichenbaum (1982) models do not fit pre-
asely into this framework, mainly because in effect they include the term a,uw, . ,Q, ,, in
the cost function, where w, ;15 the wage and «, another positive parameter. As will
become apparent, the inequality to be derived here is approximately correct if
afcov(w, s) = cov(w, Q)] is small compared with the other terms in the inequality.
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present. Pricing and production decisions may be made simulta-
neously (Blinder 1982; Eichenbaum 1982) or separately (Holt et al.
1960). In short, Summers’s (1981) criticisms of inventory models that
ignore interactions between firms and their customers are not rele-
vant here.

The term in brackets in (1) is costs. These are the focus of the
model and, here as elsewhere, are central. Total costs per period are
the sum of three terms. The first is the cost of changing production,
which is quadratic in the period-to-period change in the number of
units produced. This represents, for example, hiring and firing costs.
The second is the cost of production, which is quadratic in the num-
ber of units produced. This approximates an arbitrary concave cost
function that results as usual from a decreasing returns to scale tech-
nology.

The third and final term embodies inventory and backlog costs and
is quadratic in how far inventories are from a target level. A brief
explanation of its rationale is as follows (see West [1983a] for a
lengthier discussion and critique). Inventory holding costs (e.g., stor-
age and handling charges) are reflected in a,. The parameter as is the
ratio of inventory to expected sales that would be set in the absence of
both types of production costs (ap = a; = 0). Not all authors agree
that this ratio should be anything but zero, and the two major varia-
tions in (1) accommodated in the tests here turn on whether as is
allowed to be nonzero. Those who do so (Holt et al. 1960; Eichen-
baum 1982; Blanchard 1983) argue that sales sometimes exceed in-
ventories on hand, forcing firms to backlog orders. Firms face costs
when such a backlog develops, perhaps because of loss of future sales.
Thus, ceteris paribus, when expected sales are higher, inventories
should be higher as well. The target level for inventories, asE,S, 4,
trades off backlog and inventory costs. In this model with a target level,
inventories can serve two functions.” They can buffer production,
allowing it to be smoothed in the presence of fluctuating demand, and
they can cut backlog costs. Optimal inventories balance production,
holding, and backlog costs.

Some other authors, however, insist that in the absence of produc-
tion costs the target level for inventories would be zero (Belsley 1969;
Auerbach and Green 1980; Blinder 1982). They impose a3 = 0. In-
ventories are then held purely to smooth production. In this model

*That is, inventories serve two functions apart from any they may serve on the
revenue side. In the general formulation of the model used here, inventories may also
serve, say, to allow the price speculation by producers that is emphasized in Eichen-
baum (1982). This comment also applies to the model without a target level.



380 JOURNAL OF POLITICAL ECONOMY

without a target level, optimal inventories balance savings in production
costs against the costs of carrying inventories.

The tests performed here will thus accommodate equation (1) both
with and without a target level for inventories.

B.  An Inequality

We now derive an inequality that compactly expressed the production
smoothing motive for holding inventories by calculating the effect
inventories have on expected costs.? (The algebra carries along as.
The effect in models without a target level is obtained simply by
setting ag = 0 in the manipulations that follow.) According to the
model, firms solve (1) subject to transversality and market equilibrium
conditions to select optimal H¥ and/or Q¥ (and, as noted above, possi-
bly pi¥ and S¥ as well). In this optimal closed-loop policy, the endoge-
nous control variables are set by a feedback rule, with their optimal
period ¢ values a function of their own past values and past and
present values of forcing variables.

Let us assume that the sequences {H}}, {Q#}, and {S#} are covariance
stationary. Methods for calculating this stationary solution in particu-
lar cases may be found in Holt et al. (1960), Eichenbaum (1982), and
Blanchard (1983). Let EoV{ be the expectation at time 0 of the value
of the objective function that results from this policy:

Eo > d{(prs®) — dblag(AQH? + ai(QP)?
=0

2
+ ag(HF — asS# )%} @

Let £,V be the expectation at time 0 of the value of the objective
function that would result from the alternative policy of setting Hy =
0 in every period, Q' = S = S¥. Price pi* = pi will in general still be
consistent with buyers demanding S7* = S#.° The value of the objec-
tive function under this alternative policy is then

<

Eo D di{(prsr) — dblao(ASH? + a\(SF)?
t=0

o 3)

+ as(—asS¥ )7}

"I thank both Robert Shiller and Lawrence Summers for (independently) suggesting
to me the basic argument of this section.

 Except if the firm has some market power and demand depends on actual or
expected production or inventories. As far as I know, this assumption has never been
made in this class of models.
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This alternative decision rule in general is feasible. (The only ap-
parent circumstance under which the policy is not feasible is when
production takes place with a lag and inventories absorb sales expec-
tational errors, as in Blinder [1982]. Even here the inequality about to
be developed may be considered approximately correct if those errors
are small relative to the size of the inventory stock, as seems rea-
sonable.) By assumption, then, since VEis optimal, EVE=E\Vi. Now
E V& and E V§ are random with respect to unconditional information
and E\ZV§ — EoVi is a well-defined random variable with respect to
this information set. Since it is nonnegative it has a nonnegative ex-
pectation. Thus E(E\V§ — EoV§) = 0. By the law of iterated expecta-
tions, then,

EVE=EVE—E D df(pis#) — dlao(AQP? + ay(Q¥)?

t=0

+ as(HF — asS#. )%} (4)

= £ ) di(prSP) — dslaoASH? + ai(SH? + ax(—asSE ).
=0
Let var(Q*) = E(Q;")2 denote the variance of production and cov(Q,
Q1) = E(QFQ# ) its first autocovariance, with analogous notation
for other variables. (No time subscripts are necessary by the assump-
tion of covariance stationarity.) Also define d = d;dy. With this nota-
tion (4) becomes

> dE@ESH) — . d'lag var(AQ¥) + a; var(Q¥)

t=0 t=0
+ ay var(H* — a3S*% )]
< x r
= Z dVE(pESF) — Z d'lag var(AS*) + a; var(S*) ©
=0 =0

+ ao var(—asS*)].

Using Q, = S, + H, — H,_, where convenient, expanding var(H* —
asS% ) = var(H*) — 2as cov(H*, $% ) + a5 var(S¥®), moving all terms
to the left-hand side of the inequality, and then applying the standard
formula for a geometric sum transforms (5) into
0 < (1 —d)” Yag[var(AS*) — var(AQ*)]
+ a;[var(S*) — var(Q¥*)] (6)
— ay var(H*) + 2asas cov(H*, S% |)}.
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It is the two versions of this inequality—with and without a target
level—that will be tested:

0 < (1 — d)” Yaglvar(AS) — var(AQ)]
+ a;[var(S) — var(Q)] — ag var(H)},
0 < (1 — d)” Yao[var(AS) — var(AQ)]
+ aj[var(S) — var(Q)] — ag var(H) (7.b)
+ 2asa3 cov(H, S )}.

(7.a)

The * superscripts have been dropped in accordance with the null
hypothesis that observed H, S, and Q accord with the optimal solution
to (1).

Inequalities (7.a) and (7.b) have been derived assuming that all
variables have zero unconditional expectations. They still hold even
when such expectations are nonzero and firms account for them
when maximizing expected discounted profits. Let the variables in (1)
include deterministic components—constant, time trends, seasonal
dummies, and so forth—and add linear terms such as a10(AQ,) to the
cost function in equation (1). Itis then easily verified (see West 1983a)
that if the alternative policy is the no-feedback, open-loop one that
sets inventories equal to their unconditional expectation each pe-
riod—H7}' = EH¥, p} = p,, S = S¥, Q) = S§ + E(Hf — H¥_|)—the
inequalities in (7) still result.® (Note that this alternative policy entails
varying inventories from period to period if inventories display a time
trend or seasonal variation.) For the remainder of the paper, (7.a) and
(7.b) will be understood to apply to just such a model with determin-
istic terms. It should be noted again that for expositional convenience
all such terms will be referred to as trend, even though the word
“trend” is perhaps somewhat misleading if deterministic seasonal fluc-
tuations are present or if secular growth is not.

In this light, let us interpret (7.a) and (7.b). The right-hand sides of
these two equations describe the cost savings that could be (uncondi-
tionally) expected to result from setting inventories optimally rather
than without feedback. The first two terms express differences of
production costs, the third that of inventory costs, and the fourth, in
(7.b), that of costs of inventories that deviate from their target level.
The expected difference in inventory holding costs, —ay var(H,), is
always negative. Therefore, according to the model, these expected
cost increases are more than offset by savings elsewhere (otherwise
the optimal policy would not be optimal). Inequality (7.a), applicable

“ See Bertsekas (1976, pp. 191-92) for a definition of an “open-loop” policy. Strictly
speaking, setting H;' = EH is the open-loop policy only if inventories are the only
control.
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when there is no target level, says that the firm must expect to save
either on costs of changing production—var(AQ) < var(AS)—or on
costs of production—var(Q) < var(S)—or both, and the expected
savings must be large enough that overall expected costs are lower;
that s, (7.a) holds. Similarly, (7.b), applicable when there is a target
level, says that the optimal policy must be expected to more than
offset increases in expected inventory holding costs with expected
savings in production or target level costs.

Thus it would seem to be a minimal economic requirement that
(7.a) and (7.b) be satisfied by data that are to be explained by the
model. The inequalities merely ask that the optimal policy be ex-
pected to cost less than the static one. The static policy is the one that
would be optimal in the absence of any random fluctuations in sales.
The inequalities therefore summarize how production, sales, and in-
ventories are expected to interact as they are dynamically adjusted in
response to sales shocks. And this is precisely what the model pur-
ports to explain. It is perhaps reasonable, therefore, to ask that the
data not only satisfy (7.a) and (7.b) but do so to an extent that is
significant in economic or statistical terms.

The next section sees how well some aggregate nondurables data
satisty these inequalities. Given that (7.a) and (7.b) have been derived
for a single firm, however, it is appropriate to make a remark on
aggregation before examining these empirical results. The in-
equalities do still hold at an aggregate level, provided that all the
parameters representing technology (e.g., the a;'s) and the stochastic
characteristics of forcing variables (i.e., their autoregressive moving
average [ARMA] parameters) are the same for each individual firm.
As is explained in detail in West (19834), under these sufficient
though perhaps not necessary conditions each firm’s behavior is sum-
marized by a set of linear regressions with identical coefficients on the
regressors. As usual, therefore, the model aggregates exactly, and
aggregate behavior is characterized by the same set of regressions. It
is no surprise, then, that aggregate production, sales, and inventories
satisty (7.a) and (7.b) for arbitrary correlations of production, sales,
and inventories across firms.

III. Empirical Results

Data and estimation are described briefly before the basic and some
additional empirical results are presented.

A. Data

The data were real (1972 dollars) and monthly. Both seasonally ad-
Jjusted and unadjusted data were used. Seasonally adjusted data were
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available for 1959—80 for aggregate nondurables and for all six two-
digit industries that Belsley (1969) identified as operating in produc-
tion to stock markets: food (SIC 20), tobacco (SIC 21), apparel (SIC
23), chemicals (SIC 28), rubber (SIC 30), and petroleum (SIC 29).
Seasonally unadjusted data were available for aggregate nondurables
and three two-digit industries (chemicals, petroleum, and rubber).
Again, durable goods and the remaining nondurable goods indus-
tries were excluded because the model is intended to apply only to
industries that produce to stock, and, according to Belsley (1969),
none of these other industries produces to stock.

Sales were obtained by using the appropriate wholesale price index
to deflate the Bureau of the Census nominal figures for sales (all
figures found in the Citibank Economic Database, in Bureau of the
Census [1978, 1982] or obtained directly from the Bureau of the
Census). The seasonally adjusted inventory figures were obtained by
converting the bureau’s recently calculated constant-dollar seasonally
adjusted finished goods inventory series (Hinrichs and Eckman 1981)
from “cost” to “market” so that $1.00 of inventories represented the
same physical units as $1.00 of sales (see West [1983b] for a definition
of “cost” and “market” and an explanation of why a conversion was
necessary). As in Reagan and Sheehan (1982), the seasonally unad-
Justed constant-dollar inventory figures were obtained by multiplying
the adjusted figures by the corresponding ratio of unadjusted to ad-
Jjusted figures for book value (nominal) finished goods inventories.
(This procedure was adopted since no unadjusted constant-dollar
data appear to be available. It makes the plausible assumption that the
“seasonal deflator” is the same for book value and constant-dollar
inventories.)” Production was obtained from the identity Q, = §, + H,
- H,_,.

B. Estimation

The sample period covered 1959:5-1980:10, with 1980:11 and
1980:12 used for leads and 1959:2—1959:4 used for lags. All regres-
sions included deterministic terms: a constant and a time trend, and,
for seasonally unadjusted data, seasonal dummies as well .8

7 An alternative method for calculating unadjusted constant-dollar inventories would
be to deflate unadjusted book value inventories by the appropriate wholesale price
index. Given the massive switch from FIFO to LIFO accounting in the 1970s and
cyclical differences in output price vs. input cost (see Foss et al. 1980), this is likely to
lead to estimates substantially inferior to those derived as described in the text.

" It should be noted that in Reagan and Sheehan’s (1982) time-series study of pre-
cisely the unadjusted aggregate data used here, it was found that seasonal dummies
alone successtully accounted for the seasonal variation in inventories. There appeared
to be no need to allow for indeterministic seasonal components.
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Three specific aspects of estimation will be briefly discussed. These
are estimation of the q;, of the second moments of inventories, sales,
and production, and, finally, of the standard error of (7). (Through-
out this section, references to eq. [7] should be understood to be
shorthand for [7.a] and [7.b].) Additional details will be found in the
Appendix and in West (1983a).

The a; in the model with a target level were obtained as follows.
(The same procedure was applied to the model without a target level,
except that as = 0 was imposed.) A necessary first-order condition to
solve (1) at ime ¢ = ¢, is obtained by differentiating (1) with respect to
H, and setting the result equal to zero:”

E2[d*aoH, o — (2d%ay + 2day + da\)H, -
+ (d*ay + 4day + ay + da; + a; + as)H,
- (Qay + 2day + a)H,—| + apH,_» (8)
+ d%apS,;+0 — (d%ay + 2day + da; + asas)S,.
+ 2day + ay + a))S, — ayS,~; + deterministic terms] = 0.

After defining lower-case ¢, = dQ, — Q,_ and dividing this first-order
condition by two, the Euler equation (9) results:

Et{“()d(lf+2 = a1 + ao(l + d)]qH—l + aoq;

L 9
+ aoH, — asasS,., + deterministic terms} = 0. ©)

A normalization is required to estimate the a;. The normalization
chosen is arbitrary since changing the a; by a scale factor does not
change inequality (7). The normalization used was a; + (1 + d)ay =
1, so (9) becomes

G = aoldqivo + q) + aoH, — asasS,+\

C (10)
+ u;, + deterministic terms,

where the disturbance u,, has a moving average component.'” With a
monthly value of d imposed (10) can be estimated by instrumental
variables. The results here report d = .995 (corresponding annual
rate is about 6 percent); results with d = .990 and d = .999 were

Y This assumes that dp,,S,.;/dH, = 0. This is consistent with any linear quadratic
inventory model that I am aware of, including not only those in which sales are exoge-
nous (e.g., Belsley 1969) but also those in which they are jointly endogenous with
inventories (Blinder 1982; Eichenbaum 1982).

""If production and sales decisions are made simultaneously, u,, is MA(1). But if
production is decided before sales are known, as in Blinder (1982), u, is MA(2). It
seemed desirable to adopt a procedure that was consistent under those circumstances,
so the estimation procedure allowed for an MA(2) disturbance.
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virtually identical. The six instruments used apart from the determin-
istic terms in (10) were three lags each of inventories and sales. The
estimation required two steps, as described in Hansen and Singleton
(1982). The first step calculated the variance-covariance matrix of the
uy,, and the second obtained the optimal instrumental variables es-
timator. See the Appendix and West (1983a) for further details. Since
the equation is overidentified—the model without a target level has
four fewer right-hand-side variables than instruments, and the one
with a target level has three—Hansen’s (1982) test of overidentifying
restrictions was calculated.

Variances and covariances were calculated from bivariate (inven-
tories, sales) autoregression of order three:'!

H, = deterministic terms + & H,_| + &boH,_o
T disH iy + diaSio + 1580 + dieSims + ug,
S; = deterministic terms + boH,_ | + ook, _o (11)

T bosH 3 + doaSi o + bosSimo + doeSi—y + ua,.

The Yule-Walker equation using the estimated ¢;; was then used in
the standard way (Anderson 1971, p. 182) to obtain the needed sec-
ond moments of sales and inventories. The second moments of pro-
duction were derived from the identity Q, = S, + H, — H,_,; for
example, var(Q) = var(S) + 2 cov(S, H) — 2 cov(S, H_)) + 2 var(H)
— 2 cov(H, H_)).

Finally, the standard error of the statistic (7) was derived as follows.
Let 8 be the parameter vector needed to calculate (7). Vector 0
consists of the coefficients on the right-hand-side (RHS) variables in
the three-equation system consisting of (10) and (11) and the three
elements of the covariance matrix of the error terms in (11). Thus 0 is
(I X 24) for seasonally adjusted data (24 = 15 RHS variables explic-
itly listed in [10] and [11] + 6 constant and trend terms + 3 elements
of the variance-covariance matrix of the residuals in [11]). Similarly,
0 is (1 x 57) for seasonally unadjusted data. The estimated 0 is
asymptotically normal with a covariance matrix V defined in the Ap-
pendix. The statistic (7) is a function of @, say g(@), and thus is
asymptotically normal with covariance matrix (dg/d0)V(dg/d®)'. The
standard error of (7) is the square root of (dg/d®)V(dg/d®)'. The
derivatives dg/d® were calculated numerically.

" This is not to say that the model (1) implies that inventories and sales follow such
an autoregression. In general, however, it does imply that they follow a bivariate
ARMA process of some order (Hansen and Sargent 1981). The order of the ARMA
process cannot be tied down without making auxiliary assumptions that 1 have been
at pains to avoid making. The AR process assumed in the text should be considered
an approximation to this ARMA process.
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It is to be noted that this procedure takes into account not only
the uncertainty in the estimates of the a; but also in the estimates of
the first and second moments. The procedure also accounts for the
covariance between the estimates of the ¢; and of moments. Again, for
details see the Appendix and West (1983a).

C. Results

I will shortly present estimates of the size and the standard errors of
the right-hand sides of (7.a) and (7.b) for the data described above.
This will require estimates not only of the appropriate variances and
covariances of inventories, sales, and production but of the a; parame-
ters as well. First, however, let us consider whether these data are
qualitatively consistent with the inequalities by examining the appro-
priate second moments. Tables 1 and 2 present these for seasonally
adjusted and unadjusted data, respectively.

It follows immediately from the trivial calculations underlying the
entries in tables 1 and 2 that for both seasonally adjusted and unad-
justed data, the model without a target level violates (7.a) for almost
all industries. (The only possible exception is chemicals.) Columns 5—
7 indicate that for all but the chemical industry var(AS) — var(AQ) <
0, var(S) — var(Q) < 0, and, of course, var(H) > 0. Since the q; are
known a priori to be positive, it follows that for all but chemicals 0 >
ag[var(AS) — var(AQ)] + a;[var(S) — var(Q)] — ag var(H). In other
words, according to the model itself, the static, no-feedback policy of
letting inventories grow at their trend rate would have been expected
to be preferable to the optimal policy that the model claims actually
was followed: lower costs of changing production, lower costs of pro-
duction, and lower inventory costs. From these simple calculations we
can conclude that, with the possible exception of the chemical indus-
try, the data studied here are inconsistent with the model without a
target level. This suggests that backlog costs, whose existence is used
to rationalize a nonzero target level, are of crucial importance to this
model.

It also follows from tables 1 and 2 that even the model with a target
level is inconsistent with the seasonally unadjusted behavior of the
petroleum industry, since inventories here covary negatively with
next period’s sales. Relative to the static policy, the optimal policy that
supposedly was followed would have been expected to increase all the
costs just noted and the cost of being away from a target level as well.
Thus this data set is incompatible with the model, with or without a
target level. For the remaining industries, (7.a) and (7.b) cannot be
signed without the a;. Let us therefore turn to precise calculation of
the inequalities.

Tables 3 and 4 present the g, for the models with and without a
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TABLE 3

STRUCTURAL PARAMETERS, MODEL WITHOUT A TARGET LEVEL

ay a, Qo J*

Raw Data Seasonally Adjusted

Aggregate .2443 5126 0129 12.69
nondurables (.0453) (.0903) (.0188)

Food 3377 3261 —.0000 6.61
(.0585) (.1167) (.0175)

Tobacco 0373 9256 0311 4.27
(.0828) (.1652) (.0510)

Apparel 3844 2332 .0169 8.10
(.0539) (.1075) (.0123)

Chemicals 4074 1872 0160 12.91
(.0627) (.1251) (.0172)

Petroleum 1399 7209 0418 7.42
(.0826) (.1648) (.0235)

Rubber —.0501 1.0999 —.0083 7.91
(.1150) (.2294) (.0354)

Raw Data Seasonally Unadjusted

Aggregate —.1093 1.2182 —.0038 19.92
nondurables (.0931) (.1857) (.0273)

Chemicals 3530 2958 0224 14.48
(.0839) (.1674) (.0198)

Petroleum 3300 3417 L0395 4.85
(.0555) (.1107) (.0127)

Rubber 4204 1612 —-.0117 4.17
(.1058) (.2111) (.0254)

Nore.—Variables are defined in the text. Asvmptotic standard errors are in parentheses. Standard errorona; =
I = (1 + d)ay = 1 — 1.995q calculated as 1.995 times the standard error on ag.
* ] distributed as x* with 4 df; critical levels: 9.49 at .05, 13.28 at .01, and 14.86 at .005.

target level, respectively. Almost all the parameter estimates are in-
deed positive. Consider the model without a target level first. With
seasonally adjusted data 11 of 14 free signs on the a; are correct, and
with unadjusted the figure is 5 of 8. The number of free signs is
14 and 8 rather than 21 and 12 because the normalization rule a, +
(I + d)ay = 1 constrains either a, or @ to be positive in each equation.
The comparable figures for the model with a target level are 19 of 21
and 9 of 12. Only two of the wrong-signed coefficients are significant
at the .05 level (a, in the model with a target level for both seasonally
adjusted rubber and seasonally unadjusted aggregate nondurables).
In most equations the production cost a; and the cost of Lhdngmg
production ag are significant. Somewhat puzzling is the imprecision of
the estimates of the inventory holding cost as and the target level
parameter ay, which are rarely significant at the .05 level. They are,
however, almost always positive and stand here in about the same
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TABLE 4

STRUCTURAL PARAMETERS, MODEL WITH A TARGET LEVEL

dg a, Qs Ay J*

Raw Data Seasonally Adjusted

Aggregate 1759 .6489 0228 1.1249 11.44
nondurables (.1113) (.2220) (.0232) (1.2178)

Food —.0786 1.1568 L0839 6.4669 2.62
(.2914) (.5813) (.0868) (3.4099)

Tobacco 0241 9520 .0420 1.2325 3.76
(.0854) (.1704) (.0540) (2.0185)

Apparel 117 7271 L0257 4.8653 1.43
(.1276) (.2546) (.0283) (5.3242)

Chemicals .3990 2041 0171 .3256 12.83
(.0671) (.1339) (.0177) (.9832)

Petroleum 0775 .8453 .0367 1.1048 4.01
(.0908) (1811) (.0263) (1.0980)

Rubber —.2456 1.4900 L0199 4.5217 1.79
(.1189) (.2372) (.0494) (10.6588)

Raw Data Seasonally Unadjusted

Aggregate —.2419 1.4827 0617 2.0416 11.46
nondurables (.1014) (.2023) (.0464) (1.1844)

Chemicals 2092 5827 0375 .8601 13.50
(.1392) (.2777) (.0282) (.8514)

Petroleum 2232 5546 L0253 .8504 3.53
(.1029) (.2053) (.0206) (1.3155)

Rubber 3100 3816 —.0085 —3.0046 4.30
(.1722) (.3435) (.0320) (13.3695)

NoTE.—See note to table 3.
# | distributed as x? with 3 df; critical levels: 7.81 at .05, 11.34 at .01, and 12.84 at .005.

ratio to the other «; and to each other as they did in Blanchard’s
(1983) estimates for the automobile industry.

However, these parameters, though positive and often significant,
are not enough to make the model plausible. Results of the variance
bounds test for the model without a target level are shown in table 5
and for the model with a target level in table 6. We noted above what
would result for all data sets except possibly chemicals for the model
without a target level and for the seasonally unadjusted petroleum
industry in the model with a target level. Thus it is no surprise that
tables 5 and 6 indicate that (7.a) and (7.b) were violated for all of
these. However, the inequality for the model without a target level
was violated for seasonally unadjusted chemicals as well, as was the
inequality for the model with a target level for most of the data sets.
Thus the inequalities were violated in 17 out of 22 instances, and nine
of these were significant at the .05 level. The four data sets that did
satisfy (7.b) did so insignificantly, with standard errors uniformly
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TABLE 5

TesT StaTisTics, MODEL WITHOUT A TARGET LEVEL

Equation Equation
(7.a) (12) 100 x (1)/(2)
(1 (2) (3)
Raw Data Seasonally Adjusted
Aggregate — 8,074,590 146,256,000 =5.50
nondurables (6,779,480)
Food - 1,056,690 6,797,350 —15.54
(1,881,690)
Tobacco -160,232 284,920 —-56.23
(38,669)
Apparel —659,426 1,762,890 —-37.41
(97,754)
Chemicals — 262,668 4,151,380 -6.33
(276,638)
Petroleum — 279,082 3,465,590 —8.05
(124,475)
Rubber - 162,299 5,018,480 -3.23
(161,445)

Raw Data Seasonally Unadjusted

Aggregate - 13,324,700 315,102,000 —4.23
nondurables (6,961,700)

Chemicals 11,111 7,708,310 .14
(335,832)

Petroleum —339,895 2,001,050 —16.98
(81,276)

Rubber -63,054 1,036,880 -6.08
(99,154)

Nore.-—Units are millions of “normalized™ dollars, obtained after measuring variables in 1972 dollars and nor-
malizing ay + ay(l + d) = 1.

larger than the sizes of the inequality. Also, two of these four pro-
duced the only significantly wrong-signed parameter (ao for adjusted
rubber and unadjusted aggregate nondurables). It therefore appears
that the model does not explain well any of the data studied here.
Moreover, the increase in deviations of costs from trend attribut-
able to the optimal policy would appear to be economically as well as
statistically noticeable. Column 2 in tables 5 and 6 contains total de-
viations of costs from trend (again, in “normalized” dollars, a; +
[1 + dlay = 1):
(1 — d) 'ay var(AQ) + a; var(Q) + ag var(H) Lo
— 2asaz cov(H, S ) + asas var(S)]. (12

When (7.a) or (7.b) is divided by (12) (possibly with a5 = 0 imposed in
[12]), the result is 2 dimensionless measure of the extent to which the
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TABLE 6

TEeST StAaTISTICS, MODEL WITH A TARGET LEVEL

Equation Equation
(7.b) (12) 100 x (1)/(2)
(1) (2) (3)
Raw Data Seasonally Adjusted
Aggregate —-3,339,800 182,428,000 -1.83
nondurables (6,904,450)
Food 2,398,440 40,638,700 5.90
(3,050,810)
Tobacco — 158,798 293,430 —-54.11
(39,817)
Apparel —525,333 4,896,480 -10.73
(97,687)
Chemicals —238,359 4,431,220 -5.37
(279,689)
Petroleum — 242,594 4,120,130 —-5.89
(137,816)
Rubber 169,716 8,124,210 2.09
(382,009)
Raw Data Seasonally Unadjusted
Aggregate 9,642,140 417,671,000 2.31
nondurables (18,963,400)
Chemicals 241,510 13,544,900 1.78
(386,956)
Petroleum - 366,608 2,923,310 —12.50
(187,799)
Rubber —-21,256 1,456,590 —-1.45
(149,736)

NOTE.—See note to table 5.

optimal policy increases or decreases deviations of costs from trend
relative to the static policy. This is shown in column 3 of tables 5 and
6. The optimal policy increases expected cost deviations by up to 56
percent. If this increase were to be believed it would mean that devia-
tions of profit margins from trend, and therefore presumably profit
margins themselves, are substantially reduced.

It is of some interest to compare the results of the inequality tests
with those of a common test of specification, the Hansen (1982) test of
overidentifying restrictions that is reported in the columns labeled J
(tables 3 and 4). This was accepted at the .05 level for about two-thirds
of the data sets (food, tobacco, apparel, petroleum, and rubber) and
was rejected at the .05 but accepted at the .005 level for the two other
data sets. This compares favorably with the tests of the overidentify-
ing restrictions in other recent studies (Eichenbaum 1982; Blanchard
1983). Thus it is perhaps fair to say that this traditional test is support-
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ive of the model. It would appear, then, that the variance bounds test
was an essential element in assessing the reasonableness of this model
for these data.

D. Additional Empirical Results

The robustness of the conclusions of the previous subsection was
checked by calculating two additional sets of estimates. The first re-
lated to some variance inequalities applied to deterministic seasonal
components, the second to quarterly (instead of monthly) data.

To explain the first, let a j superscript denote the deterministic
seasonal component of a variable in month j; X' = the mean deter-
ministic seasonal component of variable X, X = 1/12 2',2: 1 X5 var(X')
= the “variance” of the deterministic seasonal component, var(X*) =
1/12 312, (X' — X')%, with var(AX") and cov(X*, ¥*) defined in the
obvious way.

Consider comparing costs under the optimal policy with costs that
result under the alternative policy that suppresses all deterministic
seasonal variation in inventories but otherwise allows inventories to
grow at their trend rate, H;' = EH, + (' — H’), where j is the month
corresponding to time period t. It may be shown by an argument
analogous to that in Section II that the model (1) implies that

0 < (1 — d)” '{aglvar(AS) — var(AQ)] + a,[var(S)
— var(Q)] — ay var(H)} + {ao[var(AS")

— var(AQ")] + a;[var(§') — var(Q")] (13.a)
— as var(H")}),

0 < (1 — d) 'daglvar(AS) — var(AQ)] + a[var(S)
— var(Q)] — ay var(H) + 2asay cov(H, S . 1)} (15.b)

+

{aplvar(AS*) — var(AQ")] + a[var(S') — var(Q')]
— ao var(H') + 2([‘\_)(13 cov(I', S D).

Inequality (13.a) applies to a model without a target level, (13.b) to a
model with a target level. Inequality (13.a) in conjunction with in-
equality (7.a) says that when firms allow deterministic inventory sea-
sonals to depart from their mean level, costs must not be increased to
such an extent that the cost savings detailed in (7.a) are more than
offset. Further, these departures will cut costs only insofar as they
make var(Q') and var(AQ"), the deterministic seasonal costs of produc-
tion and changing production, smaller than var(S') and var(AS"), the
deterministic seasonal cost that obtains when there are no departures
of inventory seasonals from their mean levels. Inequality (13.b) in
conjunction with inequality (7.b) has a comparable interpretation.



LINEAR QUADRATIC INVENTORY MODEL 395

It is of interest, then, to calculate the relevant variances and
covariances, as well as to estimate the size and standard errors of
(13.a) and (13.b). The relevant second moments for the four season-
ally unadjusted data sets are displayed in table 7. For two of the four
data sets (aggregate nondurables and rubber), we can conclude with-
out calculating any parameter estimates that (13.a) will be rejected.
(This follows since cols. 5 and 6 are negative for these two data sets in
both table 7 and table 2.) For the other two data sets, parameters do
have to be estimated to sign (13.a), and, for all four data sets, parame-
ter estimates are needed to sign (13.b). The model, then, seems to be
qualitatively consistent with (13.a) to a slightly greater degree than
with (7.a), in that two data sets rather than one have second moments
that are consistent with one relevant inequality.

In a more formal, quantitative sense, however, the model performs
as poorly with respect to (13.a) and (13.b) as it did with respect to (7.a)
and (7.b). Once again, almost all the inequalities are wrong signed,
about half of them significantly so (see tables 8 and 9).'? The only
exception, once again, is chemicals, which does, however, satisty
(13.a) and (13.b) in a statistically significant fashion.

For these data, as for the automobile data studied by Blanchard
(1983), then, the seasonals appear to contain little evidence to suggest
that manufacturers are selecting their inventories in accord with (1).

The second additional set of estimates calculated inequalities (7.a)
and (7.b) for quarterly, seasonally adjusted data. These data were
constructed from the monthly data for sales by adding the figures for
the relevant three months and for inventories by selecting the last
month of the quarter.

Since the estimates were very similar to those for monthly data, only
asummary of the final results seems worth reporting. Inequality (7.a)
was signed wrong for six of seven data sets (the exception was tobacco
and resulted from wrong-signed estimates of ay and ay). Inequality
(7.b) was signed wrong for all seven data sets. Four of the 14 wrong
signs were significant at the 5 percent level; the correct sign for to-
bacco was not.

These additional tests, then, support the results reported above.'®

12 ; At . :
Column 2 in tables 8 and 9 reports total deviations of expected costs from trend
when the deterministic seasonal component is accounted for:

(1 = d) Yay var(AQ) + a, var(Q) + ay var(H) — 2agay cov(H, S, )
+ avay var(S)] + [ag var(AQ") + a, var(Q') + ay var(H') (14)
= 2ayay cov(H', $* 1) + asay var(S)]}.

" One further set of estimates was obtained, but since the results were meaningless
they do not appear to warrant reporting in the text. An independent measure of
production was obtained by using the Federal Reserve Board’s (FRB) index of indus-
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TABLE 8

397

TEST STATISTICS, SEASONAL MODEL WITHOUT A TARGET LEVEL

Equation Equation
(13.a) (14)* 100 x (1)/(2)
(1) (2) (3)
Aggregate -31,394,100 558,919,000 -5.61
nondurables (8,448,700)
Chemicals 1,290,390 12,936,200 9.98
(327,677)
Petroleum —292,635 2,914,500 —10.04
(97,243)
Rubber — 168,585 2,195,920 —7.67
(54,951)

NoTe.—See note to table 5.
* Equation (14) is defined in n. 12

TABLE 9

TEST STATISTICS, SEASONAL MODEL WITH A TARGET LEVEL

Equation Equation
(13.b) (14) 100 % (1)/(2)
(1) (2) (3)
Aggregate —234,130 713,810,000 -.00
nondurables (21,052,500)
Chemicals 1,929,020 1,927,400 10.1
(636,967)
Petroleum —209,849 3,108,010 —-6.75
(162,745)
Rubber —247,514 3,167,820 —7.81
(151,183)

NOTE.—See note to table 8.

IV. Conclusions

This section summarizes the basic conclusions of this paper. It would
seem that the linear quadratic model does a poor job of rationalizing
these inventory data. In effect, a contradiction results when it is as-
sumed that the actual inventory path chosen is the one that is optimal

trial production. This is available seasonally adjusted, and (7.a) and (7.b) were es-
timated for five of the seasonally adjusted data sets (aggregate nondurables, chemicals,
food, petroleum, and rubber). Parameter estimates, unfortunately, were uniformly
nonsensical, with about three-fourths of them signed wrong. The tests of (7.a) and
(7.b), therefore, do not seem worth reporting. But it is perhaps worth noting that var Q
< var § for all five data sets. Apparently the FRB index of industrial production does
not jibe with the the Department of Commerce figures on sales and inventories. Alan
Blinder has suggested to me that this is because the FRB measure includes production
that adds value to inventories of works in progress.
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according to the model. The allegedly optimal path is dominated by a
naive alternative path.

In the model without a target level for inventories, this follows
simply because production is more variable than sales. Inventories
therefore cannot be chosen simply to perform their putative function,
smoothing production. " For the model with a target level, the matter
is slightly more complicated. Inventories do usually track their target
level (except in the petroleum industry). But this makes production
and inventories so variable that inventories cannot be chosen as hy-
pothesized to minimize quadratic inventory, production, and target-
level costs.

The basic implication of this is that inventories appear to serve
some role other than production smoothing. The inventory literature
suggests two possible explanations for the excess volatility of produc-
tion. The first is backlog costs. Now, as we have seen, the typical
formulation—a simple cost of having inventories deviate from a
target level—is inadequate, at least for these data. But this does not
rule out more sophisticated formulations. Some encouraging evi-
dence from a model that includes such a formulation may be found in
West (1983a).

The second possible explanation relates to stochastic cost variabil-
ity. It is possible that inventories serve mainly to smooth production
not in the face of random varying demand, but in the face of ran-
domly varying costs. In this case production may be more variable
than sales (as noted by Topel [1982]). Stochastic cost variability has
been crudely allowed for in some recent work by calling the unobserv-
able disturbances “cost shocks” (e.g., Blanchard 1983). But if cost
variability is an important determinant of optimal inventory stocks, it
clearly is essential to model the cost variations explicitly. Some en-
couraging evidence from a model that does such modeling may be
found in Blinder (1983).

It seems fair to say, however, that a convincing explanation of the
excess volatility of production has yet to be made (see Blinder 1983).

Appendix

This Appendix briefly outlines the procedure used to derive the asymptotic
covariance matrix of the parameters needed to calculate inequalities (7.a) and
(7.b). Much more detail may be found in West (1983a).

Write the three-equation system consisting of (10) and (11) as

Yy = Xb] + u,
y2 = Zby + uy,
ys = Zbs + us,

"' This has been conjectured by Blinder (19816) and Blanchard (1983).
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where y, is the vector of observations of the left-hand side of (10); yo and ys
contain vectors of inventories and sales; X contains the right-hand-side vari-
ables in (10), and Z the right-hand-side variables in (11). The elements of u,
are MA(2) (see n. 10); those of uy and uj are independently and identically
distributed.

Vector b, was estimated by two-step, two-stage least squares (2SLS), b, =
(AZ'X)~ 'AZ'yl; A is Hansen’s (1982) optimal weighting matrix (no hetero-
scedasticity correction), A = X'Z(Z'QZ)"'; Q, the variance-covariance matrix
of u,, was calculated from a 2SLS estimate of u,. The numerical simulations
in West (1984) suggest that b, is likely to be estimated only slightly less
efficiently than it would have been had it been estimated by a “full-
information” technique that specified the demand side of the market, solved
for the equilibrium of the model, and imposed cross-equation constraints.
Vectors by and by were estimated by ordinary least squares (OLS).

Let 8 denote the parameter vector, 0 = (b, bo, bs, 099, 093, 0733). Variables
g;; = Euju;, and are needed to calculate (7.a) and (7.b) since they figure into
the variances and covariances in these inequalities. (These second moments,
again, were calculated as functions of by, bs, and the o;; as described briefly in
the text and in detail in West [19834a].) Now the b; were calculated as just
described, the 6;; from the moments of the OLS residuals. Thus the b; and Gy
satisfy the orthogonality conditions:

T~ 'SAZ/(y,, — X;b))

T7'SZ,(yo, — Zby)

T7'SZ(ys — Zbs)

Gos — T~ '3(ye — Ziby)?

Gog — T 'S(yy — Z;Bz)@fn — Zby)
Gyy — T '2(ys — Z;i):s)g

0 = T 'Sh,(®)

T-'AZ'(y, — Xb))
T7'Z'(y, — Zby)

= T7'Z(ys — Zbs)

G2 — T 'Sy — Ziby)?
o3 — T '2(ye — Zib2) (33 — Zibs)
633 — T 'S(yy — Ziby)?

L

As proved by Hansen, then, the asymptotic covariance matrix of VT(0 —
0*) is (plim T~ 'Shyg) ~ lS(plim T~ 'Shjs) ", where 0* is the true but unknown
0and S = 2}‘): -2 Ehh/_;. Further details on how this covariance matrix was
calculated may be found in West (1983a).
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