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Abstract

This paper proposes a new approach to identification of the semiparametric multi-
nomial choice model with fixed effects. The framework employed is the semiparametric
version of the traditional multinomial logit with fixed effects model (Chamberlain 1980).
This semiparametric multinomial choice model places no restrictions on either the joint
distribution of the random utility disturbances across choices or their within group (or
across time) correlations. We show that a novel within-group comparison leads to a
set of conditional moment inequalities. Our main finding shows that the derived condi-
tional moment inequalities yield the sharp identified set for the random utility covariate
index, while avoiding the incidental parameter problem. Specializing this result to the
binary choice case shows that Manski’s (1987) conditional moment inequalities still lead
to sharp bounds without restrictions on covariates.
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1 Introduction

This paper characterizes identification of the semiparametric multinomial choice model with
fixed effects and a group (or panel) structure. A standard multinomial framework (McFadden
1974) is employed with random utility that is additively separable between unobservables,
which include a disturbance and choice-specific fixed effects, and a covariate index function.
The key semiparametric assumption, replacing the multinomial logit specification (Cham-
berlain 1980), is a familiar group stationary condition on the disturbances. This assumption
places no restrictions on either the joint distribution of the disturbances across choices or
the correlation of disturbances across time (or within group). Under this specification, a
novel within-group comparison leads to a set of conditional moment inequalities, which are
the basis for our result on sharp partial identification.

Our main finding establishes sharp nonparametric identification of the covariate index
function in the semiparametric multinomial choice model with fixed effects. Under the
group stationarity assumption alone, we find that our full set of derived conditional moment
inequalities contains all of the model’s potential identifying information in the sense that the
bounds provided by these inequalities are sharp. Sharpness is shown by a constructive proof.
In particular, given a distribution of observables and a parameter value in the identified set,
we demonstrate that there exists a distribution of unobservables that can be combined with
the parameter value to generate the given distribution of observables.1

The semiparametric model considered here does not place parametric restrictions on
the disturbance distribution. The only restriction on the disturbances is a group or time
stationary assumption. Since the joint distribution of disturbances across choices is left
unrestricted, the model contains no vestiges of independence of irrelevant alternatives or
limits on cross price elasticities. Within group or across time disturbance correlation is
also left completely unrestricted in this specification. The panel aspect of the model allows
for an additive choice-specific fixed effect in the random utility specification. The fixed
effects are allowed to be arbitrarily correlated with the observed covariates. We focus on the
case with only two time periods (or group observations). The derived conditional moment
inequalities are based on only within variation and in this sense is the discrete choice analog
to the familiar within transformation in linear models. As a result, the incidental parameter
problem is fully circumvented in our identification results.

The most closely related work is Shi, Shum, and Song (2018), which obtains point identi-
fication with a linear covariate index using cyclic monotonicity in the semiparametric multi-

1The distribution of unobservables can be expressed as a nonnegative solution to a system of linear
equations, so existence is constructive in the sense that a solution can then be determined in a finite number
of matrix manipulation steps.
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nomial setup. Since our conditional moment inequalities provide sharp bounds, it is not
surprising that we are able to show that the Shi, Shum, and Song (2018) conditional mo-
ment inequalities are implied by our conditional moment inequalities. It follows that, under
the additional conditions on covariates given in Shi, Shum, and Song (2018), our conditional
moment inequalities also yield point identification in the linear covariate index case.

When we specialize our setup to the binary choice case with a linear covariate index, we
find that our conditional moment inequalities match the weak version of Manski (1987)’s
conditional moment inequalities. It follows that these conditional moment inequalities yield
sharp bounds even when point identification fails due to either insufficient variation in the
covariates or nonlinearities in the covariate index functions. Further, we establish that
Manski (1987)’s maximum score criterion can be derived as an aggregation of the conditional
moments that make up our inequalities and extended to allow for nonlinear covariate indices.
We prove that the identified set determined by our conditional moment inequalities is exactly
the set of parameters that maximize the maximum score criterion function. This new result
shows that the maximum score criterion can be used for (sharp) identification (and hence
its sample counterpart can be used for estimation) even when point identification fails in the
binary choice panel model.

Multinomial discrete choice models are extensively used in almost all fields that empir-
ically analyze the determinants of agents’ choices. Applications have typically employed
parametric forms of the multinomial model. With panel data problems in mind, Cham-
berlain (1980) uses an assumption of logistic disturbances to provide a novel conditional
likelihood method of identification and estimation. An alternative application is in the
demand literature where markets are the grouping device, the within group observations
are consumers, and the choice-specific fixed effects represent product level unobservables
(e.g. Berry, Levinsohn, and Pakes 1995). Markets are also used as a grouping device when
analyzing firm decision making (e.g. entry decisions) with the market-specific fixed effect
representing unobserved determinants of the market’s profitability (e.g. Pakes 2014).

We apply the findings of this paper to consider whether the price sensitivity of demand
for health insurance depends on income in a subsidized health insurance market for low-
income consumers. The data come from the Commonwealth Care program in Massachusetts
which allowed consumers to choose among competing private plans. We compare the price
sensitivity of consumers with incomes one to two times the Federal Poverty Level with those
whose income is two to three times the Federal Poverty Level. Implementing the conditional
moment inequalities derived here via Andrews and Shi (2013), we obtain a confidence set
for the ratio of the price coefficients in the two income groups and reject the hypothesis of
no income dependence at the 5% level.
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Manski (1975) introduced a semiparametric, maximum score approach to point identi-
fication and estimation for multinomial choice without choice-specific fixed effects. Assum-
ing independent and identical distributions of the unobservable components of the different
choices, Manski uses differences in the observable, parametric component of random utility
across choices for identification. Using Manski’s identification approach, Fox (2007) shows
that exchangeability of the unobservable component across choices is sufficient for identi-
fication, and Yan (2013) obtains the limiting distribution for a smoothed version of the
multinomial maximum score estimator. Lee (1995) provides an alternative semiparamet-
ric approach to multinomial choice for models without choice-specific fixed effects using an
assumption of an i.i.d. distribution of disturbances across agents.

Rather than imposing conditions on the joint distribution of the disturbances across
choices our approach requires that the joint distribution of the choice-specific unobservables
does not differ across observations in a group, but leaves the distribution of disturbances
across choices unrestricted. The different assumptions are likely to be useful in different
applications. Kahn, Ouyang, and Tamer (2019) develop an approach to identification that
can be used in both static and dynamic semiparametric multinomial choice models. Chesher,
Rosen, and Smolinski (2013) and Chesher and Rosen (2017) obtain sharp identification for
nonseparable instrumental variable models that include discrete choice. Using a nonparamet-
ric multinomial choice model with endogeneity for the California Health Insurance Exchange,
Tebaldi, Torgovitsky, and Yang (2018) identify and estimate bounds on counterfactuals. Gao
and Li (2018) develops estimation and identification in a non-separable version of the panel
multinomial choice model without restricting the joint distribution of disturbances.

This work also continues a substantial literature that has focused on extending nonlin-
ear econometric models to allow for fixed effects while relaxing parametric distributional
assumptions on disturbances. Manski (1987) applied his maximum score approach to the
binary choice model with fixed effects. Honore (1992) further developed Powell’s (1986)
trimmed least squares approach to estimate the censored regression model with fixed effects.
Abrevaya (1999) developed a new approach to estimation to allow for fixed effects in the
transformation model, and further extended Han’s (1987) generalized regression model to
include fixed effects in Abrevaya (2000). Ahn, Ichimura, Powell, and Ruud (2017) develop
an approach to identification and estimation of semiparametric index models that can also
be used in various fixed effects cases. The multinomial choice setup considered in the current
work presents an additional complexity relative to the models in this previous literature. In
particular, the multinomial choice model depends on multiple index functions of the covari-
ates, where each index function corresponds to a choice-specific random utility. The main
insight of our identification strategy is that a comparison of the multiple index functions for
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any two within-group observations has observable implications on the relative likelihood of
certain choice outcomes.

The paper is structured as follows. Section 2 sets up a semiparametric version of the stan-
dard random utility model for multinomial choice with fixed effects. We then introduce our
main stochastic disturbance assumption and derive a set of conditional moment inequalities.
In section 3, we show that the conditional moment inequalities provide sharp bounds on the
parameters (or functions) of interest. In section 4, we address point identification and binary
choice. Section 5 implements the conditional moment inequalities in an empirical exercise
using data on health insurance choices through the Commonwealth Program exchange in
Massachusetts. Section 6 concludes. Proofs are in the Appendix.

2 Conditional Moment Inequalities for Multinomial Choice

2.1 Setup

The data will be assumed to have a group/panel structure, where i = 1, . . . , n indexes the
groups and t = 1, . . . , T indexes observations within a group. There are a number of familiar
multinomial choice applications with this group structure. In panel data applications in
Labor and Public Finance, i typically indexes individuals, and t indexes time periods, though
alternative groupings can also be relevant (an example from the study of hospital choice has
i indexing the Cartesian product of illness category and hospital and t indexing patients,
see Ho and Pakes (2014)). In Industrial Organization and Marketing applications, i would
typically index markets and t would index either the different consumers in those markets
(in demand analysis) or the firms that compete in them (in the analysis of a firm’s choice of
controls).

Observation (i, t) faces a number of choices. Each choice d has an associated random
utility, Ud,i,t, and the observed choice, yi,t, maximizes the random utility over choices. Sup-
pose that d ∈ {0, . . . ,D}, so that the number of choices is D + 1. We consider the case
of unordered response, where the numbering associated with each choice is arbitrary,2 and
2 ≤ D <∞.

Given covariates xd,i,t for each choice d associated with observation (i, t), the random
utility for choices d = 0, . . . ,D takes the form

Ud,i,t = gd(xd,i,t, θ0) + λd,i + εd,i,t, (1)
2Inequalities for models with ordered responses are considered in Pakes, Porter, Ho, and Ishii (2015).
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where the term λd,i denotes choice-specific fixed effects which account for unobserved char-
acteristics of choice d that do not vary across t. No restrictions are placed on the correlation
between covariates xd,i,t and choice-specific fixed effects λd,i, so these fixed effect terms gen-
erate a potential incidental parameter problem. The term εd,i,t represents any remaining
unobserved, idiosyncratic determinants of the random utility. The covariates enter random
utility through the covariate index function gd(·, θ0), where θ0 is used to index the functions
gd and is unknown to the researcher. The most commonly assumed form for the index func-
tion is linear, e.g. x′d,i,tθ0. However, the parameter space Θ for θ0 is unrestricted and need not
even be finite-dimensional. That is, θ0 could index functions in an arbitrary function space,
and the index functions are allowed to vary by choice.3 The additive separability between
the covariate index and the unobserved terms λd,i + εd,i,t is critical to the results that follow.
However, the additive separability between the fixed effect λd,i and disturbance εd,i,t could be
relaxed. That is, λd,i+εd,i,t could be replaced by a term of the form fd(λd,i, εd,i,t), where fd is
an unknown nonlinear function for choice d. In fact, under the assumptions below, the fixed
effect could be absorbed into the disturbance without loss of generality.4 Normalizations to
the model, such as pinning down the scale of coefficients in the linear covariate index case,
can be incorporated as restrictions on the space of parameters, covariates, and the dimension
of the conditional distribution of unobservables.

The observed choice, yi,t, for agent (i, t) maximizes the random utility Ud,i,t over choices
d. When a single choice uniquely maximizes random utility, then that choice is the observed
choice for (i, t). We also allow for situations where there is a non-zero probability that two or
more choices maximize utility. This situation could occur if the distribution of εi,t has mass
points, as could be allowed under the flexible nonparametric assumptions on disturbances
here, and is useful to extend our results to applications that involve set-valued regressors.5 To
fully specify the choice decision, we adopt a simple rule for resolving ties among maximizing
random utility choices. If choices d1 and d2 both maximize random utility (Ud1,i,t = Ud2,i,t =

maxd Ud,i,t) and d1 < d2, then assume that the choice with the largest choice index, in this case
d2, is the observed choice for (i, t). And, in general, if there are multiple utility maximizing
choices, then the observed outcome is assumed to be the largest choice number among the

3The index functions could also be allowed to depend on time without any change in the results that
follow.

4This point will appear again below when we see that the constructed distribution in the proof of sharpness
has fixed effects set to zero.

5In the set-valued regressors case, the researcher does not know the specific value of some regressors, but
does observe a set that contains their values. Pakes and Porter (2014) use the tools developed here to analyze
this case. Two familiar examples are when the regressor is: (i) income (or wealth) and all the econometrician
knows is that the income of each observation lies in a particular interval; and (ii) the distance from home to
a service (or retail) outlet when the home location is only observed as a zip code (with known geographic
boundaries).
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utility maximizing choices. More generally, any rule for resolving utility maximizing ties
that is a non-stochastic function of argmaxd Ud,i,t will lead to the same form of conditional
moment inequalities derived below6 and so knowledge of such a rule is not needed for their
implementation.

The setup thus far is a random utility formulation of multinomial choice except that a
choice-specific group fixed effect is included and general covariate indices are allowed. It
will be useful to establish notation for the mapping defined by this setup from the covari-
ates, parameter θ0, fixed effects, and disturbances to the observed outcome yi,t. Let xi,t =

(x′0,i,t, . . . , x
′
D ,i,t)

′, λi = (λ0,i, . . . , λD ,i), εi,t = (ε0,i.t, . . . , εD ,i,t), and Ui,t = (U0,i,t, . . . , UD ,i,t).
When it is helpful to be explicit about the dependence of random utility on its compo-
nents, we will use the notation Ud(xi,t, θ0, λi, εi,t) to denote Ud,i,t = gd(xd,i,t, θ0) + λd,i + εd,i,t.
The observed outcome yi,t can also be written as a function of these same components:
yi,t = y(xi,t, λi, εi,t, θ0) = max argmaxd Ud(xi,t, θ0, λi, εi,t), where y is the mapping that rep-
resents the random utility formulation for multinomial choice given above.

Our identification results will correspond to the case where T is fixed at T = 2. We will
denote the two time periods or observations within each group by s and t, rather than 1

and 2 to avoid confusion, especially in the variable subscripts, with the choices d which are
numbered 0, . . . ,D .

The key stochastic assumption for this framework is within-group/time homogeneity of
the disturbances. This assumption is sometimes called strict exogeneity and is a common
condition imposed in panel data models (Chernozhukov, Fernández-Val, Hahn, and Newey
2013).7

Assumption 1
(a) (xi,s, xi,t, λi, εi,s, εi,t) is independently and identically distributed for i = 1, . . . , n;
(b) Given the conditioning set (xi,s, xi,t, λi), the conditional distributions of εi,s and εi,t are
the same:

εi,s
∣∣xi,s, xi,t, λi ∼ εi,t

∣∣xi,s, xi,t, λi.
The second part of the assumption mirrors the stochastic assumption made for panel data
binary choice models in Manski (1987) and for discrete choice in Shi, Shum, and Song (2018).
No parametric distributional restrictions are placed on the distribution of εi,t. Note that εi,t
is, in general, a vector of individual choice disturbances, in contrast to the binary choice

6See also footnote 8 for allowable tie-breaking rules.
7Mean independence and zero covariance forms of strict exogeneity also appear commonly in the literature,

especially in linear panel data model cases. Here, the stronger conditional independence form of strict
exogeneity will be employed.
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case. Importantly, for a given time t, the marginal distribution of these choice disturbances
is allowed to vary arbitrarily across choices (d), and there are no restrictions on joint be-
havior of these disturbances across choices. As a result, neither independence of irrelevant
alternatives, nor any other limitation on the substitutability of different choices induced
by the covariance structure of disturbances (such as the limited substitutability property
discussed in Berry and Pakes 2007) is a source of concern. This assumption also allows
the disturbances for the different choices to be freely correlated across time. Assumption 1
nests both the familiar panel data model with individual choice-specific fixed effects and
i.i.d. disturbances, a special case of which is Chamberlain’s (1980) conditional logit model,
and many differentiated product demand models for micro data (e.g. Berry, Levinsohn, and
Pakes 2004).

Assumption 1 does restrict the relationship between the disturbances and the covariates.
For instance, heteroskedasticity would need to take a specific form where the heteroskedas-
ticity in εi,t is the same as εi,s even when xi,t 6= xi,s. For example, if the heteroskedasticity in
both εi,t and εi,s depended on xi,t+xi,s, then Assumption 1 would not be violated. Of course,
the typical assumption of independence of disturbances and covariates across different s and
t would suffice to satisfy Assumption 1.

Assumption 1(b) means that “within” variation could be useful for identification. By
restricting the conditional joint distribution of the disturbances across the random utility
choices to be the same for observations in group i, Assumption 1 enables us to learn about
relative response probabilities by comparing the observable components of random utilities
across t for that group i. This within-group comparison will not depend on the joint distri-
bution of disturbances across choices in any way.

To simplify notation, below we eliminate the group i index with the understanding that
all variables below are associated with the same group unless otherwise indicated.

2.2 Illustrative Moment Inequality

Given the random utility framework above along with Assumption 1, we can derive a set
of moment inequality conditions that can be taken to data for inference on the parameter
θ0. We begin with a single conditional moment inequality that makes both the assumptions
and logic underlying our conditional moment inequality analysis transparent. Following this
derivation, we show how an extension of this logic leads to a collection of conditional moment
inequalities.

Our moment inequalities are based on a within comparison of choice probabilities for
individual/group i at times s and t. We can express the conditional probability of observing
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choice d at time t through the corresponding region of the disturbance space,

Ed,t = {εt : y(xt, λ, εt, θ0) = d}. (2)

Given this definition, Pr(yt = d|xs, xt, λ) = Pr(εt ∈ Ed,t |xs, xt, λ). To consider how
variation in the covariates across time affects choice probabilities, it is useful to note the
explicit dependence of the region Ed,t on the covariates:

Ed,t =

{
εt : εd,t ≥ max

c<d
[(gc(xc,t, θ0)− gd(xd,t, θ0)) + (λc − λd) + εc,t]

}
(3)

∩
{
εt : εd,t > max

c>d
[(gc(xc,t, θ0)− gd(xd,t, θ0)) + (λc − λd) + εc,t]

}
,

where the sets with weak and strict inequalities follow from our rule for resolving utility
maximizing ties. We compare the time t regions E0,t, . . . ,ED ,t to the analogous regions at
time s, E0,s, . . . ,ED ,s. From this comparison, we will be able to show that for one of the D +1

choices, the region at time s contains the corresponding region at time t. Moreover, the choice
with this property is determined completely by the covariate indices. Assumption 1 then
implies that the corresponding choice probability at time s will be at least as large as the
choice probability at time t.

To find a choice with this special property, we order the covariate index differences across
time by choice. In particular, find the choice with the largest change in covariate index:

d∗ = argmaxc (gc(xc,s, θ0) − gc(xc,t, θ0)) . (4)

If there is more than one choice in the argmax set, then set d∗ to any element of this set.
Note that

gd∗(xd∗,s, θ0) − gd∗(xd∗,t, θ0) ≥ gc(xc,s, θ0) − gc(xc,t, θ0), ∀c

=⇒ gc(xc,t, θ0) − gd∗(xd∗,t, θ0) + (λc − λd∗) ≥ gc(xc,s, θ0) − gd∗(xd∗,s, θ0) + (λc − λd∗), ∀c
(5)

The latter covariate index differences on either side of the inequality are the same differences
that define Ed∗,t and Ed∗,s in (3). And the inequality (5) ensures that

Ed∗,t ⊂ Ed∗,s
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Hence,

Pr(ys = d∗ |xs, xt, λ) = Pr(εs ∈ Ed∗,s |xs, xt, λ)

= Pr(εt ∈ Ed∗,s |xs, xt, λ)

≥ Pr(εt ∈ Ed∗,t |xs, xt, λ)

= Pr(yt = d∗ |xs, xt, λ). (6)

The first and last equalities follow from the definition of the disturbance regions in (2). The
second equality follows from Assumption 1, and the inequality follows from the set inclusion
derived above. Since the inequality holds regardless of the values of the fixed effects (λ), the
fixed effects can be integrated out of the inequality in (6) yielding a corresponding conditional
moment inequality below. We also extend the argument behind this inequality to generate
additional conditional choice probability comparisons and their related conditional moment
inequalities which can then be used for identification of the parameter θ0.

To illustrate the key intuition behind this inequality, consider the case with three choices,
a linear covariate index, and d∗ = 2 implying that E2,t ⊂ E2,s. To show the regions Ed,s and Ed,t

on two-dimensional graphs, these regions can be re-expressed in terms of (ε1,s−ε0,s, ε2,s−ε0,s)

and (ε1,t−ε0,t, ε2,t−ε0,t). In Figure 1a, the time s differenced disturbance space is partitioned
into regions E0,s, E1,s, and E2,s corresponding to ys = 0, 1, 2, respectively, and the vertical
grey lines highlight region E2,s. A similar partitioning of the differenced disturbance space
at time t is shown in Figure 1b, and horizontal grey lines highlight region E2,t. Since εs and
εt share the same (conditional) distribution and hence the same support set, these regions
can be usefully superimposed in Figure 1c. From equation (3), the regions E0,t, E1,t, and
E2,t are a translation shift of the regions E0,s, E1,s, and E2,s by ([x′1,sθ0 − x′1,tθ0] − [x′0,sθ0 −
x′0,tθ0], [x′2,sθ0 − x′2,tθ0] − [x′0,sθ0 − x′0,tθ0]). The size of these shifts is apparent in Figure 1c;
in the case illustrated, x′2,sθ0 − x′2,tθ0 ≥ x′1,sθ0 − x′1,tθ0 ≥ x′0,sθ0 − x′0,tθ0, and it follows from
(4) that d∗ = 2. Starting from the nexus of the regions in Figure 1a, the direction of the
translation shift is interior to E2,s, which ensures that E2,t ⊂ E2,s.

2.3 Implied Moment Inequalities

The probability inequality in (6) is based on the choice that maximizes the difference of
covariate index functions. We can push this logic further to obtain similarly motivated
inequalities based on a complete rank ordering of the covariate index function differences
over the choices. For time periods s and t, start by ordering the difference of index functions
by choice. This ordering can be used to partition the choices into a set of choices with larger
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Figure 1: Disturbance Regions for 3 Choices

∆x′2θ0 ≥ ∆x′1θ0 ≥ ∆x′0θ0 =⇒ E2,t ⊂ E2,s

ε1,s−ε0,s

ε2,s−ε0,s

E1,s

E2,s

E0,s

1

(a)

ε1,t−ε0,t

ε2,t−ε0,t

E1,t

E2,t

E0,t

1

(b)

ε1−ε0

ε2−ε0

E2,s

E2,t

∆x′2θ0
−∆x′0θ0

∆x′1θ0−∆x′0θ0

1

(c)

index function differences and a set with smaller index function differences. For each such
partition generated by differences of the true index functions gd(·, θ0), we will be able to
generate corresponding choice probability inequalities.

Given a value of θ and vectors of covariates xs and xt, we can partition the set of choices
into two subsets corresponding to choices with larger and smaller index function differences.
For instance, suppose D is a subset of choices, i.e. D ⊂ {0, . . . ,D}, and let Dc denote the
remaining choices, Dc = {0, . . . ,D}\D. If

min
d∈D

gd(xd,s, θ)− gd(xd,t, θ) ≥ max
c∈Dc

gc(xc,s, θ)− gc(xc,t, θ),

then D contains choices with larger index function differences and Dc contains choices with
smaller index function differences. There are many possible partitions that could be formed
in this way, and we collect the subsets corresponding to the larger index function differences
as follows,

D(xs, xt, θ) =

{
D ⊂ {0, . . . ,D}

∣∣∣∣D,Dc 6= ∅, (7)

min
d∈D

gd(xd,s, θ) − gd(xd,t, θ) ≥ max
c∈Dc

gc(xc,s, θ) − gc(xc,t, θ)

}
.

As the notation indicates, this collection of choice sets can be constructed from just the
covariates and a parameter value.

Consider the case where no pair of choices share the same the index function difference, so
that each choice has a distinct index function difference value. Then D(xs, xt, θ) will contain
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a set consisting of the choice corresponding to the largest index function difference ({d∗}
in the notation of the previous section). It will also contain a set consisting of the choices
associated with the two largest index function differences, etc. So, in this case, D(xs, xt, θ)

would contain exactly D sets with cardinalities 1, 2, . . ., D . Moreover for any two sets
C,D ∈ D(xs, xt, θ) where C has fewer elements than D, then C ⊂ D.

It is also possible that index function differences for some choices will be equal. When
this happens, D(xs, xt, θ) will contain more than D sets, and the sets in D(xs, xt, θ) will not
be nested. As a simple example, suppose there are four choices, {0, 1, 2, 3}. And suppose the
index function differences can be ordered as follows: [g3(x3,s, θ)− g3(x3,t, θ)] > [g2(x2,s, θ)−
g2(x2,t, θ)] = [g1(x1,s, θ) − g1(x1,t, θ)] > [g0(x0,s, θ) − g0(x0,t, θ)]. Then, d∗ = 3 and
D(xs, xt, θ) = {{3}, {3, 2}, {3, 1}, {3, 2, 1}}.

The next result shows that the argument used to obtain a probability choice inequality
for d∗ in the previous section can be extended to the choice sets contained in D(xs, xt, θ0).

Proposition 1 Suppose Assumption 1 holds. Then, for all D ∈ D(xs, xt, θ0),

Pr(ys ∈ D |xs, xt, λ) ≥ Pr(yt ∈ D |xs, xt, λ).

2

Proof: For any set of choices C ⊂ {1, . . . ,D} and a choice d, define

Ed,C,t =

{
εt : εd,t ≥ max

c∈C:c<d
[(gc(xc,t, θ0)− gd(xd,t, θ0)) + (λc − λd) + εc,t]

}
∩
{
εt : εd,t > max

c∈C:c>d
[(gc(xc,t, θ0)− gd(xd,t, θ0)) + (λc − λd) + εc,t]

}
The set Ed,C,t is the region of the time t disturbance space where choice d is
preferred (in random utility terms) to all choices in C. Corresponding time s
regions Ed,C,s are defined analogously.

Now take any D ∈ D(xs, xt, θ0). For any d ∈ D, gd(xd,s, θ0) − gd(xd,t, θ0) ≥
gc(xc,s, θ0) − gc(xc,t, θ0) for all c ∈ Dc. Re-arranging, gc(xc,t, θ0) − gd(xd,t, θ0) ≥
gc(xc,s, θ0) − gd(xd,s, θ0) for all c ∈ Dc. It follows that Ed,Dc,t ⊂ Ed,Dc,s and this
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set inclusion is the main step to showing the desired probability inequality:8

Pr(ys ∈ D |xs, xt, λ) = Pr

(
εs ∈

⋃
d∈D

Ed,Dc,s

∣∣∣∣xs, xt, λ
)

= Pr

(
εt ∈

⋃
d∈D

Ed,Dc,s

∣∣∣∣xs, xt, λ
)

≥ Pr

(
εt ∈

⋃
d∈D

Ed,Dc,t

∣∣∣∣xs, xt, λ
)

(8)

= Pr(yt ∈ D |xs, xt, λ)

Holding (xs, xt, λ) fixed, {εs : ys ∈ D} = ∪d∈DEd,Dc,s which is the argument
behind the first equality. The last equality holds similarly. The second equality
holds by Assumption 1. Finally, the inequality in (8) holds since the set inclusion
Ed,Dc,t ⊂ Ed,Dc,s for all d ∈ D implies⋃

d∈D
Ed,Dc,t ⊂

⋃
d∈D

Ed,Dc,s. (9)

2

The probability inequalities obtained in Proposition 1 can be straightforwardly trans-
lated into corresponding moment inequalities, as follows. Let D = {D |D,Dc 6= ∅, D ⊂
{0, . . . ,D}}. For any D ∈ D, define

mD(ys, yt, xs, xt, θ) =

{
1{ys ∈ D} − 1{yt ∈ D} if D ∈ D(xs, xt, θ0)

0 otherwise
.

Then, it follows from Proposition 1 that E[mD(ys, yt, xs, xt, θ0) |xs, xt, λ] ≥ 0, ∀D ∈
D(xs, xt, θ0). Taking the expectation with respect to λ conditional on xs, xt yields conditional
moment inequalities expressed in terms of the observables (ys, yt, xs, xt):

E[mD(ys, yt, xs, xt, θ0) |xs, xt] ≥ 0 ∀D ∈ D, (10)

where the inequalities with D 6∈ D(xs, xt, θ0) follow immediately from the definition of mD

above. This set of conditional moment inequalities will be the key to the identification
8Any rule for resolving random utility ties that preserves this set inclusion, in general, will lead to the

same set of conditional moment inequalities.
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arguments that follow.

3 Sharp Identification

The conditional moment inequalities in (10) generated by Proposition 1 depend only on the
observable variables, (ys, yt, xs, xt) with distribution Fys,yt,xs,xt . Let Xs,t denote the support
of the joint distribution (xs, xt). Define the corresponding identified set as follows:

Θ0 = Θ0(Fys,yt,xs,xt) = {θ ∈ Θ |E[mD(ys, yt, xs, xt, θ) |xs, xt] ≥ 0 ∀D ∈ D, (xs, xt) ∈Xs,t}.

Under Assumption 1 alone, Θ0 will not generally be a singleton. However, the below result
shows that the conditional moment inequalities defining Θ0 do, in fact, contain all available
information about the parameter in the sense that the identified set, Θ0, provides sharp
bounds on the parameter.

Given random variables (xs, xt, λ, εs, εt) satisfying Assumption 1 and a value of the pa-
rameter θ ∈ Θ, the multinomial choice framework defines outcomes ys = y(xs, λ, εs, θ) and
yt = y(xt, λ, εt, θ). Then, the observable random variables from the multinomial choice model
satisfying Assumption 1 are simply (ys, yt, xs, xt) with distribution Fys,yt,xs,xt . We can collect
all such values of the parameter and observable distributions:

M = {(θ, Fys,yt,xs,xt) | (xs, xt, λ, εs, εt) satisfies Assumption 1, θ ∈ Θ,

ys = y(xs, λ, εs, θ), yt = y(xt, λ, εt, θ), (ys, yt, xs, xt) ∼ Fys,yt,xs,xt}

Let Fys,yt,xs,xt be any observable distribution from the multinomial choice framework under
Assumption 1, i.e. for some θ ∈ Θ, (θ, Fys,yt,xs,xt) ∈ M. Then the sharp identified set is
simply the projection of M onto Θ for the given observable distribution,

ΘS = ΘS(Fys,yt,xs,xt) = {θ ∈ Θ | (θ, Fys,yt,xs,xt) ∈M}

Sharpness of the identified set Θ0 is simply that Θ0 = ΘS. More formally, let

Fob = {Fys,yt,xs,xt | (θ, Fys,yt,xs,xt) ∈M for some θ ∈ Θ}.

So, Fob is the set of all possible multinomial choice observable distributions generated by
some distribution of unobservables satisfying Assumption 1 and some parameter value θ ∈ Θ.
Then, we have the following result.
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Theorem 2 Under Assumption 1, Θ0 is sharp. That is,

Θ0(Fys,yt,xs,xt) = ΘS(Fys,yt,xs,xt)

for all Fys,yt,xs,xt ∈ Fob.
2

Theorem 2 is shown by a constructive proof, see Appendix for details. Fix a distribution
of observables, Fys,yt,xs,xt ∈ Fob. Let Θ0 and ΘS denote the identified sets associated with this
observable distribution, Θ0 = Θ0(Fys,yt,xs,xt) and ΘS = ΘS(Fys,yt,xs,xt). It is straightforward
to establish that ΘS ⊂ Θ0 (using Proposition 1). So, the main argument for Theorem 2 is
to show the set inclusion in the other direction, Θ0 ⊂ ΘS.

Take any θ ∈ Θ0. We exhibit a conditional distribution (λ∗, ε∗s, ε
∗
t ) |xs, xt such that

(xs, xt, λ
∗, ε∗s, ε

∗
t ) satisfies Assumption 1 and (y∗s , y

∗
t , xs, xt) ∼ Fys,yt,xs,xt where y∗s = y(xs, λ

∗, ε∗s, θ)

and y∗t = y(xt, λ
∗, ε∗t , θ). Then, (θ, Fys,yt,xs,xt) = (θ, Fy∗s ,y∗t ,xs,xt) ∈M and so θ ∈ ΘS.

Let (xs, xt) be any pair of covariate values in the support Xs,t. We need to choose
(λ∗, ε∗s, ε

∗
t ) |xs, xt such that Pr(y∗s = d, y∗t = d′ |xs, xt) = Pr(ys = d, yt = d′ |xs, xt). Setting

λ∗ = 0, Pr(y∗s = d, y∗t = d′ |xs, xt) is determined by the behavior of (ε∗s, ε
∗
t ) |xs, xt on certain

“choice-determining” regions of R2(D+1). We further subdivide these regions so that symmetry
can be imposed on the corresponding discrete marginal distributions to satisfy Assumption 1.

Let Rd,d′ = {ε | y(xs, θ, λ
∗ = 0, ε) = d} ∩ {ε | y(xt, θ, λ

∗ = 0, ε) = d′}. These sets can
be used to subdivide the choice-determining sets on ε∗s |xs, xt and to similarly subdivide the
choice-determining sets on ε∗t |xs, xt. That is,

{ε∗s | y(xs, θ, λ
∗ = 0, ε∗s) = d} =

D⋃
d′=0

Rd,d′ and {ε∗t | y(xt, θ, λ
∗ = 0, ε∗t ) = d′} =

D⋃
d=0

Rd,d′ .

So Pr(y∗s = d |xs, xt) =
∑D

d′=0 Pr(ε∗s ∈ Rd,d′ |xs, xt) and similarly Pr(y∗t = d′ |xs, xt) =∑D
d=0 Pr(ε∗t ∈ Rd,d′ |xs, xt). From these expressions, we see that the sets Rd,d′ can be used

to describe the marginal behavior of y∗s (and y∗t ), and in fact provide a device for imposing
the homogeneity in ε∗t across time t as required by Assumption 1(b).

Additionally, the Cartesian products of sets of the form Rd,d′ can be used to describe the
joint behavior of y∗s and y∗t . So,

Pr(y∗s = d, y∗t = d′ |xs, xt) =
D∑

d′′=0

D∑
d′′′=0

Pr((ε∗s, ε
∗
t ) ∈ Rd,d′′ ×Rd′′′,d′ |xs, xt).

Now, let q∗d,d′×d′′,d′′′ = Pr((ε∗s, ε
∗
t ) ∈ Rd,d′×Rd′′,d′′′ |xs, xt). Then, we can translate our problem
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of exhibiting a conditional distribution (λ∗, ε∗s, ε
∗
t ) |xs, xt that both satisfies Assumption 1

and generates an observable distribution matching Fys,yt,xs,xt into a problem of finding a
solution to the system of linear equations below. Here, we treat Pr(ys = d, yt = d′ |xs, xt) as
known and seek a nonnegative solution for q∗d,d′×d′′,d′′′ :

Pr(ys = d, yt = d′ |xs, xt) =
D∑

d′′=0

D∑
d′′′=0

q∗d,d′′×d′′′,d′ (11)

D∑
d′′=0

D∑
d′′′=0

q∗d,d′×d′′,d′′′ =
D∑

d′′=0

D∑
d′′′=0

q∗d′′,d′′′×d,d′ (12)

If q∗d,d′×d′′,d′′′ satisfies (11), then (y∗s , y
∗
t , xs, xt) ∼ Fys,yt,xs,xt , as desired. If q∗d,d′×d′′,d′′′ satis-

fies (12), then the conditional disturbance distribution can be constructed to satisfy As-
sumption 1. A simple way to achieve this construction is to choose a point in each re-
gion, rd,d′ ∈ Rd,d′ . Then choose the distribution of (ε∗s, ε

∗
t ) |xs, xt to be discrete with

Pr((ε∗s, ε
∗
t ) = (rd,d′ , rd′′,d′′′) |xs, xt) = q∗d,d′×d′′,d′′′ .

The last step is to show existence of a nonnegative solution for q∗d,d′×d′′,d′′′ satisfying (11)
and (12). Existence is established for an equivalent dual problem, using Farkas’ Lemma, see
Appendix.

There are several interesting features of the constructed distribution that proves The-
orem 2. First, there are additional constraints not apparent in equations (11) and (12).
In particular, from the proof of Proposition 1, we know that some of the regions Rd,d′ will
be empty, and so any corresponding q∗d,d′×d′′,d′′′ or q∗d′′,d′′′×d,d′ will be zero. For example,
suppose d∗ is the covariate index difference maximizing choice based on θ, as defined in
section 2.2. Then, {ε∗t | y(xt, θ, λ

∗ = 0, ε∗t ) = d∗} ⊂ {ε∗s | y(xs, θ, λ
∗ = 0, ε∗s) = d∗}. The

choice-determining set for d∗ at time t is contained in the choice-determining set for d∗ at
time s, which is the basic idea behind the first conditional probability inequality derived in
(6). Fixing d∗ to be defined as in section 2.2, it follows that for d 6= d∗, Rd,d∗ = ∅. Additional
constraints of this type have to be accounted for in the solutions to (11) and (12).

Second, the fixed effects are set to zero in the constructed distribution and essentially
play no role. Given the nonparametric flexibility in the disturbance distribution allowed by
Assumption 1, fixed effect variation is not needed to match the simulated distribution to
the given distribution of observables. This feature also reflects the fact that only within
variation is used in the identification through the conditional moment inequalities.

Third, note that some across time correlation in the distribution of (ε∗s, ε
∗
t ) |xs, xt is, in

general, needed to solve equations (11) and (12). Notice that satisfaction of Assumption 1 is
achieved by matching the distributions of ε∗s |xs, xt and ε∗t |xs, xt. However, the full flexibility
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from the conditional joint distribution (ε∗s, ε
∗
t ) |xs, xt is needed to match the simulated dis-

tribution to the given observable distribution, which can include correlation between choices
across time. In particular, if we impose conditional independence between ε∗s and ε∗t in the
simulated distribution, then a solution to (11) and (12) will not always exist.

Fourth, if Assumption 1 additionally included the restriction that conditional distri-
butions (εi,s, εi,s)

∣∣xi,s, xi,t, λi are absolutely continuous, Theorem 2 would still hold. The
constructed distributions in the proof could be straightforwardly modified, as noted in the
Appendix, to show this result. Since random utility ties would be probability zero events
under this additional assumption, the model could resolve such ties arbitrarily.

Fifth, the proof outlined above constructs a distribution of unobservables conditional on
(xs, xt), which shows conditional sharpness. For each value of the covariates, our conditional
moment inequalities contain all the information available in the conditional distribution
of the data. Conditional on any value of the covariates, the parameter region “ruled out”
by our conditional moment inequalities must contain the region “ruled out” by any other
set of conditional moment inequalities. Since this holds for every covariate value, it follows
that the union over all covariate values of ruled out parameter regions for our conditional
moment inequalities must contain the union of ruled out parameter regions for any other
set of conditional moment inequalities (which is the standard “unconditional” implication of
sharpness).

Sixth, the same constructed distribution could be used to exhibit the equivalence of
Θ0 and ΘS for other “designs,” i.e. covariate distributions. For example, given observed
combinations of (xs, xt) in a particular data set, let F e

ys,yt,xs,xt denote the corresponding
distribution of choices and covariates for this empirical distribution of covariates. Then,
F e
ys,yt,xs,xt can be used to define an identified set Θe

0 and a sharp identified set Θe
S. F e

ys,yt,xs,xt is
generated by changing only the marginal distribution of covariates and maintaining the same
conditional distribution of unobservables, so Assumption 1 is still satisfied. The conclusion
of Theorem 2 follows. Practically this enables the researcher to use the conditional moment
inequalities in (10) to consider the identifying power of a particular empirical covariate design
and investigate the potential identifying power of alternatives.

4 Additional Remarks

Next, we discuss two topics related to our sharp identification result: point identification
and the special case of binary choice.
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4.1 Point Identification

In section 3, we showed that the proposed conditional moment inequalities produce a sharp
identified set. With a linear covariate index function, point identification is established by im-
posing further conditions that ensure the identified set reduces to a singleton. Assumption 1
places no restrictions on the covariates. The key additional conditions for point identification
ensure sufficient variation in the covariates, in particular an assumption of unboundedness
(see Chamberlain 2010).

Shi, Shum, and Song (2018) derived conditional moment inequalities implied by cyclic
monotonicity for the multinomial choice model with a linear covariate index function under
conditions including Assumption 1 and absolute continuity of the error distribution with
respect to Lebesgue measure. Under assumptions on the covariates, they show that their
conditional moment inequalities are sufficient for point identification.

It is straightforward to compare the conditional moment inequalities in (10) with a linear
covariate index function to the corresponding Shi, Shum, and Song (2018) cyclic monotonicity
conditional moment inequalities. We adopt the normalization for choice zero in Shi, Shum,
and Song (2018), x0,i,t = 0, λ0,i = ε0,i,t = 0 so U0,i,t = 0 and similarly at time s. From Shi,
Shum, and Song (2018) Lemma 3.1, the length 2-cycle conditional moment inequality can
be expressed as

0 ≤
D∑
d=1

[Pr(yi,s = d |xi,s, xi,t)− Pr(yi,t = d |xi,s, xi,t)] ∆x′dθ0 (13)

Now denote a (weak) ordering of covariate index differences as follows:

∆x′(D)∗θ0 ≥ ∆x′(D−1)∗θ0 ≥ · · · ≥ ∆x′(0)∗θ0 (14)

And suppose that choice zero has the j+1th smallest covariate index difference, i.e. (j)∗ = 0,
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so that ∆x′(j)∗θ0 = 0. Then, re-writing the sum in (13),

D∑
d=1

[
Pr(yi,s = d |xi,s, xi,t)− Pr(yi,t = d |xi,s, xi,t)

]
∆x′dθ0

=
D∑

d=j+1

[
Pr(yi,s = (d)∗ |xi,s, xi,t)− Pr(yi,t = (d)∗ |xi,s, xi,t)

]
∆x′(d)∗θ0

+

j−1∑
d=0

[
Pr(yi,s = (d)∗ |xi,s, xi,t)− Pr(yi,t = (d)∗ |xi,s, xi,t)

]
∆x′(d)∗θ0

=
D∑

d=j+1

[
D∑
d′=d

(Pr(yi,s = (d′)∗ |xi,s, xi,t)− Pr(yi,t = (d′)∗ |xi,s, xi,t))
] (

∆x′(d)∗θ0 −∆x′(d−1)∗θ0

)
+

j−1∑
d=0

[
D∑
d′=d

(Pr(yi,s = (d′)∗ |xi,s, xi,t)− Pr(yi,t = (d′)∗ |xi,s, xi,t))
] (

∆x′(d)∗θ0 −∆x′(d+1)∗θ0

)
=

D∑
d=j+1

[
Pr(yi,s ∈ {(d)∗, . . . , (D)∗} |xi,s, xi,t)− Pr(yi,t ∈ {(d)∗, . . . , (D)∗} |xi,s, xi,t)

] (
∆x′(d)∗θ0 −∆x′(d−1)∗θ0

)
+

j−1∑
d=0

[
Pr(yi,s ∈ {(0)∗, . . . , (d)∗} |xi,s, xi,t)− Pr(yi,t ∈ {(0)∗, . . . , (d)∗} |xi,s, xi,t)

] (
∆x′(d)∗θ0 −∆x′(d+1)∗θ0

)
=

D∑
d=j+1

[
Pr(yi,s ∈ {(d)∗, . . . , (D)∗} |xi,s, xi,t)− Pr(yi,t ∈ {(d)∗, . . . , (D)∗} |xi,s, xi,t)

] (
∆x′(d)∗θ0 −∆x′(d−1)∗θ0

)
+

j−1∑
d=0

[
Pr(yi,s ∈ {(d+ 1)∗, ..., (D)∗}|xi,s, xi,t)− Pr(yi,t ∈ {(d+ 1)∗, ..., (D)∗}|xi,s, xi,t)

] (
∆x′(d+1)∗θ0 −∆x′(d)∗θ0

)
(15)

The terms
(

∆x′(d)∗θ0 −∆x′(d−1)∗θ0

)
and

(
∆x′(d+1)∗θ0 −∆x′(d)∗θ0

)
in (15) are nonnegative by

the ordering defined in (14). The relationship between the conditional moment inequalities in
(10) and the cyclic monotonicity conditional moment inequalities in (13) follows immediately.
The inequalities in (10) imply that the probability difference terms in square brackets in
(15) are nonnegative, which further implies that (13) holds. We can then conclude that
under Assumption 1 and the additional conditions given in Shi, Shum, and Song (2018), the
conditional moment inequalities in (10) yield point identification.9

The implication illustrated also highlights a point made in the remarks following Theo-
9Actually, we find that point identification can be achieved using a subset of the inequalities in (10) that

correspond to partitions of the choice set of a fixed size. Fix δ ∈ {1, . . . ,D}. Then, for point identification,
it suffices to consider the subset of conditional moment inequalities in (10) with |D| = δ or (D + 1)− δ. This
collection of conditional moment inequalities is non-nested with the cyclic monotonicity inequalities in (13).
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rem 2. The conditional moment inequalities of this paper are actually conditionally sharp.
Any given covariate value yields one Shi, Shum, and Song (2018) length 2-cycle conditional
moment inequality. Since this inequality is a linear inequality, it rules out a half-space in the
parameter space. The same covariate value yields 2D+1 − 2 conditional moment inequalites
from (10) and each of these conditional moment inequalities rules out a cone in the parame-
ter space. Equation (15) shows formally that the union of ruled-out cones must contain the
ruled out half-space.

We also find that, in general, the inequalities (13) do not imply (10). Inequality (13)
generates the half-space whose boundary is given in (15) (which is a weighted combination of
covariate values where the weights are given by the choice probability differences), while the
inequalities (10) generate 2D+1−2 (cone) regions (each of which is determined by the covariate
values and does not depend on the choice probabilities). So in general the boundaries from
(15) and (10) will not coincide, i.e. the ruled out half-space given by (15) will be strictly
contained in the ruled out region given by (10) for each conditioning value of the covariate.

4.2 Binary Choice

The sharpness result in section 3 can, of course, be specialized to the case of binary choice. In
this case, Theorem 2 provides a (to our knowledge) new supplement to the point identification
finding in Manski (1987). In particular, even when point identification fails, the weak version
of Manski (1987)’s conditional moment inequalities provide sharp bounds on the binary
choice random utility covariate coefficient, θ, under Assumption 1.10 Moreover, we show here
that Manski’s maximum score criterion used for point identification can also be used to obtain
sharp partial identification when point identification does not hold. Additionally, while
Manski (1987) considers the linear index case, the result shown here allows for parametric
or nonparametric covariate index functions as in (1).

In the point identified binary choice case, Manski (1987) proposes an alternative method
of estimation, commonly referred to as maximum score estimation. We see below the close
connection between the maximum score criterion and the conditional moment inequalities
defining the identified set.

The conditional moment inequalities are:

E[mD(ys, yt, xs, xt, θ) |xs, xt] ≥ 0, ∀ D ∈ D, (16)
10In the binary choice case, Assumption 1(a) is exactly Manski’s Assumption 3, and Assumption 1(b) is

exactly Manski’s Assumption 1(a). So, the sharpness result relaxes Manski’s Assumptions 1(b) and 2.
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and in the binary choice case,

D(xs, xt, θ) =


{{1}} for ∆g(xs, xt, θ) > 0

{{0}} for ∆g(xs, xt, θ) < 0

{{0}, {1}} for ∆g(xs, xt, θ) = 0.

(17)

where
∆g(xs, xt, θ) = [g1(x1,s, θ)− g1(x1,t, θ)]− [g0(x0,s, θ)− g0(x0,t, θ)].

The maximum score criterion function is:

H(θ) = E[sgn(∆g(xs, xt, θ))(ys − yt)].

To connect these expressions, define a function which “aggregates” the conditional moments
across the sets D ∈ D(xs, xt, θ):

H(xs, xt, θ) =
∑
D∈D

E[mD(ys, yt, xs, xt, θ) |xs, xt]

=
∑

D∈D(xs,xt,θ)

E[1{ys ∈ D} − 1{yt ∈ D} |xs, xt]. (18)

Then,
H(θ) = E[H(xs, xt, θ)]. (19)

That is, the maximum score criterion is an aggregation of the unconditional version of the
moments from the conditional moment inequalities.

Clearly, H(θ0) ≥ 0 and Θ0 ⊂ {θ ∈ Θ |H(θ) ≥ 0}, but in general this set inclusion would
be strict and {θ ∈ Θ |H(θ) ≥ 0} would not be sharp. Instead of checking non-negativity
of this criterion, maximum score seeks to maximize it. According to Manski (1987) in the
binary choice case with a linear covariate index function, under conditions implying point
identification, the maximum score criterion H(θ) is uniquely maximized at θ0.

The following proposition shows that, in the binary choice case, the maximum score
criterion is useful even when point identification is not achieved. In particular, under As-
sumption 1 alone, Θ0 could be either a set or a point, and the maximum score criterion H(θ)

exactly identifies this set (or point) Θ0.

Proposition 3 Suppose D + 1 = 2 (binary choice) and Assumption 1 holds. Then,

Θ0 = arg max
θ∈Θ

H(θ) = {θ ∈ Θ : H(θ) = H(θ0)}.
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2

Under the conditions of Theorem 2, Θ0 is itself sharp, showing that the maximum score
criterion will identify the sharp bounds for the covariate index function in the binary choice
model.

5 Empirical Example

We implement our conditional moment inequalities in an empirical example that analyzes
health insurance choices in the Commonwealth Care (or “CommCare”) program in Mas-
sachusetts, enacted as part of the state health reforms in 2006. The program provided
subsidized health insurance to low-income citizens via an insurance exchange that let con-
sumers choose among competing private plans. We focus on a classic question in demand
analysis; does the response of demand to price changes depend on the income of consumers?

CommCare was for citizens whose earnings were less that 300% of the Federal Poverty
Level (or the FPL; this was $10,830 in 2010, and increased by the CPI-U annually there-
after). We examine whether the response to price movements differed between two groups
of individuals: those with incomes between one and two times the FPL and those whose in-
come was between two and three times the FPL (those with incomes less than the FPL were
fully subsidized and hence not included in the analysis). Differences in the price coefficient
between these two groups has distributional implications for the welfare generated by this
and other programs directed at low income households.

Our model has consumer i at time t choosing among plans d to maximize

Ud,i,t = −pd,i,tβ0 − pd,i,t1{Ii,t ∈ [FPL, 2FPL]}γ0 + λd,i + εd,i,t, (20)

where individual i’s price coefficient is β0 if that individual’s income Ii,t is contained in
[FPL, 2FPL] and β0 + γ0 if Ii,t ∈ [2FPL, 3FPL]. The λd,i capture individual (additive)
product preferences, and εd,i,t captures the remaining unobserved variation in random utility.
Our focus is on γ0, the difference between the price sensitivity of individuals when they are
in the higher versus the lower income group. Since the parameters are only identified up to
scale, we can only learn about γ0/β0. Assuming downward sloping demand (β0 > 0) we can
normalize β0 = 1 so that γ0 represents the desired ratio.11

11To explicitly connect the hypotheses on γ0 with demand effects described, consider the demand ef-
fect on choice d of a price decrease in choice d with all other prices staying the same or increas-
ing and income in the low range, let ∆1 = Pr(yt = d|pd,s, pd,t, p−d,s, p−d,t, Is, It ∈ [FPL, 2FPL], λ)
−Pr(ys = d|pd,s, pd,t, p−d,s, p−d,t, Is, It ∈ [FPL, 2FPL], λ). Assuming downward sloping demand, ∆1 > 0.
We compare ∆1 to the change in demand for the same choice under the same price dynamics when in-
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We consider regions where four insurers participate in the market during our data period,
with each insurer (by rule) offering a single plan. Program rules required each enrollee to
make a separate choice; there was no family coverage, and kids were covered in the separate
Medicaid program. We analyze plan choices in an annual open enrollment month each year.
Individuals are also allowed to choose plans when they change their income group and we
treat changes occurring at these times as separate choices for estimation purposes.12 For more
detail on the data and the CommCare program see Shepard (2020), Finkelstein, Hendren,
and Shepard (2019), McIntyre, Shepard, and Wagner (2021).

We want to capture choices that are not induced by changes in the individual’s choice
environment, just by prices, and we require the choice set (plan availability) to be the same
four plans in the two periods we compare. We therefore remove comparisons for individuals
who changed regions (there are five in the data), or who faced different plan offerings in the
comparison periods. We divide the remaining data into cells based on consumers’ observed
characteristics. The characteristics of a cell are defined by the Cartesian product of; a) pair
of years, b) region and c) the income groups in each of the two periods being compared. So
the λd,i represent differences in tastes among consumers with the same characteristics. We
use all cells as defined above that have more than 20 members.

There were large changes in relative prices between 2010 and 2012. During this period,
the provider BMC, which had the largest share in 2010 with over a third of the market,
increased its average price from below $50 per member per month to over $90. By the end
of 2012 it was clear that the price increases cost them almost half of their subscribers, and
in 2013 they reduced their prices to an average price of just over $40.13 We focus on the
differential responses to these price changes and use the (s, t) combinations of (2010, 2012)
and (2012, 2013). This generates 13,169 pairs of choices and 14 moments corresponding to
the four choices.

come increases over time, ∆2 = Pr(yt = d|pd,s, pd,t, p−d,s, p−d,t, Is ∈ [FPL, 2FPL], It ∈ [2FPL, 3FPL], λ)
−Pr(ys = d|pd,s, pd,t, p−d,s, p−d,t, Is ∈ [FPL, 2FPL], It ∈ [2FPL, 3FPL], λ). Assume that the disturbance
distribution is conditionally independent of incomes. Then, under the null γ0 = 0, ∆1 = ∆2. Under the
alternative that −β0 < γ0 < 0, ∆1 > ∆2, that is the increase in the demand is smaller if income increases.
And, clearly, both of these conclusions would still hold after integrating the fixed effects out over a given
distribution to yield “average” demand effects.

12Coverage is heavily regulated, with all cost sharing and covered medical services completely standardized
across insurers. The only flexible plan attributes are provider networks. These were largely stable during
our sample period with one major exception. Network Health (one of our plans) drops Partners HealthCare
(the state’s largest medical system) from its hospital network at the start of 2012. To account for this, we
treat Network as two different plans, one before and one after 2012, and apply the rules above with that
understanding.

13There were no major changes in BMC’s network or other quality attributes at this time. There was,
however, a change in the rules governing the exchange in 2012 which set up an auction like environment to
determine the plans that were available to the fully subsidized individuals and likely induced price experi-
mentation.
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Figure 2: Criterion Function and Critical Values
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The blue line is the negative part criterion function, and the red line is the corresponding 95% bootstrap
critical value function.

To use the conditional moment inequalities for inference, there are many recently devel-
oped methods (Andrews and Shi 2013, Armstrong 2015, Armstrong and Chan 2016, Cher-
nozhukov, Lee, and Rosen 2013, Chetverikov 2018, and Lee, Song, and Whang 2013). We
implement the approach described in Andrews and Shi (2013), which requires a choice of
instruments to translate the conditional moments into unconditional moments. We use indi-
cators for year pairs as instruments which yields 28 unconditional moments. Implementing a
squared negative part criterion function and bootstrap critical values yields a 95% confidence
interval for γ0, [−0.79,−0.31], indicating that when individuals transit to a higher income
group their price sensitivity falls significantly.

More detail is provided in Figure 2. The blue line graphs the sample test statistic. The
red line graphs the 95% bootstrap critical values.14 Using the max criterion function (Arm-
strong 2014) and using various instruments that aggregate less (yielding more unconditional
moments) leads to similarly shaped test statistic graphs (though exact magnitudes depend
on the number of unconditional moments). We also considered the Shi, Shum, and Song
(2018) length 2-cycle conditional moment inequalities. Using the year pair instruments, as
above, yields two linear inequalities. The lower bound information in these moment inequal-
ities is the same as obtained previously. The two linear inequalities are necessarily one-sided
inequalities and neither provides upper bound information.15

14We implement the GMS bootstrap following the recommendations given in Andrews and Shi (2013).
15We note that using different instruments we are able to find some upper bound information in the cyclic

monotonicity conditional moment inequalities.
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6 Conclusion

We have provided a new approach to identification for multinomial choice models. Our
focus has been on the multinomial choice model which allows for choice-specific fixed effects
with a group (or panel) structure and a nonparametric distribution of disturbances only
restricted to satisfy a stationarity assumption. We show that this specification generates
conditional moment inequalities which can be used for identification of the covariate index
function and avoids the incidental parameter problem using only two time periods. These
conditional moment inequalities provide sharp bounds without restrictions on the covariates.
When T > 2, each pair of time periods generates a set of conditional moment inequalities
as described above. A sharpness result for this case is left as an open problem for future
research.

Our empirical example illustrates how these techniques can be applied to examine differ-
ential responses by individuals with different characteristics to a given determinant of choices.
This should lead to a better understanding of distributional implications of different policies.
Often the focus of empirical studies is not on θ0 per se but rather on different functionals
that could depend on θ0 (e.g. Tebaldi, Torgovitsky, and Yang 2018). In the discrete choice
panel data setting, Chernozhukov, Fernández-Val, Hahn, and Newey (2013) suggest par-
ticular functionals of interest such as the conditional quantile or average structural effects.
In such cases, our conditional moment inequalities provide a new source of identifying in-
formation. Without restricting the disturbance distribution across choices, our conditional
moment inequalities are relatively easy to compute and provide sharp (and sometimes point)
identifying information on θ0. This additional “within” information can be used to improve
upon the estimation of the various effects by narrowing the range of parameter values to be
considered together with the possible disturbance distributions (including fixed effects) that
are consistent with the “between” variation specified in the Chernozhukov, Fernández-Val,
Hahn, and Newey (2013) paper.

The issue of what is consistent with the “between” variation opens up the question, which
we have left for future research, of what information is available on the fixed effects per se. In
addition to helping us analyze responses to changes in characteristics, there are cases where
knowledge of the fixed effects are of inherent interest and should be analyzable. For example
in Ho and Pakes (2014)’s investigation of the impact of capitation on allocation of patients
to hospitals, the fixed effects represent the perceived qualities of (the 194) different hospitals
for each of (the 106) alternative illness categories. They examine whether the perceptions
of the providers from different insurance networks coincide, and are able to rank hospital by
their perceived quality for the major illness categories.
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7 Appendix

Proof of Theorem 2: Take Fys,yt,xs,xt ∈ Fob. It is straightforward to show that ΘS ⊂
Θ0. So we will focus on showing Θ0 ⊂ ΘS. Take θ ∈ Θ0. For all xs, xt in the support of
the joint covariate space, we will exhibit a conditional distribution (ε∗s, ε

∗
t )|xs, xt satisfying

Assumption 1(b) with λ∗ = 0 and Fy∗s ,y∗t |xs,xt = Fys,yt |xs,xt where y∗j = y(xj, λ
∗ = 0, ε∗j , θ) for

j = s, t.
Suppose we order the covariate indices for the parameter θ and there is a strict or-

dering: [g(D)(x(D),s, θ) − g(D)(x(D),t, θ)] > [g(D−1)(x(D−1),s, θ) − g(D−1)(x(D−1),t, θ)] > · · · >
[g(0)(x(0),s, θ)−g(0)(x(0),t, θ)] (with some abuse of the order statistic subscript notation). Since
θ ∈ Θ0, the conditional moment inequalities imply

Pr(ys ∈ {(D), . . . , (d)} |xs, xt) ≥ Pr(yt ∈ {(D), . . . , (d)} |xs, xt) ∀d = 1, 2, . . . ,D .

Let pd,d′ = Pr(ys = d, yt = d′|xs, xt) and p∗d,d′ = Pr(y∗s = d, y∗t = d′|xs, xt). We need to find
(ε∗s, ε

∗
t )|xs, xt such that p∗d,d′ = pd,d′ ∀d, d′ and ε∗s|xs, xt ∼ ε∗t |xs, xt.

Define Rd;s = {ε∗ : y(xs, λ
∗ = 0, ε∗s, θ) = d}. The set inclusion obtained in the proof of

Proposition 1 shows that

R(D);t ∪ · · · ∪R(d);t ⊂ R(D);s ∪ · · · ∪R(d);s , ∀d ∈ {1, . . . ,D}. (21)

Since the sets R(d);s form a partition for d = 0, . . . ,D , the set inclusion (21) implies that

R(d);s ∩ R(d′);t = ∅ for d′ > d. (22)

Let Rd,d′ = Rd;s ∩ Rd′;t, which is a set in the ε∗s-space (or the ε∗t -space). Cartesian products
of these sets will form sets in the (ε∗s, ε

∗
t )-space: let Rd,d′×d′′,d′′′ = Rd,d′ × Rd′′,d′′′ = {(ε∗s, ε∗t ) :

ε∗s ∈ Rd,d′ , ε
∗
t ∈ Rd′′,d′′′}. Finally, let q∗d,d′×d′′,d′′′ = Pr((ε∗s, ε

∗
t ) ∈ Rd,d′×d′′,d′′′ |xs, xt). These

probabilities form the basic building blocks for our constructed (ε∗s, ε
∗
t )|xs, xt distribution, as

Rd,d′×d′′,d′′′ partitions the (ε∗s, ε
∗
t )-space. By (22), q∗(d),(d′)×(d′′),(d′′′) = 0 if d < d′ or d′′ < d′′′, so

p∗(d),(d′) =
D∑

˜
d=0

D∑
d̃=0

q∗
(d),(

˜
d)×(d̃),(d′)

=
d∑

˜
d=0

D∑
d̃=d′

q∗
(d),(

˜
d)×(d̃),(d′)

.

To get the constructed distribution to match the observed distribution, we will need to show
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that there exists q∗d,d′×d′′,d′′′ satisfying

p(d),(d′) =
d∑

˜
d=0

D∑
d̃=d′

q∗
(d),(

˜
d)×(d̃),(d′)

, (23)

as well as ensuring that Assumption 1(b) holds for the contructed distribution. For each
Rd,d′ 6= ∅, choose a point rd,d′ ∈ Rd,d′ . Define (ε∗s, ε

∗
t )|xs, xt to be the discrete distribution

on the support points (rd,d′ , rd′′,d′′′), Pr((ε∗s, ε
∗
t ) = (rd,d′ , rd′′,d′′′)|xs, xt) = q∗d,d′×d′′,d′′′ .16 So the

marginal is

Pr(ε∗s = r(d),(d′)|xs, xt) =
D∑

˜
d=0

D∑
d̃=

˜
d

q∗
(d),(d′)×(d̃),(

˜
d)
.

The marginal for ε∗t |xs, xt is similar. To ensure that Assumption 1(b) is satisfied we will need
for the marginals to match, for d ≥ d′,

0 =
∑
˜
d≤d̃

(
q∗

(d̃),(
˜
d)×(d),(d′)

− q∗
(d),(d′)×(d̃),(

˜
d)

)
. (24)

In addition to equations (23) and (24), the nonegativity inequalities q∗d,d′×d′′,d′′′ ≥ 0 must
hold. Let p denote the vector of joint probabilities, p = (p(D),(D), p(D),(D−1), . . .)

′. Let q∗ be the
vector of probabilities q∗(d),(d′)×(d′′),(d′′′) (where d ≥ d′ and d′′ ≥ d′′′), q∗ = (q∗(D),(D)×(D),(D), . . .)

′.
And let Qs be the matrix with elements in {0, 1} such that equation (23) can be restated as
p = Qsq

∗, and let Qp be the matrix with elements in {−1, 0, 1} such that equation (24) can
be restated as 0 = Qpq

∗.
Our goal then can be summarized as showing that ∃q∗ ≥ 0 such that: (A) p = Qsq

∗;
and (B) 0 = Qpq

∗. Let z be a (D + 1)2-dimensional vector conformable with p, z =

(z(D),(D), z(D),(D−1), . . .)
′. Let w be a (D+1)(D+2)/2-dimensional vector, w = (. . . , w(d),(d′), . . .)

′.
Farkas’ Lemma states that if(

z

w

)′(
Qs

Qp

)
≥ 0 implies

(
z

w

)′(
p

0

)
= z′p ≥ 0,

then ∃q∗ ≥ 0 satisfying (A) and (B) above.
Each element q∗(d),(d′)×(d′′),(d′′′) of q

∗ appears in exactly one equation from constraints (A)
and either zero or two (with positive and negative signs) from constraints (B). In particular,
elements of the form q∗(d),(d′)×(d),(d′) with d ≥ d′ appear in (A) but not (B). Hence, z(d),(d′) ≥ 0

16A continuous distribution for (ε∗s, ε
∗
t )|xs, xt could be obtained by defining the density on each Rd,d′ 6= ∅

to be a constant chosen so that Pr((ε∗s, ε
∗
t ) ∈ Rd,d′ |xs, xt) = q∗d,d′×d′′,d′′′ .
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for d ≥ d′. Also, the conditional moment inequalities yield that for d = 1, . . . ,D , Pr(ys ∈
{(D), . . . , (d)}|xs, xt) ≥ Pr(yt ∈ {(D), . . . , (d)}|xs, xt) which implies

D∑
d̃=d

d−1∑
˜
d=0

p(d̃),(
˜
d) ≥

D∑
d̃=d

d−1∑
˜
d=0

p(
˜
d),(d̃) for d = 1, . . . ,D (25)

Now, for constants ad,

z′p =
D∑
d=0

z(d),(d)p(d),(d) +
∑
d>d′

(
z(d),(d′)p(d),(d′) + z(d′),(d)p(d′),(d)

)
≥

∑
d>d′

(
z(d),(d′)p(d),(d′) + z(d′),(d)p(d′),(d)

)
=

D∑
d=1

ad

 D∑
d̃=d

d−1∑
˜
d=0

p(d̃),(
˜
d) −

D∑
d̃=d

d−1∑
˜
d=0

p(
˜
d),(d̃)


︸ ︷︷ ︸

≥0 by (25)

+
D∑
s=1

D−s∑
d=0

{(
z(d+s),(d) −

[
d+s∑

d′=d+1

ad′

])
p(d+s),(d) +

(
z(d),(d+s) +

[
d+s∑

d′=d+1

ad′

])
p(d),(d+s)

}

So, given

(
z

w

)′(
Qs

Qp

)
≥ 0, we have z′p ≥ 0 if ∃ aD , . . . , a1 ≥ 0 such that −z(d),(d+s) ≤∑d+s

d′=d+1 ad′ ≤ z(d+s),(d) for s = 1, . . . ,D , d = 0, . . . ,D − s.

From examination of the constraints (A) and (B),

(
z

w

)′(
Qs

Qp

)
≥ 0 yields, for d 6= d′,

z(d),(d′) + w(d̃),(d′) − w(d),(
˜
d) ≥ 0 with d̃ ∈ {d′, . . . ,D},

˜
d ∈ {0, . . . , d}. For d > d′, let

ād,d′+1 = max d̃≥d′,
˜
d≤d

{
w(d),(

˜
d) − w(d̃),(d′)

}
(and we will shorten ād,d to ād). For d + 1 ≤ d′,

let
¯
ad′,d+1 = min d̃≥d′,

˜
d≤d

{
w(d̃),(d′) − w(d),(

˜
d)

}
and

¯
ad′ = max {0,

¯
ad′,d′}. Then, for d > d′,

z(d),(d′) ≥ ād,d′+1. And, for d < d′, −z(d),(d′) ≤
¯
ad′,d+1, where we have imposed (25) through the

definition of
¯
ad′ . So, to show ∃ aD , . . . , a1 ≥ 0 such that −z(d),(d+s) ≤

∑d+s
d′=d+1 ad′ ≤ z(d+s),(d)

for s = 1, . . . ,D , d = 0, . . . ,D − s, it will suffice to show ∃ aD , . . . , a1 such that
¯
ad ≤ ad ≤ ād

for d = 1, . . . ,D , and
¯
ad+s,d+1 ≤

∑d+s
d′=d+1 ad′ ≤ ād+s,d+1 for s = 1, . . . ,D , d = 0, . . . ,D − s.

We can show this by proving that certain linear combinations of the lower bounds are smaller
than certain linear combinations of the upper bounds. Let b· and c· denote the coefficients in
the linear combinations. In particular, by another version of Farkas’ Lemma, it is sufficient
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to show that

D∑
d=1

bd
¯
ad +

D−1∑
d=1

D∑
d′=d+1

bd′,d
¯
ad′,d ≤

D∑
d=1

cdād +
D−1∑
d=1

D∑
d′=d+1

cd′,dād′,d (26)

where b· ≥ 0 and c· ≥ 0 and for d = 1, . . . ,D ,

bd +
∑

1≤d′≤d≤d′′≤D

bd′′,d′ = cd +
∑

1≤d′≤d≤d′′≤D

cd′′,d′ . (27)

Before showing (26), it will be useful to first note a fact about the coefficients b· and c·.
Let hd = min{bd, cd} and hd′,d = min{bd′,d, cd′,d} for all d′, d. Equation (26) can be re-stated
as

D∑
d=1

(bd − hd)
¯
ad +

D−1∑
d=1

D∑
d′=d+1

(bd′,d − hd′,d)
¯
ad′,d +

[
D∑
d=1

hd
¯
ad +

D−1∑
d=1

D∑
d′=d+1

hd′,d
¯
ad′,d

]

≤
D∑
d=1

(cd − hd)ād +
D−1∑
d=1

D∑
d′=d+1

(cd′,d − hd′,d)ād′,d +

[
D∑
d=1

hdād +
D−1∑
d=1

D∑
d′=d+1

hd′,dād′,d

]
.

Since
¯
ad ≤ ād and

¯
ad′,d ≤ ād′,d

D∑
d=1

hd
¯
ad +

D−1∑
d=1

D∑
d′=d+1

hd′,d
¯
ad′,d ≤

D∑
d=1

hdād +
D−1∑
d=1

D∑
d′=d+1

hd′,dād′,d.

So it will suffice to show

D∑
d=1

(bd−hd)
¯
ad +

D−1∑
d=1

D∑
d′=d+1

(bd′,d−hd′,d)
¯
ad′,d ≤

D∑
d=1

(cd−hd)ād +
D−1∑
d=1

D∑
d′=d+1

(cd′,d−hd′,d)ād′,d.

Or, more simply, in proving (26), we may assume either bd = 0 or cd = 0 holds for each d,
and similarly bd′,d = 0 or cd′,d = 0 for each d′, d, which is useful in the cases to be considered.
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Take the case where
¯
ad > 0 ∀d, the argument for (26) follows.

D∑
d=1

cdād +
D−1∑
d=1

D∑
d′=d+1

cd′,dād′,d

≥
D∑
d=1

cd(wd,d − wd−1,d−1) +
D−1∑
d=1

D∑
d′=d+1

cd′,d(wd′,d′ − wd−1,d−1)

= wD ,D

[
cD +

D−1∑
d=1

cD ,d

]
+ wD−1,D−1

[
(cD−1 − cD) +

D−2∑
d′=1

cD−1,d′

]

+
D−2∑
d=2

wd,d

[
(cd − cd+1) +

d−1∑
d′=1

cd,d′ −
D∑

d′=d+2

cd′,d+1

]

+ w1,1

[
(c1 − c2) −

D∑
d′=3

cd′,2

]
+ w0,0

[
−c1 −

D∑
d′=2

cd′,1

]

= wD ,D

[
bD +

D−1∑
d=1

bD ,d

]
+ wD−1,D−1

[
(bD−1 − bD) +

D−2∑
d′=1

bD−1,d′

]

+
D−2∑
d=2

wd,d

[
(bd − bd+1) +

d−1∑
d′=1

bd,d′ −
D∑

d′=d+2

bd′,d+1

]

+ w1,1

[
(b1 − b2) −

D∑
d′=3

bd′,2

]
+ w0,0

[
−b1 −

D∑
d′=2

bd′,1

]

=
D∑
d=1

bd(wd,d − wd−1,d−1) +
D−1∑
d=1

D∑
d′=d+1

bd′,d(wd′,d′ − wd−1,d−1)

≥
D∑
d=1

cd
¯
ad +

D−1∑
d=1

D∑
d′=d+1

cd′,d
¯
ad′,d

where the second equality follows from differences of the equations given in (27).
The other cases to check allow

¯
ad = 0 for some d and work similarly. We have focused on

the case where there is a strict covariate index ordering. When the covariate index ordering
is weak (includes some ties), the argument above simplifies. Finally, having verified Farkas’
Lemma, we can conclude that a constructed disturbance distribution exists that satisfies
Assumption 1 and generates a constructed outcome and covariate distribution that matches
the observed distribution. It follows that Θ0 ⊂ ΘS and Θ0 is sharp. 2

Proof of Proposition 3: In binary choice, it will be useful to note that when Pr(ys =

1|xs, xt) = Pr(yt = 1|xs, xt) then Pr(ys = 0|xs, xt) = Pr(yt = 0|xs, xt). In this case, take
an arbitrary θ. Then, D(xs, xt, θ) = {{0}}, {{1}}, or {{0}, {1}}. In any of these cases,
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H(xs, xt, θ) = 0, so H(xs, xt, θ) = 0 ∀θ when Pr(ys = 1|xs, xt) = Pr(yt = 1|xs, xt).
Another useful finding is that for any θ such that D(xs, xt, θ) = {{0}, {1}}, H(xs, xt, θ) =∑
D∈D(xs,xt,θ)

E[1{ys ∈ D} − 1{yt ∈ D} |xs, xt] = [Pr(ys = 0|xs, xt) − Pr(yt = 0|xs, xt)] +

[Pr(ys = 1|xs, xt)− Pr(yt = 1|xs, xt)] = 0.

Take θ ∈ Θ0 and show that H(xs, xt, θ) = H(xs, xt, θ0) a.s., so that H(θ) = H(θ0). Cases:

(a) ∆g(xs, xt, θ) > 0. Then D(xs, xt, θ) = {{1}}, so H(xs, xt, θ) = Pr(ys = 1|xs, xt) −
Pr(yt = 1|xs, xt). Since θ ∈ Θ0, Pr(ys = 1|xs, xt) − Pr(yt = 1|xs, xt) ≥ 0. If Pr(ys =

1|xs, xt) − Pr(yt = 1|xs, xt) > 0, then we must have by Proposition 1, D(xs, xt, θ0) =

{{1}}, so H(xs, xt, θ) = H(xs, xt, θ0). If Pr(ys = 1|xs, xt)− Pr(yt = 1|xs, xt) = 0, then
as noted above H(xs, xt, θ) = 0 = H(xs, xt, θ0).

(b) ∆g(xs, xt, θ) = 0. Then, D(xs, xt, θ) = {{0}, {1}}, so as noted above H(xs, xt, θ) = 0.
Since θ ∈ Θ0, we must have Pr(ys = 0|xs, xt) − Pr(yt = 0|xs, xt) ≥ 0 and Pr(ys =

1|xs, xt) − Pr(yt = 1|xs, xt) ≥ 0. So, Pr(ys = 1|xs, xt) = Pr(yt = 1|xs, xt), and
H(xs, xt, θ0) = 0. Hence, H(xs, xt, θ) = H(xs, xt, θ0).

(c) ∆g(xs, xt, θ) < 0. Similar to case (a), H(xs, xt, θ) = H(xs, xt, θ0).

So we have shown that H(xs, xt, θ) = H(xs, xt, θ0) a.s., and so H(θ) = H(θ0).

Now take θ 6∈ Θ0 and showH(θ) < H(θ0). LetA = {(xs, xt) : E[mD(ys, yt, xs, xt, θ) |xs, xt] <
0 for some D ∈ D} = {(xs, xt) : E[1{ys ∈ D} − 1{yt ∈ D} |xs, xt] < 0 for some D ∈
D(xs, xt, θ)}. Since θ 6∈ Θ0, Pr(A) > 0.17 Consider (xs, xt) ∈A.

(a) ∆g(xs, xt, θ) > 0. But Pr(ys = 1|xs, xt) < Pr(yt = 1|xs, xt). Then, Pr(ys = 0|xs, xt) >
Pr(yt = 0|xs, xt) and ∆g(xs, xt, θ0) < 0. Hence, D(xs, xt, θ) = {{1}} and D(xs, xt, θ0) =

{{0}}, and H(xs, xt, θ) = Pr(ys = 1|xs, xt)−Pr(yt = 1|xs, xt) < 0 < Pr(ys = 0|xs, xt)−
Pr(yt = 0|xs, xt) = H(xs, xt, θ0).

(b) ∆g(xs, xt, θ) = 0. Then, D(xs, xt, θ) = {{0}, {1}}, so H(xs, xt, θ) = 0. But since
(xs, xt) ∈ A, Pr(ys = 1|xs, xt) 6= Pr(yt = 1|xs, xt). Suppose Pr(ys = 1|xs, xt) >

Pr(yt = 1|xs, xt), then ∆g(xs, xt, θ0) > 0, andH(xs, xt, θ0) = Pr(ys = 1|xs, xt)−Pr(yt =

1|xs, xt) > 0 = H(xs, xt, θ). The argument holds similarly when Pr(ys = 1|xs, xt) <
Pr(yt = 1|xs, xt). So H(xs, xt, θ0) > H(xs, xt, θ).

(c) ∆g(xs, xt, θ) < 0. Arguing similarly to (a), H(xs, xt, θ0) > H(xs, xt, θ).
17Suppose A is measurable or contains a measurable set of positive measure.
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So we have shown that H(xs, xt, θ0) > H(xs, xt, θ) for (xs, xt) ∈ A. For (xs, xt) 6∈ A, it
is straightforward to show H(xs, xt, θ) = H(xs, xt, θ0) using previous arguments. Hence,
H(θ0)−H(θ) = E[1{(xs, xt) ∈A}(H(xs, xt, θ0)−H(xs, xt, θ))] > 0. The result follows. 2
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