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0.1 Sets

• N: the natural numbers: positive integers {1, 2, · · · }.

• Z: the integers: {· · · ,−2,−1, 0, 1, 2, · · · }.

• Q ≡
{
a
b : a, b ∈ Z; b 6= 0

}
: rational numbers.

• R: real numbers (defined later)

• Rn: vectors with n components

0.1.1 Subsets and Complements

Definition. Set B is called a subset of A , written B ⊂ A, if every element of B is also an element of A
A = B if A ⊂ B and B ⊂ A

Definition. If A ⊂ X, the complement of A in X denoted Ac, is defined as

Ac = {x ∈ X | x /∈ A}

The empty set, ∅

0.1.2 Union and Intersection

• A ∪B = {x | x ∈ A or x ∈ B}

• A ∩B = {x | x ∈ A and x ∈ B}

Theorem. (de Morgan’s Laws). Let A and B be subsets of R.

1. (A ∩B)c = Ac ∪Bc .

2. (A ∪B)
c

= Ac ∩Bc

0.1.3 Power Sets

P (X) = {A | A ⊂ X}
X ∈ P (X)

Also ∅ ∈ P (X) (so the power set of the empty set is not empty)
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0.2 Proofs

0.2.1 Direct Proof

Define Q0 ≡
{
t
b : t ∈ Z, b ∈ N

}
. Show that Q0 = Q

Clearly, Q0 ⊂ Q. Suppose t
b ∈ Q. If b ∈ N then t

b ∈ Q
0. Otherwise −b ∈ N and t

b = −t
−b with

−t ∈ Z,−b ∈ N.

Proposition. The sum of two consecutive odd numbers is a multiple of 4

Proof. Any odd number can be written as 2p + 1 (where p is an integer). Two consecutive odd numbers
differ by 2. So the sum is 2p+ 1 + 2p+ 1 + 2 = 4p+ 4 = 4 (p+ 1)) .

0.2.2 Proof by Contradiction

Example. [Euclid] Suppose there is a finite number of primes. Multiply them all together and add 1. This
can’t be a prime, so there is some prime number that divides it. But this division yields the product of all
the other primes with 1 as a residual.

Suppose P = {p1, p2 . . . , pn} is a finite set of primes. Let q = 1 +
n∏
i=1

pi. Then q is not divisible by any

pi. That is {
q

pi
| 1 ≤ i ≤ n

}
∩ N = ∅

First, if k ∈ N, k 6= 1, then k+1
k = 1 + 1

k /∈ N. Let k = q − 1.

q

pi
=

n∏
j=1

pj

pi
+

1

pi

=

n∏
j 6=i

pj +
1

pi

Note that 1 is not a prime (by convention)

0.2.3 Induction

Example. Let x0 = 0 and for each n ∈ N define

xn+1 =
1

2
xn + 1

Prove by induction that the sequence is increasing. Think of S as the set of natural numbers for which the
claim is true. For n = 1, x1 = 1, x2 = 3

2 so that x1 < x2. We have shown that 1 ∈ S. Show that if xn < xn+1,
then it follows that xn+1 < xn+2. We have

1

2
xn + 1 ≤ 1

2
xn+1 + 1

which is the desired conclusion xn+1 < xn+2. By induction, the claim is proved for all n ∈ N.
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In this example, the starting value matters. The sequence satisfies a difference equation with a stationary
value of 2. If x0 > 2, the sequence is decreasing. In any case the sequence is monotonic (and if x0 = 2, the
sequence is constant).

Note that if the starting value is a rational number, all of the terms in the sequence are rational numbers.
So prove that the sequence is monotonic for any x0 ∈ Q.
In fact, this sequence can be regarded as an examply of a contraction mapping. If the function f is

defined as f (x) = 1
2x+ 1, then the function shrinks distances: |f (y)− f (x)| = 1

2 |y − x|.

0.2.4 Complete Induction

Fundamental Theorem of Arithmetic Every number in N can be written as the product of prime
numbers

Can this be proved by complete induction? If it’s true for every number less than n, then if n is not itself
a prime it can be written as the product of two smaller numbers, but each of those numbers can be written
as a product of prime numbers, by the induction hypothesis, and this gives n as the product of primes.

Yes [http://www.oxfordmathcenter.com/drupal7/node/165] “strong induction”
The fundamental theorem also asserts that the factorization is unique.
Show that if p1p2 = q1q2, and all four of these numbers are primes, then {p1, p2} = {q1, q2}.
Just note that p1

q1

p2
q2

= 1 and then p1
q1

= q2
p2
.

See https://gowers.wordpress.com/2011/11/18/proving-the-fundamental-theorem-of-arithmetic/

Fibonnaci

For n ∈ N, n > 1

Fn+1 = Fn + Fn−1

with F0 = 0, F1 = 1.
Show that

Fn =
1

2n

(
1 +
√

5
)n − (1−√5

)n
√

5

= F+
n − F−n

The key point is (
1 +
√

5
)2

22
=

3 +
√

5

2(
1−
√

5
)2

22
=

3−
√

5

2
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and

√
5
(
F+
n−1 + F+

n

)
=

(
1 +
√

5
)n−1

2n−1
+

(
1 +
√

5
)n

2n

=

(
1 +
√

5
)n−1

2n−1

(
1 +

(
1 +
√

5
)

2

)

=

(
1 +
√

5
)n−1

2n−1

(
3 +
√

5

2

)

=

(
1 +
√

5
)n+1

2n+1

and

√
5
(
F−n−1 + F−n

)
=

(
1−
√

5
)n−1

2n−1
+

(
1−
√

5
)n

2n

=

(
1−
√

5
)n−1

2n−1

(
1 +

(
1−
√

5
)

2

)

=

(
1−
√

5
)n−1

2n−1

(
3−
√

5

2

)

=

(
1−
√

5
)n+1

2n+1

So if the rule holds for n− 1 and for n, then it holds for n+ 1.
The sequence is 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89 . . .

The expression for Fn with n = 2 gives

F2 =
1

4

(
1 +
√

5
)2 − (1−√5

)2
√

5

=
1

4

(
1 + 2

√
5 + 5

)
−
(
1− 2

√
5 + 5

)
√

5
= 1

and with n = 3 the result is

F3 =
1

8

(
1 +
√

5
)3 − (1−√5

)3
√

5

=
1

8

(
1 +
√

5
) (

6 + 2
√

5
)
−
(
1−
√

5
) (

6− 2
√

5
)

√
5

=
1

4

(
1 +
√

5
) (

3 +
√

5
)
−
(
1−
√

5
) (

3−
√

5
)

√
5

=
1

4

(
3 + 4

√
5 + 5

)
−
(
3− 4

√
5 + 5

)
√

5
= 2
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0.3 Functions

0.3.1 Cartesian Product

X × Y : The set of ordered pairs (x, y), where x ∈ X, y ∈ Y
Euclidean Space Rn = {(x1, x2, . . . , xi . . . xn) | xi ∈ R, 1 ≤ i ≤ n}
A relation is a subset of the Cartesian product.
Example: preferences.
A function f from X to Y , denoted f : X → Y , is a rule that associates with each element of X, one

and only one element of Y . X is the domain of f , and Y is the codomain. If A ⊂ X, then the image of
A under f is

f(A) = {y ∈ Y | y = f(x), x ∈ A}

If B ⊂ Y , then the inverse image of B under f is

f−1(B) = {x ∈ X | f(x) ∈ B}

The notation is overloaded here: f is used to represent a mapping from subsets of X to subsets of Y :
f : P (X)→ P (Y )

and in the case of a correspondence, the mapping is from X to P (X)

The graph of a function or a relation or a correspondence is a subset of the Cartesian product

(x, y) ∈ X × Y | xRy

(x, y) ∈ X × Y | y = f (x)

(x, y) ∈ X × Y | y ∈ f (x)

There is no difference between a relation and a correspondence. But a relation is usually specified by saying
xRy, while a correspondence is usually specified as a formula assigning a subset of Y to each point in x.

Actually, a correspondence assigns a subset of Y to every point in X. But this could be dealt with by
saying that if there is no point y such that xRy, then the correspondence assigns the empty set to x.

The CES function may be specified as

yρ = αKρ + βLρ, ρ 6= 0

This describes a function from X = R2
++ to Y = R++. It is a function because yρ uniquely determines y.

0.3.2 Onto and One-to-One Functions

Let f : X → Y .

Definition. f is surjective or f is onto Y if

∀y ∈ Y, ∃x ∈ X, y = f(x)
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In other words the projection of the graph on Y (the co-domain of the function) is Y itself. Every point
in Y is the image of some point in X.

Definition. f is injective or one-to-one if

f(x) = f(y) =⇒ x = y

or
x 6= y =⇒ f(x) 6= f(y)

f is a bijection if it is both surjective and injective.

Example. The function f : R → R given by f(x) = x2 is not injective since for instance for the points 1

and −1, 1 6= −1 but f(1) = f(−1) = 1. It is not surjective because there is no elements from R such that
f(x) = −1. Now if we define the function g : R+ → R+ given by g(x) = x2 then g is bijective.

-

Example. The function f : R→ R given by f(x) = 2x is a bijection.

This also works for rational numbers. Note that f (0) = 0. And if f (q) = 0, then 2×q = 0, which implies
q = 0. The function is a bijection because it just changes the scale. The argument works if 2 is replaced by
any nonzero constant (and in particular this works for rational numbers).

Example. Consider f : R2 → R defined by f(x1, x2) = x21 + x22. The image of R2 under f is the set of all
nonnegative real numbers. Since this is not R, f is not onto. Neither is f one-to-one since f(1, 0) = f(0, 1) =

1.

-

Example. Let f : R++ → R++ with f(x) = 1
x . The image of R++ under f is R++. so it is onto R++. It is

also one-to-one.

-

Example. Let f : Rn++ → Rn be defined by y = f (x) where yi = log (xi). This is a bijection (even though
the domain is a “small” subset of the codomain).

The enumeration of the rationals is a bijection (but only if duplicates are skipped).

0.3.3 Indicator Functions

For any set A ⊂ X, the indicator function

χA : A→ {0, 1}

is defined by

χA (a) =

1 a ∈ A

0 a ∈ X\A

The Dirichlet function is χQ, the indicator function for the rational numbers.
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0.3.4 Composition

If f : X → Y . and g : Y → Z. then the composition h = g ◦ f : X → Z is defined by

h (x) = g (f (x))

0.4 Relations

0.4.1 Preference Relations

A binary relation on a set X is a set of ordered pairs of elements of X – a subset of the Cartesian Product
X ×X

Example. Say there are 30 people in the room. Then there are 870 possible ordered pairs (or 900 if
degenerate pairs are allowed). The relation R is defined by saying (x, y) ∈ R if x has black hair. This defines
a rectangle in X ×X. Define the relation L by saying (x, y) ∈ L if x likes y.

A preference relation % is a binary relation: %⊂ X × X. Instead of writing (x, y) ∈% , it is usual to
write x % y ; the interpretation is that x is at least as good as y.

Definition 1. A preference relation % on X is rational if it is complete and transitive:

1. (Complete) for all x, y , either (x, y) ∈% or (y, x) ∈%

2. (Transitive) if x % y and y % z then x % z

In the examples above, neither R nor L is complete, and R is transitive, while L is not.
Indifference: x ∼ y means x % y and y % x.

Strict Preference: x � y means x % y and x � y .
If % is rational, then x � y and y % z implies x � z. Transitivity implies x % z. If z % x then transitivity

implies y % x, a contradiction.
Transitivity of strict preference is a special case of this result.
Transitivity of the indifference relationship is implied by transitivity of % in both directions.

Definition 2. A function u : X → R is a utility function representing preference relation % if, for all
x, y ∈ X,

x % y ⇐⇒ u(x) ≥ u(y)

If % can be represented by a utility function, then it is complete and transitive.
The utility function assigns numbers to all of the elements of X, and since there is a complete and

transitive ordering of these numbers, the result follows.
If u represents %, and f : R → R is a strictly increasing function, then f ◦ u also represents %. For

example, v(x) ≡ exp(u(x)) is another utility function representing %.
Properties of the utility function that hold for any utility representation are called ordinal properties;

these are properties of the preference ordering itself.
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Properties that hold for some utility representations but not for others are cardinal properties. For
example, concavity is a cardinal property (which is defined only when X is a vector space); quasiconcavity
is an ordinal property (although this is also defined only when X is a vector space).

If X has a worst element x0 under %, then there is no loss in considering only nonnegative utility
functions. Adding any number to a utility function gives a new utility function; so v(x) ≡ u(x)− u (x0) is a
utility function representing %.

Suppose X ⊂ Rn. The CES utility function is defined as

u (x) =

n∑
i=1

αi (xi − δi)ρi

This makes sense without any restriction if ρ is an integer (positive or negative). More generally, it makes
sense for any ρ ∈ R if x ≥ δ , with (xi − δi)ρ = exp (ρ log (xi − δi)).

There is no need to assume that ρi is the same number for all i (although that is the conventional CES
assumption).

Another utility function is defined by

v (x) =

n1∑
i=1

αi
(xi − δi)ρi − 1

ρi
+

n2∑
i=n1+1

αi log (xi − δi)

for ρi 6= 0 for 1 ≤ i ≤ n1.

0.5 Cardinality

The term cardinality is used in mathematics to refer to the size of a set. The cardinality of finite sets can
be compared simply by attaching a natural number to each set. The set of students attending this lecture
(say 30) is smaller than the set of seats in this classroom (say 50) because 30 is less than 50. But how might
we draw this same conclusion without referring to any numbers? Georg Cantor’s idea was to attempt to put
the sets into a 1-1 correspondence with each other. There are fewer students than seats because, when all
students are seated there are still empty seats. The advantage of this method of comparing the size of sets
is that it works equally well on sets that are infinite.

Definition. Two sets A and B have the same cardinality if there exists f : A→ B that is 1-1 and onto. In
this case, we write A ∼ B.

Roughly speaking, if two sets have the same cardinality then elements of the sets can be uniquely matched
up and paired off.

Example. The set A = {2, 4, 6, . . . , 50} is numerically equivalent to the set {1, 2, . . . , 25} under the function
f(n) = 2n.

-

Example. Let E = {2, 4, 6, . . . } be the set of even natural numbers. Then we can show E ∼ N. To see why,
let f : N→ E be given by f(n) = 2n.

-
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Example. The set E = {1, 4, 9, 16, . . . } ≡
{
n2 : n ∈ N

}
is numerically equivalent to N and is infinite.

Definition. A set A is countable if N ∼ A. An infinite set that is not countable is called an uncountable
set.

In the previous example, E is a countable set. Putting a set into a 1-1 correspondence with N, in effect,
means putting all of the elements into an infinitely long list or sequence. A natural question arises as to
whether all infnite sets are countable. Given some infinite set such as Q or R, it might seem as though,
with enough cleverness, we should be able to fit all the elements of our set into a single list (i.e., into a
correspondence with N). The answer is no!

Example. The set of integers Z is countable. Define f : N→ Z by:

f(1) = 0

f(2) = 1

f(3) = −1

...

f(n) = (−1)n
⌊n

2

⌋
where bxc is the greatest integer less than or equal to x. It is straightforward to verify that f is one-to-one
and onto. Notice N ⊂ Z but N 6= Z; indeed Z\N is infinite!

-

Example. The set of rational numbers Q =
{
m
n : m,n ∈ Z, n 6= 0

}
is countable.

Lay out a table displaying all of the rational, with m indexing columns (0, 1,−1, 2,−2, . . .) and n indexing
rows (1, 2, 3, . . .). Go back and forth on upward sloping diagonals, omitting the repeats (the first column can
be discarded, aside from the first element)

f(1) = 0

f(2) = 1

f(3) =
1

2
f(4) = −1

f(6) = 2

f(7) = −1

2
...

f : N→ Q, f is one-to-one and onto. Notice that although Q appears to be much larger than N, in fact they
are the same “size”.

Theorem. Let m ∈ N. If A1, A2, . . . , Am are each countable sets, then the union A1 ∪ A2 ∪ · · · ∪ Am is
countable.
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Proof. We first prove the statement for two countable setsA1 andA2. DefineB2 = A2\A1 = {x ∈ A2 : x /∈ A1}.
The point of this is that the union A1 ∪B2 = A1 ∪A2 and the sets A1 and B2 are disjoint. There are three
cases to consider. Because A1 is countable, there exists a 1− 1 and onto function f : N→ A1.

1. If B2 = ∅, Then A1 ∪A2 = A1 which we already know is countable.

2. If B2 = {b1, b2, . . . , bk} has k elements then define h : N→ A1 ∪B2 via:

h(n) =

bn if n ≤ k

f(n− k) if n > k

The fact that h is 1− 1 and onto follows immediately from the same properties of f .

3. If B2 is infinite, it is countable because a subset of a countable set is either finite or countable (you
will prove it during discussions). So there exists a 1− 1 and onto function g : N→ B2. In this case we
define h : N→ A1 ∪B2 by

h(n) =

f
(
n+1
2

)
if nis odd

g
(
n
2

)
if nis even

Again the proof that h is 1−1 and onto follows from the fact that f and g are bijections. (And that B2

and A1 are disjoint). proving the general statement is a good exercise. hint: use induction following
the same steps as in the proof of de Morgan’s laws.

Example. Let A = {a, b, c}. Then,

P (A) = {∅, {a} , {b} , {c} , {a, b} , {a, c} , {b, c} , A}

P (A) has 8 elements. If A is finite with n elements then P (A) has 2n elements. An example of mapping
from A into P (A) is:

a → {a}

b → {a, c}

c → {a, b, c}

Whereas it is easy to construct a mapping that is 1− 1, it is clear from this example that it is impossible to
construct mappings that are onto. This is because 2n > n for every n. The power set simply has too many
elements to be mapped into A in a 1− 1 fashion.

Cantor’s Theorem states that the phenomenon in this previous example holds for infinite sets as well as
finite sets.

Theorem. (Cantor’s Theorem) Given any set A, there does not exist a function f : A→ P (A) that is onto.
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Proof. by contradiction. Assume that f : A → P (A) is onto. For each element a ∈ A, f(a) is a particular
subset of A. f onto means that every subset of A appears as f(a) for some a ∈ A. To arrive at a contradiction
we will produce a subset B ⊂ A that is not equal to f(a) for any a ∈ A. Construct B using the following
rule. For each element a ∈ A, consider the subset f(a). If f(a) does not contains a then we include a in our
set B. More precisely, let

B = {a ∈ A : a /∈ f(a)} .

Because f is onto, it must be that B = f(x) for some x ∈ A. If x ∈ B, then x /∈ f(x) = B. a contradiction.
So it must be that x /∈ B. But then by definition of B, x ∈ f(x) = B. another contradiction.

What if B is empty? Then x /∈ f (x), contradiction.
Cantor’s Theorem shows that there are different sizes of infinite sets. And the power set of the power

set of A has more elements that the power set of A (and so ad infinitum). Another implication is that a
declaration such as “let U be the set of all possible things” is paradoxical because P (U) has more elements
than U .

0.6 Least Upper Bounds and Greatest Lower Bounds

Definition. A set A ⊂ R, A 6= ∅, is bounded above if there exists a number u ∈ R such that u ≥ a,∀a ∈ A.
The set of upper bounds of A : U(A) = {u ∈ R | u ≥ a,∀a ∈ A}

Let A ⊂ R and non-empty.

Definition. A real number is denoted supA and called the supremum or the least upper bound if

1. a ∈ A⇒ a ≤ supA. That is, A ≤ supA

2. A ≤ b⇒ supA ≤ b

Example. Let

A =

{
1− 1

n
: n ∈ N

}
=

{
0,

1

2
,

2

3
,

3

4
, · · ·

}
If A has a maximal element, then supA = maxA.

Lemma. If a ≤ z for all a ∈ A, then supA ≤ z

Proof. Suppose otherwise: z < supA. Then there is a contradiction, because z is an upper bound for A,
and supA is the smallest such bound

0.7 The Axiom of Completeness

The defining difference between R and Q is the following axiom. An axiom in mathematics is an accepted
assumption, to be used without proof.

Axiom. (A) Every nonempty set of real numbers that is bounded above has a least upper bound which is a
real number.
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Although not every nonempty bounded set contains a maximum, the Axiom of Completeness asserts
that every such set does have a least upper bound. This is not a valid statement about Q. This Axiom
differentiates R from Q: Q satisfies all the axioms of R except the Axiom of Completeness.

Example. Consider the set S =
{
r ∈ Q : r2 < 2

}
. The set S is certainly bounded above. Taking u = 2

works, as does u = 3. Note:
√

2 ≈ 1.4142. For the least upper bound, 142/100 is an upper bound, but
1415/1000 is an upper bound that is smaller still, etc.., In the rational numbers, there is no least upper
bound. In the real numbers, there is. In R, the Axiom of Completeness states that we may set a = supS

and be confident that such a number exists. One can actually prove that α2 = 2 (see Rudin) and we know
that α is not a rational number.

0.8 Nested intervals

Theorem. Nested Interval Property
Suppose In+1 ⊂ In, where In = {x ∈ R | an ≤ x ≤ bn} . Then ∩∞i=1 6= ∅.

Proof. If an > bk with n > k then an > bn because b is a decreasing sequence.
If an > bk with k > n then ak > bk because a is an increasing sequence.
In either case there is a contradiction, because the interval In = {x | an ≤ x ≤ bn}, and this interval is not
empty.
So ai ≤ bn for all n. Let z = sup {ai} Then z ≤ bn for all n (by the Lemma above)
and an ≤ z for all n, so z is in the intersection of all of the intervals.

Theorem. R is not countable

Proof. Use the nested interval property [Abbott]. If R is countable, then it is possible to construct an infinite
sequence such that

R = {x1, x2, . . . xn, . . .}

= ∪∞n=1 {xn}

Start with an interval I1 which does not contain the point x1. If this interval does not contain x2, set
I2 = I1. If it does contain x2 split the interval in two disjoint parts, and let I2 be the subinterval that does
not contain x2. Repeat this for all n, constructing a nested sequence of intervals that do no contain any of
the points xn. But the intersection of these intervals is not empty, contradicting the assumption that all of
the points in R have been enumerated.

The union of two countable sets is countable (take the first number in A, then the first in B, then the
second in the A, then b2, a3, b3 . . .

It the set of irrational numbers were countable, then the whole real line would be countable, and it isn’t,
so the irrationals are not countable (meaning that all real numbers are irrational, with a countable number
of exceptions).
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0.9 Sequences and Series

0.10 Infinite Series

Abbott has a nice example

S = 1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+

1

7
. . .

1

2
S =

1

2
− 1

4
− 1

6
− 1

8
. . .

3

2
S = 1 +

1

3
− 1

2
− 1

6
− 1

8
. . .

The terms in the last line are exactly the same as the terms in the first line, but in a different order: the first
two positive terms, followed by the first negative term, followed by the next two positive terms, followed by
the next negative term, etc.

Put these in a spreadsheet to show what is going on.
There is also a nice example of a doubly infinite summation with

∞∑
i=1

 ∞∑
j=1

aij

 6=
∞∑
j=1

( ∞∑
i=1

aij

)

This is presented just as motivation for the analysis of convergence.

0.11 Infinite Sequences

A sequence is a mapping from N to some set X. The sequence goes on and on. Does it go someplace, or does
it just wander around, or does it visit several places repeatedly? Even if it doesn’t exactly go somewhere,
does it get closer and closer?

0.12 Metric Spaces

And what does “closer” even mean? We need to consider sets X where we know what this means – we have
some measure of distance. Call this d, a “metric” Thus

d : X ×X → R+

Clearly, d (x, x) = 0. And it doesn’t make much sense to say that the distance between two distinct points
is zero, so d must separate the points in X:

d (x, y) = 0 ⇒ x = y

Also, distance is taken to be distance by the shortest route:
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Triangle Inequality For all x, y, z ∈ X

d (x, y) ≤ d (x, z) + d (z, y)

Theorem. (Triangle inequality in R) Let a, b ∈ R

|a+ b| ≤ |a|+ |b|

Proof. First note that x = |x| if x ≥ 0, and otherwise |x| = −x ≥ 0 so |x| ≥ x; also |x| ≥ −x
If a+ b is positive then

|a+ b| = a+ b

≤ |a|+ |b|

If not,

|a+ b| = −a− b

≤ |a|+ |b|

If both have the same sign, then the result holds with equality. Otherwise say a is positive and b is
negative. Then if |a| ≥ |b|

|a+ b| = a− b

and otherwise

|a+ b| = a− b

and

|a|+ |b| = a− b

Simpler just to ask whether a+ b is positive. If not, |a+ b| = −a− b ≤ |a|+ |b|

0.13 Convergent Sequences

Definition. A sequence {xk} converges to x0 if

∀ε > 0,∃K | ∀k ≥ K, d (xk, x0) < ε.

Example. The sequence defined by

xn+1 =
1

2
xn + 1
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with x0 = 0 satisfies

xn =
2n − 1

2n−1

= 2− 1

2n−1

because then

1

2
xn + 1 = 1− 1

2n
+ 1

So this sequence converges to 2: (find n large enough).

0.14 Algebraic Limits

Addition and subtraction and multiplication and division work in the limit

Theorem. If an → b 6= 0 then 1
an
→ 1

b

Proof. Show that for ε > 0 ∣∣∣∣ 1

an
− 1

b

∣∣∣∣ < ε

for n > K. ∣∣∣∣b− ananb

∣∣∣∣ =

∣∣∣∣ 1

an

∣∣∣∣ ∣∣∣∣1b
∣∣∣∣ |b− an|

Since an is bounded, choose a lower bound L 6= 0.
Actually, this is imprecise. Find a positive number L such that L ≤ |an| and∣∣∣∣ 1

an

∣∣∣∣ ≤ ∣∣∣∣ 1L
∣∣∣∣

for all n ≥ N1. Then ∣∣∣∣b− ananb

∣∣∣∣ ≤ ∣∣∣∣ 1

bL

∣∣∣∣ |b− an|
Choose ε0 = ε |bL| and find N2 such that |b− an| < ε0 for all n > N2. Then∣∣∣∣ 1

an
− 1

b

∣∣∣∣ ≤ ε
for all n > N = max {N1, N2}.

Also, order is preserved when passing to the limit (already shown in Lec 2)

0.15 Subsequences

Let m be any rule that assigns to each k ∈ N a value m(k) ∈ N such that m is increasing: m(k) < m(k + 1)

Definition.
{
xm(k)

}
is a subsequence of {xk}

A subsequence of a sequence is any subset of the original sequence that preserves the ordering of terms.
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0.16 Bolzano-Weierstrass Theorem

Theorem. [Bolzano-Weierstrass] Every bounded sequence in R has a convergent subsequence

Proof. [Abbott]
Since the sequence is bounded, and there is an infinite number of terms, there must be an infinite number

of terms either in the set [0,M ] or in the set [−M, 0] ,where |an| < M , for all n. Call this interval I1, and
select one term of the sequence in I1, and call it ak1 . Now divide divide I1 in two equal parts, each of length
M
2 . At least one of these two parts must contain an infinite number of points from the sequence: call this I2
and select a point ak2 in I2, with k2 ≥ k1 (since there is an infinite number of points, there must be points
beyond ak1). Repeating this process gives a nested interval sequence, and since the interval lengths become
arbitrarily small, and there is a point b in the intersection of all these intervals by the nested interval result,
the distance between this point b and the terms in the subsequence must become arbitrarily small.

There is another standard proof using “peaks” of the sequence, where xn is a peak if all subsequent terms
are smaller.

Why not just say that if M is the least upper bound of a sequence, there must be a term in the sequence
such that xk(n) > M − 1

n , for every n?
Because the theorem does not say that there is an infinite subsequence converging to the supremum of

the sequence – maybe the sequence has a maximum, which is reached only once, so this is the supremum,
but then the sequence can wander around strictly below this point.

The “peaks” proof may be clearer for this reason. But the bisection proof is useful in its own right
(because it illustrates the nested intervals property, and also because the proof method is used in other
contexts).

If there is an infinite number of these peaks, then the subsequence of the peaks must be decreasing. And
if not, then after the last peak, it is always possible to find a subsequent term at least as big as the current
term, and this generates an increasing sequence. In either case, the result is a bounded monotone sequence,
which converges by the Monotone Convergence Theorem.

0.17 Cauchy Sequences

A sequence (xn) is Cauchy if for all ε, there is a number K (depending on ε) such that d (xn, xm) < ε for all
m,n ≥ K.

0.17.1 Convergence of Cauchy Sequences in R

Then |xn − xK | < ε for n ≥ K, and

|xn| < |xn − xK |+ |xK |

by the triangle inequality, so ε + |xK | is an upper bound for all n ≥ K, and the max of this and all terms
up to K is an upper bound for the sequence.
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Since a Cauchy sequence is bounded, it has a convergent subsequence, with limit x (Bolzano-Weierstrass).
Choose a term in this subsequence such that

|xnK − x| <
ε

2

and choose this so that

|xn − xm| <
ε

2

for all m,n ≥ nK . Then

|xn − x| ≤ |xnK − x|+ |xnK − xn|

< ε

The argument here is not quite clear. Given ε > 0, there is a term, say J , in the original sequence such
that |xn − xm| < ε

2 for all n,m ≥ J . The subsequence is labeled as xn1
, xn2

. . ., and there is a term nM such
that |xnk − x| < ε

2 for all k ≥M . Then if n ≥ J choose nk ≥ max {J, nM} and then

|xn − x| ≤ |xnk − x|+ |xnk − xn|

< ε

0.18 Convergence of Infinite Series

Given a sequence (xn), the infinite sum of the terms is well-defined if the sequence of partial sums converges.

Sn =

n∑
i=1

xn

If
Sn → a

then
∞∑
i=1

xn = a

The harmonic series doesn’t converge. Suppose

S =

∞∑
i=1

1

n

The terms are 1, 12 ,
1
3 ,

1
4 ,

1
5 ,

1
6 ,

1
7 ,

1
8 ,

1
9 . . .

Take every other term, starting with 1
2 . This gives a series that is half of the original series, term by term,

so the sum is 1
2S. So the remaining terms must add up to the other half. But this gives a contradiction,

because the odd-numbers terms are strictly bigger, term by term.
S grows very very slowly: the sum of the first 10 million terms of the harmonic series is only about 16.7.
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This is a good example of how casual reasoning can give the wrong answer.

Definition. A metric space is a set X and a distance function d that is nonnegative, symmetric, separates
points, and satisfies the triangle inequality.

A neighborhood or ball is a set of points within some specified distance of a central point.

Vε (a) = {x | d (x, a) < ε}

0.19 Monotone Convergence Theorem

Theorem. (Monotone Convergence Theorem) Every bounded monotone sequence in R is convergent

Proof. Let {xk} be an increasing sequence and let u be the least upper bound of the set of points in this
sequence. For any ε > 0, there must be a point xK in the sequence that lies above u− ε, because otherwise
u − ε would be an upper bound, so u would not be the least upper bound. And since the sequence is
increasing,

|xk − u| = u− xk < ε

for all k > K.

This is for an increasing sequence. An analogous argument works for a decreasing sequence.

Theorem. (Triangle inequality in R) Let x, y ∈ R

|x+ y| ≤ |x|+ |y|

Proof. First case: x + y > 0. Then |x + y| = x + y ≤ |x| + |y| because x ≤ |x| and y ≤ |y|. Similarly if
x+ y < 0, then |x+ y| = −x− y ≤ |x|+ |y|

0.20 Contraction Mapping Theorem (Banach Fixed Point Theorem)

(X, d) a complete metric space. Suppose f : X → X and

d (f (x) , f (y)) ≤ cd (x, y)

for all x, y ∈ X, with c < 1 (that is, f is Lipschitz, with modulus less than 1). The weak inequality is used
here to cover the possibility that x = y.

Note that if the points are distinct the distance between the images is strictly smaller than the distance
between the original points.

It might be cleaner to say the inequality applies only in the case of distinct points, and it is strict.
A constant function satisfies this definition (but the constant has to be in the set X).
Notation: use α in place of c (because cis close to d)
Order: show uniqueness first.
Don’t say anything about continuity (Konrad’s proof uses continuity]
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Continuity Any Lipschitz function is continuous:
suppose xn → a. For ε < 0 choose N such that d (xn, a) < ε for n ≥ N . Then

d (f (xn) , f (a)) < cd (xn, a)

< ε

so f (xn)→ f (a)

Cauchy Let yn be the sequence defined by iterating (repeatly applying) the function f , starting from some
point y0.

yn = f (yn−1)

d (y2, y1) = d (f (y1) , f (y0))

< cd (f (y0) , y0)

d (y3, y2) = d (f (y2) , f (y1))

< cd (y2, y1)

< c2d0

d (yn+1, yn) < cnd0

d (yn+k, yn) <
(
cn + cn+1 + . . . cn+k−1

)
d0

= cn
(
1 + c+ . . . ck−1

)
d0

≤ cn
∞∑
i=0

cid0

=
cn

1− c
d0

so

d (ym, yn) < ε

if

cn

1− c
d0 ≤ ε

but this holds if n is large enough, because 0 < c < 1.
So this is a Cauchy sequence, and therefore it converges, because X is a complete metric space.
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There can’t be two distinct fixed points, because if x and y are both fixed points then

d (f (x) , f (y)) < cd (x, y)

and then since these are fixed points

d (x, y) < cd (x, y)

which is impossible unless the distance is zero (meaning x = y).
Then it remains only to show that the limit of the iteration sequence is in fact the fixed point of f

(regardless of where the sequence starts).
Direct argument, not using continuity.
Given ε find n such that

d (yk, y) < ε

for k ≥ n. Then

d (yn, y) < ε

d (f (yn) , f (y)) < cε

and

d (f (y) , y) ≤ d (f (y) , f (yn)) + d (f (yn) , y)

= d (f (z) , f (yn)) + d (yn+1, y)

< (c+ 1) ε

But this is true no matter how small ε is, so the distance must actually be zero, and therefore the two points
are the same, and so y is a fixed point.

If a bijection expands distances, the contraction mapping theorem can be applied to the inverse function.
See https://math.stackexchange.com/questions/80659/opposite-of-a-contraction-mapping
The contraction theorem doesn’t require any assumption about the function being surjective.

0.21 Tarski Fixed Point Theorem

A complete lattice means that every subset has a supremum and an infimum.
Prove the result for the specific case of a rectangle; the argument easily extends to the more general

setting.

Theorem. Suppose f is an increasing function from Rn to Rn such that f(a) > a for some [positive] vector
a, and f(b) < b for some vector b > a. Then f has a [positive] fixed point.

Proof. Let L be the rectangle {x ∈ Rn : a ≤ x ≤ b}. Since f(a) > a and f(b) < b and f is increasing, it
follows that f(x) ∈ L for all x ∈ L. Let A = {x ∈ L : f(x) ≥ x}. Then A is not empty because a ∈ A, and
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since A ⊆ L and L is bounded above, A has a least upper bound u ∈ L (where ui = sup{xi : x ∈ A}). If
x ∈ A, then x ≤ f(x) and f(x) ≤ f(u) since f is increasing, so x ≤ f(u). But then u = supA ≤ f(u), so
u ∈ A. Also, f(u) ≤ f(f(u)) by monotonicity, and f(u) ∈ L, so f(u) ∈ A, and f(u) ≤ u. Thus f(u) = u.

Notes
The key part is to show that x ≤ f(u) for all x ∈ A, and this passes through to the supremum; also
f(u) ≤ f(f(u)) by monotonicity, which means that f(u) ∈ A,

Note that x ≤ b so u ≤ b and f (u) ≤ f (b) < b so f (u) ∈ L.
Why does a have to be a positive vector here? Only if the theorem is being used to prove there is a

positive fixed point.
Define a sequence {an} starting from a0 = a with an+1 = f (an). Then a0 < a1 because f (a) > a. And

if an−1 ≤ an then f (an−1) ≤ f (an) because f is increasing. So by induction this is an increasing sequence.
And each term in the sequence is in the set A, so the supremum of the sequence must be a fixed point (by
the argument above).

Note that the fixed point is not unique (in general).
[Minseon] The condition f(b) < b ensures that the image of the rectangle is a point in the rectangle.

Otherwise the proof fails at the very last step, because if f (u) /∈ L, then there is no reason why f (u) should
be in A.

An alternative is to state the theorem with the assumption that f maps L to itself. Then since f (a) ∈ L,
if follows that a ≤ f (a) so a ∈ A. And u is in the rectangle because the rectangle is closed, and u is a limit
point of the rectangle.

0.22 Euclidean Space

Definition. The Euclidean inner product of two vectors x and y in Rn is

x · y =

n∑
i=1

xiyi

Theorem. (Cauchy-Schwartz Inequality)

|x · y| ≤ (x · x)
1
2 (y · y)

1
2

Proof. If x = 0 this is trivial so assume x 6= 0. Define X = x · x, Y = y · y, Z = x · y. Since x 6= 0, X > 0.
∀a ∈ R,

0 ≤ (ax+ y) · (ax+ y)

= a2x · x+ 2ax · y + y · y
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This is true for any a so assume a = −x·yx·x . Then,

0 ≤ (x · y)
2

x · x
− 2

(x · y)
2

x · x
· y + y · y

= − (x · y)
2

x · x
+ y · y

so

0 ≤ − (x · y)
2

x · x
+ y · y

and then

(x · y)
2 ≤ (x · x) (y · y)

See SchwarzCauchy.lyx (for an exact calculation of the difference)

Definition. The Euclidean norm of a vector x ∈ Rn is:

‖x‖ =

(
n∑
i=1

x2i

)1/2

= (x · x)
1
2

Using Cauchy-Schwartz, we then know:

|x · y| ≤ ‖x‖ · ‖y‖

Theorem. (Triangle Inequality in Rn)

‖x+ y‖ ≤ ‖x‖+ ‖y‖

Proof. The proof uses the triangle inequality in R and the Cauchy-Schwartz Inequality:

||x+ y||2 = (x+ y) · (x+ y)

= x · x+ 2x · y + y · y

≤ ‖x‖2 + 2|x · y|+ ‖y‖2

≤ ‖x‖2 + 2 ‖x‖ ‖y‖+ ‖y‖2

= (‖x‖+ ‖y‖)2
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Definition. The Euclidean distance d : Rn × Rn → R between two vectors x and y in Rn is:

d(x, y) =

(
n∑
i=1

(xi − yi)2
)1/2

= ‖x− y‖

0.23 Continuous Functions

Suppose f maps X to Y , and dX is a distance function on X, and dY on Y .
The only thing that is specified about this setup is that these are two sets equipped with distance

functions. In particular, the objects in these sets need not be just numbers or vectors.

Definition 3. f is continuous at x if

d (xn, x)→ 0⇒ d (f (xn) , f (x))

for all sequences in X.

Example 4. The Dirichlet function is nowhere continuous

Abbott defines continuity in terms of “functional limits”. The definition specifies that f (xn) converges to
some limit L for every sequence that converges to the point x, but the definition does not say that f (x) = L.
Indeed the function might jump at x. Suppse

f (x) = x, x 6= 1

f (1) = 0

Then f (xn) converges to 1 for any sequence converging to 1, but this limit is not the value of the function
at the limit point. So the definition of a “functional limit” is intended to be more general than the continuity
definition. The functional limit is defined for any limit point of A (including points that are not even in the
domain of the function).Order Limit Theorem

Order is preserved when passing to the limit
What is e?

lim
n→∞

(
1 +

1

n

)n
= e

This can be taken to be the definition of the number e. In fact, this comes from Bernoulli’s analysis of
compound interest (1683), which is more or less the first time this number was identified. But what does
this mean? First, check that the sequence actually converges. Is it a Cauchy sequence? Is the limit a rational
number? No, but the proof of this is not trivial.

Definition. The Euclidean inner product of two vectors x and y in Rn is

x · y =

n∑
i=1

xiyi
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Theorem. (Cauchy-Schwartz Inequality)

|x · y| ≤ (x · x)
1
2 (y · y)

1
2

Proof. If x = 0 this is trivial so assume x 6= 0. Define X = x · x, Y = y · y, Z = x · y. Since x 6= 0, X > 0.
∀a ∈ R,

0 ≤ (ax+ y) · (ax+ y)

= a2x · x+ 2ax · y + y · y

This is true for any a so assume a = −x·yx·x . Then,

0 ≤ (x · y)
2

x · x
− 2

(x · y)
2

x · x
+ y · y

= − (x · y)
2

x · x
+ y · y

so

(x · y)
2 ≤ (x · x) (y · y)

Definition. The Euclidean norm of a vector x ∈ Rn is:

‖x‖ =

(
n∑
i=1

x2i

)1/2

= (x · x)
1
2

Using Cauchy-Schwartz, we then know:

|x · y| ≤ ‖x‖ · ‖y‖

Theorem. (Triangle Inequality in Rn)

‖x+ y‖ ≤ ‖x‖+ ‖y‖

Proof. The proof uses the triangle inequality in R and the Cauchy-Schwartz Inequality:

||x+ y||2 = (x+ y) · (x+ y)

= x · x+ 2x · y + y · y

≤ ‖x‖2 + 2|x · y|+ ‖y‖2

≤ ‖x‖2 + 2 ‖x‖ ‖y‖+ ‖y‖2

= (||x||+ ||y||)2
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Definition. The Euclidean distance d : Rn × Rn → R between two vectors x and y in Rn is:

d(x, y) =

(
n∑
i=1

(xi − yi)2
)1/2

= ‖x− y‖

Theorem. (Triangle Inequality)
d(x, z) ≤ d(x, y) + d(y, z)

Proof. The key point is
x− z = (x− y) + (y − z)
So

‖x− z‖2 ≤ (‖x− y‖+ ‖y − z‖)2

and the numbers on both sides are all positive.

Theorem. If an → b 6= 0 then 1
an
→ 1

b

Proof. Show that for ε > 0 ∣∣∣∣ 1

an
− 1

b

∣∣∣∣ < ε

for n > K. ∣∣∣∣b− ananb

∣∣∣∣ =

∣∣∣∣ 1

an

∣∣∣∣ ∣∣∣∣1b
∣∣∣∣ |b− an|

Since an is bounded, choose a lower bound L 6= 0. Then |L| ≤ |an| and∣∣∣∣ 1

an

∣∣∣∣ ≤ ∣∣∣∣ 1L
∣∣∣∣

then ∣∣∣∣b− ananb

∣∣∣∣ ≤ ∣∣∣∣ 1

bL

∣∣∣∣ |b− an|
Choose ε0 = ε |bL| and find K such that |b− an| < ε0 for all n > K. Then∣∣∣∣ 1

an
− 1

b

∣∣∣∣ ≤ ε
for all n > K.

0.24 Extreme Value Theorem

(Sometimes called the Weierstrass theorem, but Bolzano had proved it earlier).
In Rn a set is compact if it is closed and bounded.
Show that a continuous function on a compact set achieves a maximum and a minimum.
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Example. .

f (x) =


x 0 ≤ x < 1

2

0 x = 1
2

1− x 1
2 < x ≤ 1

This function is bounded, and the domain is the compact interval [0, 1]. The supremum is 1, but it is not
achieved (there is no maximum)

If the function is continuous, and the domain is bounded, the problem is that the supremum is not
achieved within the domain, as in the case of the identity function on (0, 1).

And if the function is continuous and the domain is closed, there may be a problem if the domain is
unbounded, as in the case of the identity function on R.

Suppose A is a closed and bounded set, and f : A→ R is a continuous function.
First show that the image f (A) is bounded. Otherwise there is an unbounded sequence yn = f (xn), and

this sequence can be chosen so that yn is increasing. The sequence xn is bounded (because A is bounded), so
there is a convergent subsequence xnk → a, and a ∈ A because A is closed, and f (xnk)→ f (a) because f is
continuous, contradicting the assertion that yn is unbounded (every subsequence of an increasing unbounded
sequence must be unbounded).

Since f (A) is bounded it has a supremum, b. If b ∈ f (A), then f achieves its maximum. But in any
case there is a sequence zn ∈ f (A) with zn → b, meaning that there is a sequence an ∈ A with f (an)→ b.
And there is a convergent subsequence ank → a∗,and a∗ ∈ A because A is closed, and f (a∗) = b because f
is continuous.

It is instructive to go through this proof without first stating the assumptions, and see what is needed
as the proof goes along.

0.25 Open and Closed Sets

Definition. A set A ⊂ X is open if ∀a ∈ A,∃r > 0 such that {x ∈ X | d(x, a) < r} ⊂ A.

.

Definition. A function is continuous on a set A ⊂ X if it is continuous at every point in the set

Theorem. Let (X, d) and (Y,D) be two metric spaces and f : X → Y . f is continuous on X if and only if
B ⊂ Y and B open implies f−1(B) is open.

Proof. Suppose B is open. Choose a point a with f (a) ∈ B, and let an be a sequence converging to a.

Theorem. Let f : S → T be a continuous function at x. Let g : T → H be a continuous function at f(x).
Then the composition g ◦ f : S → H is a continuous function at x.

Proof. Consider a sequence {xk} ⊂ S and xk → x ∈ S and xk 6= x. Since f is continuous, {f(xk)} ⊂ T and
f(xk) → f(x) ∈ T . Then define the sequence {yk} ⊂ T and yk → y ∈ T with yk = f(xk) and y = f(x).
Since g is continuous, {g(yk)} ⊂ H and g(yk)→ g(y) ∈ H.
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[Abbott] Thomae’s function has the bizarre property of being continuous at every irrational point on R
and discontinuous at every rational point.

Definition. A set A ⊂ X is open if ∀a ∈ A,∃r > 0 such that {x ∈ X | d(x, a) < r} ⊂ A.

.
Suppose A is a collection of open sets, indexed by t. Then

∪tA = {a | a ∈ At}

Any point in the union of these sets is in At for some t, and so At contains a ball around this point, and
since this ball is a subset of one of the sets in the collection, it is a subset of the union of all of the sets.

The intersection of a finite collection of open sets is open. Take a point a in the intersection. For each
set in the collection, there is a ball around this point that is contained in the set. Take the ball with the
smallest radius. This ball is in the intersection.

Why doesn’t this work for an infinite collection of sets, using the Nested Interval Property?
For two reasons. This property refers only to nested intervals of real numbers. And it says only that the

intersection is not empty (in fact if it was empty, it would be open).
Consider the open intervals

(
1− 1

n , 1 + 1
n

)
. The intersection of these intervals is the set {0}, which is not

an open set.
What is true is that the intersection of an arbitrary collection of closed sets is closed. The complement

of this set is the set of points that are not in Bt, for some t. That is

(∩tBt)c = ∪tBct

but this is the union of a collection of open sets, so it is open, and its complement is closed.
Similarly, the union of a finite collection of closed sets is closed.
Consider the closed intervals

[
0, 1− 1

n

]
. The union of these intervals is the set [0, 1), which is not a closed

set (it’s not open either).

Theorem. A set S ⊂ X is closed, if and only if, every sequence in S that converges in X converges to a
point in S.

First, if xn → a and a /∈ A, then B (a, ε) ⊂ Ac, for some ε > 0. But xn ∈ B (a, ε) for large n.
Conversely, if A contains all of its limit points, but it’s not closed, there must be some point in the

complement of A that can’t be surrounded by a ball within Ac. This point can therefore be approached
arbitrarily closely by a sequence of points in A, which is a contradiction.

Definition. A function is continuous on a set A ⊂ X if it is continuous at every point in the set

f−1 (Bc) =
(
f−1 (B)

)c
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because

(
f−1 (B)

)c
=

{
x ∈ A | x /∈ f−1 (B)

}
= {x ∈ A | f (x) /∈ B}

= {x ∈ A | f (x) ∈ Bc}

= f−1 (Bc)

Theorem. Let (X, d) and (Y,D) be two metric spaces and f : X → Y . f is continuous on X if and only if
B ⊂ Y and B open implies f−1(B) is open.

Proof. Suppose B = f (A) is open. Let an be a sequence in Ac converging to a. Then f (xn) → f (a), and
f (xn) ∈ Bc, and Bc is closed, so f (a) ∈ Bc, so a ∈ Ac. In other words, Ac is closed, so A is open.
Conversely suppose that the inverse image of every open set is open. Suppose zn → z0. Show that for any
ε, d (f (zn) , f (z0)) < ε if n is large. Given ε, consider a the ball B (f (z0) , ε)

z0 ∈ f−1 (B (f (z0) , ε))

But this set is open so it includes a ball around z0, B (z0, δ). And zn ∈ B (z0, δ) if n is large enough, but
this means that d (f (zn) , f (z0)) < ε.

The logic here is that the tail of the zn sequence has to be in the ball around z0, but the image of this
ball is inside the ball around f (z0).

0.26 Composition of continuous functions

Theorem. Let f : S → T be a continuous function at x. Let g : T → H be a continuous function at f(x).
Then the composition g ◦ f : S → H is a continuous function at x.

Proof. Consider a sequence {xk} ⊂ S and xk → x ∈ S and xk 6= x. Since f is continuous, {f(xk)} ⊂ T and
f(xk) → f(x) ∈ T . Then define the sequence {yk} ⊂ T and yk → y ∈ T with yk = f(xk) and y = f(x).
Since g is continuous, {g(yk)} ⊂ H and g(yk)→ g(y) ∈ H.

• The sum of two continuous functions is a continuous function

• The product of two continuous functions is a continuous function

• The quotient of two continuous functions is continuous at any point where the denominator is not zero

• A function is continuous if and only if each of its components is continuous

[Abbott] Thomae’s function has the bizarre property of being continuous at every irrational point on R and
discontinuous at every rational point.

0.27 Intermediate Value Theorem

f : [a, b]→ R, continuous, y0 ∈ [f (a) , f (b)]

∃x0 ∈ [a, b] such that f (x0) = y0
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The intuition is that the function has to travel through y0 in order to get to f (b)

Divide the interval in two and replace one of the endpoints so that y0 ∈ I1 = [f (a1) , f (b1)], repeat,
and take the intersection. The intersection of these nested intervals is not empty and in fact it must be a
singleton set {x0} because the interval lengths are shrinking to zero. Take a sequence of points xn with one
from each interval. This sequence converges to x0, because the distance from xnto x0 is less than the length
of the interval In. And the limit must satisfy f (x0) = y0

This is similar to the Bolzano-Weierstrass proof.
A more straightforward proof:
A continuous function on an interval [x0, x1], with a = f (x0) < f (x1) = c. Show that if a ≤ b ≤ c there

is a point z in the interval with f (z) = b. Let z = sup {x | f (x) ≤ b}. Then x0 ∈ A. And f
(
z − 1

n

)
≤ b

so f (x) ≤ b. But f
(
z + 1

n

)
> b because otherwise z would not be the supremum. And lim f

(
z − 1

n

)
=

lim f
(
z + 1

n

)
= f (z) by continuity of f . So f (z) = b.

This is not quite right: the point z − 1
n might not be in A. But there is a sequence of points an in A

converging to z, and the argument works for this sequence. And the point z + 1
n is fine – it can’t be in A,

so f
(
z + 1

n

)
> b .

Present the flawed version and ask for a fix.
[Abbott “the Intermediate Value Theorem is essentially a one-dimensional result”]

0.28 Convexity and Concavity

A set A ⊂ Rn is convex if
a, b ∈ A, λ ∈ [0, 1]⇒ λa+ (1− λ) b ∈ A

A function f : A ⊂ Rn → R is convex if

a, b ∈ A, λ ∈ [0, 1]⇒ f (λa+ (1− λ) b) ≤ λf (a) + (1− λ) f (b)

A function f : A ⊂ Rn → R is concave if

a, b ∈ A, λ ∈ [0, 1]⇒ f (λa+ (1− λ) b) ≥ λf (a) + (1− λ) f (b)

Show that if a strictly concave function achieves a maximum over a convex set, the maximizer is unique.
If f (x) ≤ f (a), and f (x) ≤ f (b), for all x ∈ A, with a, b ∈ A, and A convex, then it must be that

f (a) = f (b), because b ∈ A so f (b) ≤ f (a), and also the other way around.
And if f is strictly concave, then f (x̄) > λf (a) + (1− λ) f (b) = f (a), but this gives a contradiction,

because x̄ ∈ A.
Concave functions are continuous

Example. .

f (x) =

2x 0 ≤ x ≤ 1

2− x 1 < x ≤ 2
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If λ = 1
2 , a = 3

4 , b = 3
2 , then evaluating the inequality

f (λa+ (1− λ) b) ≥ λf (a) + (1− λ) f (b)

gives
7

8
≥ 1

which is false. So this function is not concave. And it’s not convex either.

1. [midterm, 2018] Suppose

A = {f : R→ R, f concave, f (1) = 1, f (3) = 5, f (4) = 6}

Solve the following equations

sup {f (2) | f ∈ A} = u

inf {f (2) | f ∈ A} = v

Take three points a < z < b, and show continuity at z
Draw a line connecting (a, f (a)) and (z, f (z)). Then f (x) must be above this line for x ≤ z, and below

the extension of this line for x ≥ z
This line can be specified as

`a (x) = f(a) +
x− a
z − a

(f (z)− f (a))

set
λ =

x− a
z − a
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Then

`a (x) = λf(z) + (1− λ) f (a)

and

λz + (1− λ) a =
x− a
z − a

z +
z − x
z − a

a

=
(x− a) z + (z − x) a

z − a

=
(x) z + (−x) a

z − a
= x

and 0 ≤ λ ≤ 1 for x ∈ [a, z]. Then concavity of f implies

f (x) ≥ `a (x)

for x ∈ [a, z].
Now consider y ∈ [z, b]. In this case z can be written as a convex combination of a and y, with

λ2 =
z − a
y − a

and
z = λ2y + (1− λ2) a

and 0 ≤ λ2 ≤ 1 for z ∈ [a, y]. Also

`a (y) = f(a) + (y − a)
f (z)− f (a)

z − a

=
1

λ2
f(a) +

(
1− 1

λ2

)
f (a)

Then concavity of f implies
f (z) ≥ `a (z)

for x ∈ [a, z]. That is
f (z) ≥ λ2f(y) + (1− λ2) f (a)

So
λ2f(y) + (1− λ2) f (a) ≤ f (z)

or

f(y) ≤ 1

λ2
f (z) +

(
1− 1

λ2

)
f (a)

= f (a) +
1

λ2
(f (z)− f (a))
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Draw a line connecting (z, f (z)) and (b, f (b)). Then f (x) must be above this line for x ≥ z, and below
the extension of this line for x ≤ z

This line can be specified as

`b (x) = f(b) +
x− b
z − b

(f (z)− f (b))
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This defines the bowtie.
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This effectively shows continuity, because the bowtie gets small and smaller, and it also implies that there
is a left derivative and a right derivative.

Show that if (x, y) is in the bowtie, and if x is close to z, then y must be close to f (z)

`a (x) = f(a) +
x− a
z − a

(f (z)− f (a))

This is a continuous function of x, and the limit as x converges to z is

lim
x→z

`a (x) = f(a) +
z − a
z − a

(f (z)− f (a))

= f (z)

and similarly for `b.
If xn < z, then

`a (xn) ≤ f (xn) ≤ `b (xn)

Choose n such that
f (z)− 1

n
< `a (xn)

and
`b (xn) < f (z) +

1

n

Then
f (z)− 1

n
< f (xn) < f (z) +

1

n

and
|f (xn)− f (z)| < 2

n

0.29 Differentiation

f : A ⊂ R→ R
Suppose xn → x0, xn ∈ A, x0 ∈ intA, xn 6= x0. Define the sequence

gn =
f (xn)− f (x0)

xn − x0

If the sequence gn converges to the same number, g (x0) for all choices of the xn sequence, then f is
differentiable at x0 and the derivative is g (x0).

Show directly that the derivative of xn at x = a is nan−1 (better to use k here in place of n if n is used
to index sequences).

x
(
xn−1 + axn−2 + . . .+ an−2x+ an−1

)
−

a
(

xn−1 + axn−2 + . . .+ an−2x+ an−1
)

=

xn − an
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so

xn − an

x− a
= xn−1 + axn−2 + . . .+ an−2x+ an−1

Note that there are n terms here, because the a powers go from 0 to n− 1. So

lim
x→a

xn − an

x− a
= (n− 1) an−1

If f is differentiable at a, then it is continuous at a. In fact∣∣∣∣ ∆f

xn − a
− g (a)

∣∣∣∣ =

∣∣∣∣∆f − g (a) (xn − a)

xn − a

∣∣∣∣
so

|∆f − g (a) (xn − a)| ≤ |xn − a| ε1

if n ≥ N1. And

|∆f | ≤ |∆f − g (a) (xn − a) + g (a) (xn − a)|

≤ |∆f − g (a) (xn − a)|+ |g (a) (xn − a)|

< ε1 + ε2

Show that f (x) can be approximated by

f (x) ≈ f (a) + f ′ (a) (x− a)

0.30 Product rule

Define the sequence

gn =
f1 (xn) f2 (xn)− f1 (a) f2 (a)

xn − a
Write this as

gn =
f1 (xn) (f2 (xn)− f2 (a)) + (f1 (xn)− f1 (a)) f2 (a)

xn − a
Then since f1 is continuous, and both functions are differentiable at a,

gn → f1 (a) f ′2 (a) + f ′1 (a) f2 (a)

cf integration by parts: (uv)
′

= uv′ + vu′ so uv′ = (uv)
′ − vu′, so to find a function H whose derivative

is h, express h as the product of two functions
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0.31 Chain rule

φ (f (x))− φ (f (a))

x− a
=

φ (f (x))− φ (f (a))

f (x)− f (a)

f (x)− f (a)

x− a

so

h′ (a) = φ′ (f (a)) f ′ (a)

0.32 “Total Derivative”

Suppose f, g :→ R are differentiable functions, and G : R2 → R is differentiable (in each component) and

h (x) = G (f (x) , g (x))

Then

h (x)− h (a)

x− a
=

G (f (x) , g (x))−G (f (a) , g (x))

f (x)− f (a)

f (x)− f (a)

x− a
+
G (f (a) , g (x))−G (f (a) , g (a))

g (x)− g (a)

g (x)− g (a)

x− a

So
h′ (a) = G1 (f (a) , g (a)) f ′ (a) +G2 (f (a) , g (a)) g′ (a)

alternative definitions of continuous functions

1. convergent sequences in the domain map into convergent sequences in the image

(a) for any sequence that converges to a, it must be that the image of the sequence converges to f (a).

(b) the inverse image of any open set is open

(c) given ε > 0, there is a δ > 0 such that the image of the ball B (a, δ) lies within the ball B (f (a) , ε)

i. if not, every ball B
(
a, 1

n

)
contains a point xn such that |f (xn)− f (a)| > ε. But then xn → a,

and f (xn) does not converge to f (a)

0.33 Concavity: Decreasing Slopes

A set A ⊂ Rn is convex if
a, b ∈ A, λ ∈ [0, 1]⇒ λa+ (1− λ) b ∈ A

A function f : A ⊂ Rn → R is convex if

a, b ∈ A, λ ∈ [0, 1]⇒ f (λa+ (1− λ) b) ≤ λf (a) + (1− λ) f (b)

A function f : A ⊂ Rn → R is concave if

a, b ∈ A, λ ∈ [0, 1]⇒ f (λa+ (1− λ) b) ≥ λf (a) + (1− λ) f (b)
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Suppose x ∈ (a, b). Then x = λa+ (1− λ) b so

f (b)− f (x)

b− x
≤ f (b)− f (a)

b− a
≤ f (x)− f (a)

x− a

The essential argument can be seen more clearly in the case where b− x = x− a = 1 (meaning that x is
in the middle of an interval of length 2). Let A,X,B be the function values. Then concavity implies

X ≥ A+B

2

so
X −A ≥ B −A

2

and
X −B ≥ A−B

2

and the terms on each side are negative so

B −X ≤ B −A
2

Putting these together gives

B −X ≤ B −A
2

≤ X −A

Rewriting this in the original notation then gives

f (b)− f (x)

b− x
≤ f (b)− f (a)

b− a
≤ f (x)− f (a)

x− a

In the more general case the argument involves setting x = λb+ (1− λ) a, so that

λ =
x− a
b− a

Then
f (x) ≥ λf (b) + (1− λ) f (a)

and

f (x)− f (a) ≥ λ (f (b)− f (a))

=
x− a
b− a

(f (b)− f (a))

so

f (x)− f (a)

x− a
≥ f (b)− f (a)

b− a
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Also

f (x)− f (b) ≥ (1− λ) (f (a)− f (b))

=
b− x
b− a

(f (a)− f (b))

and multiplying by −1 gives

f (b)− f (x)

b− x
≤ f (b)− f (a)

b− a

0.34 Curvature and Second-Order Conditions

If f is differentiable on an interval, with derivative g, then if g is differentiable, g′ is the second derivative of
f .

Suppose f ′ is differentiable on (a, b), and f is maximal at x0 ∈ (a, b)

Take a sequence of points xn above x0, converging to x0. Since the average slope between x0 and xn is
negative, there is a point wn ∈ (x0, xn) such that

f (x0)− f (xn)

x0 − xn
= f ′ (wn) ≤ 0

But wn converges to x0. So if the right derivative of f ′ exists, then

lim
wn→x0

f ′ (wn)− f ′ (x0)

wn − x0
= f ′′+ (x0)

and then since f ′ (x0) = 0, and f ′ (wn) ≤ 0, and wn−x0 > 0, each term in this sequence is (weakly) negative,
so the limit is negative.

Similarly, take a sequence of points xn below x0, converging to x0. Since the average slope between xn
and x0 is positive, there is a point wn ∈ (xn, x0) such that

f (x0)− f (xn)

x0 − xn
= f ′ (wn) ≥ 0

So if the left derivative of f ′ exists, then

lim
wn→x0

f ′ (wn)− f ′ (x0)

wn − x0
= f ′′− (x0)

and then since f ′ (x0) = 0, and f ′ (wn) ≥ 0, and wn−x0 < 0, each term in this sequence is (weakly) negative,
so the limit is negative.

0.35 Quasiconcavity

Definition. Let f be a function defined on a convex set A ⊂ Rn. f is quasi-concave on A if for every z ∈ R,
the set:

C+
z = {x ∈ A : f(x) ≥ z}
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is a convex set. C+
z is called the upper contour set of f at z.

Remark. By the Theorem of the previous section, every concave function is quasi-concave. The converse if
false.

Definition. Let f be a function defined on a convex set A ⊂ Rn. f is quasi-convex if for every z ∈ R, the
set:

C−z = {x ∈ A : f(x) ≤ z}

is a convex set. C−z is called the lower contour set of f at z.

Alternative definition of quasiconcave and quasiconvex functions.

Theorem. Let f be a real-valued function defined on a convex set A ⊂ Rn. Then, f is a quasiconcave
function on A if and only if ∀x, y ∈ U, λ ∈ (0, 1),

f(λx+ (1− λ)y) ≥ min {f(x), f(y)}

The function f is quasiconvex on A if and only if ∀x, y ∈ A, λ ∈ (0, 1),

f(λx+ (1− λ)y) ≤ max {f(x), f(y)}

Proof. First, suppose that f is quasi-concave: C+
z is a convex set for each z ∈ R. Let x, y ∈ A, λ ∈ (0, 1).

Let z = min {f (x) , f (y)}. Then x, y ∈ C+
z . By the convexity of C+

z , λx+ (1− λ)y ∈ C+
z which means

f (λx+ (1− λ) y) ≥ z = min {f(x), f(y)}

Now, suppose we have f (λx+ (1− λ) y) ≥ min {f(x), f(y)} ,∀x, y ∈ A, λ ∈ (0, 1), Let z ∈ R. If x, y ∈C+
z

then f(x) ≥ z, f(y) ≥ z and so min {f(x), f(y)} ≥ z. Now for any λ ∈ (0, 1), f (λx+ (1− λ) y) ≥
min {f(x), f(y)} ≥ z, so λx+ (1− λ) y ∈ C+

z .
The proof for quasi-convex functions is similar.

0.36 Monotone Functions

(For example, distribution functions in probability theory).
Suppose f is an increasing function on (a, b) and z ∈ (a, b). Define

f− (z) = sup {f (x) | x < z}

Then there is a sequence an such that

f− (z)− f (an) <
1

n

for n ≥ N . Let xk be any sequence converging to z from below. For each n, there is a number K (n) such
that

xk ≥ an

41



for k ≥ K (n). Then
f (xk) ≥ f (an)

> f− (z)− 1

n

for k ≥ K (n). So the function converges to f− (z) from below. Similarly, the function converges to a number
f+ (z) from above, and f+ (z) ≥ f− (z) because the function is increasing.

Thus the function is continuous from the left, and also from the right, but it may have a jump disconti-
nuity. If f+ (z) = f− (z), the function is continuous at z.

0.37 Constrained Optimization: CES Utility Functions

Suppose the utility function is

u (x) =

L∑
`=1

α`(x`−δ`)ρ`−1
ρ`

with
L∑̀
=1

α` = 1. Then the marginal utilities per dollar are

u` (x) =
α` (x` − δ`)ρ`−1

p`
= λ

It is assumed that ρ` < 1, with α` > 0. If ρ` < 0 then the marginal utility of each good approaches
infinity as consumption falls to the required level, δ`. It is assumed that wealth is sufficient to pay for
required consumption (w > p · δ). Then the marginal utility per dollar is the same for every good, so

x` = δ` +

(
α`
λp`

)σ`
where σ` = 1

1−ρ` . This is the Frisch demand function, and it can be written as

x̃` = λ−σ`θ`

where

θ` =

(
α`
p`

)σ`
(relabeled as γ` below).

If ρ` < 1 and δ` ≥ 0 then the marginal utility of each good approches infinity as x` falls toward δ`, so x
will be strictly above δ, at the optimum, and the marginal utility per dollar will be the same for all goods.
But there are other interesting cases. For example, if δ` is negative, then x` = 0 may be optimal, with
marginal utility per dollar strictly below λ. The complementary slackness condition then can be written as

µ`x` = 0

Here µ` has a shadow price interpretation: how much would it be worth if the nonnegativity constraint could
be relaxed?
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The marginal utility of income is obtained from the budget constraint:

w =

L∑
`=1

p`x`

=

L∑
`=1

p`δ` +

L∑
`=1

λ−σ`p1−σ`` ασ``

So λ is found by solving the equation

L∑
`=1

λ−σ`p1−σ`` ασ`` = w −
L∑
`=1

p`δ`

which can be written as

L∑
`=1

λ−σ`p`θ` = w̃

The right side of this is nonnegative, by assumption, and the left side decreases from infinity to zero as λ
increases from zero to infinity. Therefore there is a unique solution for λ. Moreover, λ is a strictly decreasing
function of w.

The wealth elasticity and the cross-price elasticities work entirely through λ.
If σ` = σ for all `, then

λ−σ
L∑
`=1

p1−σ` ασ` =

(
w −

L∑
k=1

pkδk

)

so the Walrasian demand function is given by

x` = δ` + λ−σ
(
α`
p`

)σ

= δ` +

(
α`
p`

)σ
w −

L∑̀
=1

pkδk

L∑
k=1

p1−σk ασk


This can be written as

x̃` =

(
α`
p`

)σ w̃
L∑
k=1

p1−σk ασk


The budget shares are given by

43



b̃` =
p`

(
α`
p`

)σ
L∑
k=1

pk

(
αk
pk

)σ
and if σ = 1 (the Cobb-Douglas case), then b̃` = α`.

The notation can be simplified: the Walrasian demand function can be written as

x̃` =
θ`

L∑
k=1

pkθk

w̃

= b̃`
w̃

p`

Summary In the generalized case,
x̃` = λ−σ`θ`

with

L∑
`=1

λ−σ`p`θ` = w̃

The left side is decreasing in λ, because σ` is positive. If w increases, the left side must increase, and this
means λ must decrease.

These results cover the Cobb-Douglas, CES and Linear Expenditure System, as well as the Stone-Geary
utility function).

0.38 Linear Programming

The decision variables in the dual are shadow prices on the constraints.

max
x

m · x

subject to

Ax ≤ b

The dual of this problem is
min
y
{b · λ | A′λ ≥ m}
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0.38.1 Duality

[Luenberger, Linear and Nonlinear Programming]

u∗ = max
x

n∑
i=1

mixi

subject to

n∑
i=1

pijxi ≤ bj , j = 1, 2, . . . ,m

Dual

v∗ = min
λ

m∑
j=1

λjbj

subject to

m∑
j=1

pijλj ≥ mi

Note that the dual of the dual problem is the primal problem.
If x is feasible in the primal problem, and if λ is feasible in the dual, then

n∑
i=1

mixi ≤
n∑
i=1

m∑
j=1

pijλjxi

=

m∑
j=1

(
n∑
i=1

pijxi

)
λj

≤
m∑
j=1

λjbj

So the value of any feasible option in the dual is higher than the value of any feasible option in the primal
problem. If this is satisfied with equality for x∗ and λ∗, then

n∑
i=1

mixi ≤
m∑
j=1

λ∗j bj

=

n∑
i=1

mix
∗
i

so the value of x∗ is at least as high as the value of any feasible choice in the primal problem, meaning that
x∗ is optimal. And similarly, λ∗ is optimal in the dual.

This proves the duality theorem in one direction. The other direction says that the solution always looks
like this (unless one problem is unbounded). The proof uses the Separation Theorem (to be covered later).
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0.38.2 Consumer Example

max
x

m · x

subject to

p · x ≤ b

The interpretation is that mi is the marginal utility of good i, which is assumed constant. Then the dual is

min
λ

λ · b

subject to

p · λ ≥ m

Here, there is just one constraint, so the choice variable in the dual is a scalar, and the constraints can be
written more explicitly as

piλ ≥ mi, i = 1, 2, . . . n

So the problem boils down to finding the lowest value of λ that satisfies all of the constraints. And the
constraints say that λ must be no less than the marginal utility per dollar, for every good. So the solution is

λ = max
i

mi

pi

and the value of the problem is

v∗ = bmax
i

mi

pi

But the primal problem is solved by allocating the whole budget to the good with the highest marginal
utility per dollar, so the value of the primal problem is the same as the value of the dual problem.

0.39 Homogeneous Functions

f : Rn → R

f (λx) = λkf (x)

f ′ is homogeneous of degree k − 1. This refers to derivatives with respect to a single argument. Also∑
xifi (λx) = kλk−1f (x)

Setting λ = 1 gives ∑
xifi (x) = kf (x)
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And in the constant returns case, this is Euler’s theorem about payments to factors exhausting the whole
product.

0.40 Homothetic Functions

f (a) = f (b), λ ≥ 0 implies f (λa) = f (λb)

This implies that the level sets of the function are parallel to each other

0.41 Dynamic Programming

0.41.1 Value Functions

V (x) = max
a∈A

u (x, a) + βV (x′) ;x′ = Γ (x, a)

This refers to a nonstochastic problem. For example, choose the initial wealth for next period implies a
consumption choice for the current period.

Define a mapping:

T (V ) (x) = max
a∈A

u (x, a) + βV (Γ (x, a))

In the case of a finite state space

V (xi) = max
a,x′∈Y

u (xi, a) + β

n∑
j=1

pij (a)V (xj)

The value function definition here is recursive. Implicitly, the horizon is infinite.
If u is bounded, then V must also be bounded. Then if W ≥ V ,

u (x, a, x′) + βW (x′) ≥ u (x, a, x′) + βV (x′)

so T (W ) ≥ T (V ), because the choices can first be made to maximize the right side, and then if V is replaced
by W the value can’t fall (and the choices can be changed to increase the value even further).

Also if a constant c is added to V , the value of the problem changes by βc, with no change in the optimal
policy, so the value function has the discounting property.

Suppose X is any set, and let B (X) be the space of bounded functions mapping X to R:

B (X) =

{
f : X → R | sup

x
|f (x)| <∞

}
This is a linear space (i.e. a vector space). It is like the usual vector space (with X = {1, 2, . . . , n}) but it is
infinite dimensional. It can be labeled as `∞ (X,R). The norm of a function f is defined as

||f || = sup
x
|f (x)|
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This has the required properties for a norm: if the norm is zero, the function is identically zero; the norm of
αf is |α| ||f ||, and the triangle inequality holds.

d (f, g) = ||f − g||

= |f (x)− g (x)|

= sup
x
|f (x)− h (x) + h (x)− g (x)|

≤ sup
x
|f (x)− h (x)|+ |h (x)− g (x)|

≤ sup
x
|f (x)− h (x)|+ sup

x
|h (x)− g (x)|

= d (f, g) + d (g, h)

Suppose T :B (X) → B (X) is a transformation from one bounded function to another. Define the
distance between functions f, g by

d (f, g) = ||f − g||

= sup
x
|f (x)− g (x)|

a sequence of functions converges in the sup norm if

sup
x
|fn (x)− f0 (x)| → 0

and Cauchy means

sup
x
|fm (x)− fn (x)| < ε

for m,n > N (ε). Then the sequence fn (x) is Cauchy for each x,

|fm (x)− fn (x)| < ε

for m,n > N (ε), and it converges to a limit f0 (x) since R is complete. It must be shown that this limit
function is bounded, and also that pointwise convergence implies that the norm of the difference goes to
zero.

sup
x
|fn (x)− fm (x)| < ε

Take the limit as m goes to infinity, with n fixed.

sup
x
|fn (x)− f0 (x)| < ε

Thus
‖fn − f0‖ < ε
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for n > N (ε). This shows that pointwise convergence here implies convergence in the sup norm.
Take the limit as m goes to infinity, with x and n both fixed. Since the absolute value function is

continuous

|f0 (x)− fn (x)| < ε

Then

|f0 (x)| = |f0 (x)− fn (x) + fn (x)|

≤ |f0 (x)− fn (x)|+ |fn (x)|

≤ ε+ ||fn||

for n > N (ε). And then

sup
x
|f0 (x)| ≤ ε+ ||fn||

where n can be any number bigger than N (ε), so f0 ∈ `∞ (X,R)

This shows that all Cauchy sequences converge. So the space is complete, and this means that it is a
Banach space (a complete normed linear space).

0.41.2 Blackwell’s Conditions

[David Blackwell]
The mapping T :`∞ (X,R)→ `∞ (X,R) satisfies Blackwell’s Conditions if it is order preserving

f ≤ g =⇒ T (f) ≤ T (g)

and if for any positive constant α
T (f + α) ≤ T (f) + cα

for some constant c ∈ (0, 1). These conditions are usually referred to as monotonicity and discounting.
(Discounting refers to the functions, not the norms of the functions).

Let K = ‖f − g‖. Then

f (x)− g (x) ≤ |f (x)− g (x)|

≤ sup
x
|f (x)− g (x)|

= ‖f − g‖

So

f (x) ≤ g (x) +K
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Then

T (f) (x) ≤ T (g (x) +K)

≤ T (g) (x) + cK

by monotonicity and discounting
For any function f , and any positive constant c,

T (f + c) ≤ T (f) + δc

So the argument is, for any f, g add the norm of the difference to g, conclude that the function T (f) lies
everywhere below the function T (g) + δc so the function T (f) − T (g) lies everywhere below the constant
function δc. But by adding the norm of the difference to f instead of g, the same argument shows that the
function T (g)− T (f) lies everywhere below the constant function δc. And then the function |T (g)− T (f)|
lies everywhere below the constant function δc.

T (f) (x) ≤ T (g) (x) + cK

This is true for all x. But by interchanging f, g

T (g) (x) ≤ T (f) (x) + cK

for all x. Then

|T (f) (x)− T (g) (x)| = max {T (f) (x)− T (g) (x) , T (g) (x)− T (f) (x)}

≤ cK

for all x, with implies

‖T (f)− T (g) ‖ = sup
x
|T (f) (x)− T (g) (x)|

≤ cK

= c‖f − g‖

Shorter version given in Stokey-Lucas just says

T (f)− T (g) ≤ cK

T (g)− T (f) ≤ cK

so
‖T (f)− T (g) ‖ ≤ cK

but this step is a bit murky. In fact it’s not clear that it would be true for any norm (although it is true for
the sup norm).
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Value Functions

V (x) = max
a,x′∈Y

u (x, a, x′) + βV (x′)

This defines a mapping:

T (V ) (x) = max
a,x′∈Y

u (x, a, x′) + βV (x′)

If u is bounded, then V must also be bounded, Then if W ≥ V ,

u (x, a, x′) + βW (x′) ≥ u (x, a, x′) + βV (x′)

so T (W ) ≥ T (V ), because the choices can first be made to maximize the right side, and then if V is replaced
by W the value can’t fall (and the choices can be changed to increase the value even further).

Also if a constant c is added to V , the value of the problem changes by βc, with no change in the optimal
policy, so the value function has the discounting property.
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