Contraction Mapping Theorem (Banach Fixed Point Theorem)

Let (X, d) be a complete metric space. Suppose $f: X \rightarrow X$ and

$$
d(f(x), f(y))<c d(x, y)
$$

for all $x, y \in X$, with $c<1$ (that is, f is Lipschitz, with modulus less than 1). Then f has a unique fixed point, and it is reached by iterating the function from any starting point.

Continuity. Any Lipschitz function is continuous:
suppose $x_{n} \rightarrow a$. For $\varepsilon<0$ choose N such that $d\left(x_{n}, a\right)<\varepsilon$ for $n \geq N$. Then

$$
\begin{aligned}
d\left(f\left(x_{n}\right), f(a)\right) & <c d\left(x_{n}, a\right) \\
& <\varepsilon
\end{aligned}
$$

so $f\left(x_{n}\right) \rightarrow f(a)$
Cauchy. Let y_{n} be the sequence defined by iterating (repeatly applying) the function f, starting from some point y_{0}.

$$
\begin{aligned}
& y_{n}=f\left(y_{n-1}\right) \\
& d\left(y_{2}, y_{1}\right)=d\left(f\left(y_{1}\right), f\left(y_{0}\right)\right) \\
&<c d\left(f\left(y_{0}\right), y_{0}\right) \\
& d\left(y_{3}, y_{2}\right)=d\left(f\left(y_{2}\right), f\left(y_{1}\right)\right) \\
&<c d\left(y_{2}, y_{1}\right) \\
&<c^{2} d_{0} \\
& d\left(y_{n+1}, y_{n}\right)<c^{n} d_{0} \\
& d\left(y_{n+k}, y_{n}\right)<\left(c^{n}+c^{n+1}+\ldots c^{n+k-1}\right) d_{0} \\
&= c^{n}\left(1+c+\ldots c^{k-1}\right) d_{0} \\
& \leq c^{n} \sum_{i=0}^{\infty} c^{i} d_{0} \\
&= c^{n} \\
& 1-c \\
& d_{0}
\end{aligned}
$$

so

$$
d\left(y_{m}, y_{n}\right)<\varepsilon
$$

if

$$
\frac{c^{n}}{1-c} d_{0} \leq \varepsilon
$$

but this holds if n is large enough, because $0<c<1$.
So this is a Cauchy sequence, and therefore it converges, because X is a complete metric space.
Uniqueness. There can't be two distinct fixed points, because if x and y are both fixed points then

$$
d(f(x), f(y))<c d(x, y)
$$

and then since these are fixed points

$$
d(x, y)<c d(x, y)
$$

which is impossible unless the distance is zero (meaning $x=y$).

Iteration. It remains only to show that the limit of the iteration sequence is in fact the fixed point of f (regardless of where the sequence starts).

$$
y_{n} \quad \rightarrow \quad y_{0}
$$

so

$$
f\left(y_{n}\right) \rightarrow f\left(y_{0}\right)
$$

because f is continuous. But

$$
f\left(y_{n}\right)=y_{n+1}
$$

and

$$
y_{n+1} \quad \rightarrow \quad y_{0}
$$

so

$$
f\left(y_{0}\right)=y_{0}
$$

