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1.  Introduction

Repeated bargaining relationships are important in many economic contexts.  An obvious example is

the continuing relationship between a union and an employer, involving periodic negotiation of contracts

determining the price and quantity of labor services for a period of a few years.  More generally, repeated

contracts arise in international trading relationships, and in various intermediate product industries:

examples include vineyards selling grapes to wineries under contract, and mining companies selling coal

to electric utilities.  

The typical situation in these negotiations is surely that each side knows more about its own

reservation price than its opponent does.  If the reservation prices are correlated across contracts,

information that is revealed in the negotiation of one contract has strategic value in subsequent

negotiations, and each side must take this into account in choosing an optimal bargaining strategy.  This

paper analyzes the strategic role of serially correlated private information on one side of a repeated

bargaining relationship.

Recent work on labor contracts has emphasized the possibility of explaining collective bargaining

outcomes in terms of the truth-telling constraints arising when either party to a bargaining game is

endowed with unverifiable private information.  Meanwhile the empirical literature on labor contracts2

has shown convincingly that the outcome of the current negotiation is substantially influenced by what

happened when the previous contract was negotiated.   At this point, we do not have any model that3

could be used to explain the regularities found in the labor contract data: that is one motivation for this

paper.

A trader who is uncertain about the other side’s valuation faces the standard monopoly tradeoff

between prices and quantities.  In the most basic case there are two choices: a pooling offer that ensures

that trade will occur, at a relatively unfavorable price, or a screening offer that ensures a high price at the

risk of a failure to trade.  When the relationship is repeated one would expect the valuations to have both

permanent and transitory components.  This complicates the decision on whether to play soft or hard,

because the hard strategy reveals more information, and information about present valuations will be

valuable in future negotiations.  This naturally leads to cycles: a trader who screens this time and loses
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will be pessimistic in subsequent negotiations, but the pooling offers induced by this pessimism do not

reveal new information, and so the pessimism wears off.

In order to obtain concrete results it is necessary to make some strong simplifying assumptions. 

First, there is private information only on one side, the other side’s valuation being common knowledge. 

Second, the bargaining rules offset the informational advantage by giving the uninformed party the right

to make offers that the informed party must either accept or reject, so the equilibrium involves screening,

with little room for signaling.  For concreteness, say an uninformed seller makes take-it-or-leave-it offers

to an informed buyer (with the understanding that if these labels are reversed nothing changes except that

high prices become low prices, etc).  Moreover, the analysis is restricted to the case where the seller can

commit to one take-it-or-leave-it offer in each negotiation, although the seller has no commitment power

regarding future negotiations.  Third, the buyer's valuation is a two-state Markov chain, which is the

simplest process that includes both transient and permanent components.  At one extreme, no transitions

occur, so that the high-valuation buyer is wary of revealing its type, because of the "ratchet effect": once

the high valuation is revealed, the seller will claim the entire rent in all future negotiations.  This

situation was analyzed by Hart and Tirole (1988).  At the other extreme, the current valuation is purely

transitory, and the model reduces to a sequence of one-shot screening negotiations.  Between these

extremes the model generates cyclic equilibria.  The paper focuses on the strategic complications arising

when both parties are forward-looking, so that while the seller thinks about the value of learning the

current state of demand in order to choose more profitable prices in the future, the buyer makes a similar

calculation from the opposite point of view.  The main result characterizes a class of Markov-Perfect

equilibria that exhibit cycles.

In some respects, this paper is related to the literature on learning and experimentation in markets. 

For example, the seller faces a tradeoff between actions that are myopically optimal, and actions that

improve future payoffs by revealing information about the state of demand.  Aghion, Bolton, Harris and

Jullien (1991) focus on whether an agent who faces such a tradeoff will eventually learn all there is to

know about the environment.  Rustichini and Wolinsky (1995) analyze a model in which a monopoly

seller faces a nonstrategic buyer with a rectangular demand curve driven by a symmetric Markov chain. 

Here the seller decides whether it is worthwhile to learn the buyer's valuation always, by making

screening offers, or never, by making pooling offers, or sometimes, by using the information revealed by

a previous screening offer to determine whether a screening offer is worthwhile now.  This is also the

problem analyzed in this paper, but for the more complicated situation in which both the buyer and the

seller both behave strategically, so that the seller is trying to learn something that the buyer may wish to
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conceal.  Bergemann and Valimaki (1996) consider a monopsony buyer facing two competing sellers,

where the  buyer’s valuation (i.e. the quality) of each seller’s product is a stochastic process.  This is a

two-armed bandit problem in which the bandits are smart, but there is no private information involved.

In earlier work Blume (1990) and Vincent (1997) analyzed the effects of private information that

arrives while a bargaining game is in progress.  Blume considered a two-type model where the low type

can temporarily assume the valuation of the high type, emphasizing that even if the informed party can

only accept or reject offers made by the uninformed party, there is an important signaling aspect of the

negotiations.  The model in this paper differs from Blume’s in two respects: both types change valuations,

and the game involves repeated contract negotiations, as opposed to a final sale.  In Vincent’s model the

buyer has a linear demand curve with an intercept driven by a Markov chain and the seller is precluded

from using two-part tariffs and must instead set a price and let the buyer choose quantity.  In this

situation the buyer can signal a low valuation by purchasing a quantity that is less than the myopic

optimum, but nevertheless positive, with the result that pooling equilibria are difficult to sustain.

2.  An Infinite Horizon Markov Model of Repeated Negotiations

Consider an infinite sequence of contract negotiations between a buyer and a seller where the rent to

be divided in each T-period contract follows a simple Markov process, with transitions that are observed

privately by the buyer.  Both sides maximize the present value of expected income, with a common

discount factor = .  For example, if v is the present value of a firm’s revenue during the term of a laborT

contract, net of all nonlabor costs, and if w  is the highest wage available to workers during a strike, then0

the rent is v-w .  Assume that the rent follows a two-state Markov chain with continuation probabilities 0

and  over the length of a contract, so that if the rent is low now (v=v ), it will again be low T periodsL

hence with probability , and if the rent is high now (v=v ) it will be high again next time withH

probability .   It is convenient to use w  as the origin and v -v  as the unit, so relabel  = (v -w )/(v -v )4
0 H L L 0 H L

as the low rent, with 1+  as the high rent and zero as the seller’s opportunity cost.  Then the model is

summarized by the four parameters ( , , , ).
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The rules of bargaining are simple: the uninformed party makes an offer, and if this is rejected there

is no trade until this contract period expires.  Thus the seller has full commitment power within the

current contract (but no commitment power across contracts).  A more interesting, but more complicated,

possibility is to allow one offer per period, so that there might be as many as T offers per negotiation. 

In the absence of any historical information, the probability of the low valuation is that implied by

the stationary distribution of the Markov chain, i.e. 

where  = + -1 measures the degree of persistence in the Markov chain.  Let (s) denote the probability

that the Markov chain is in the low state after s transitions, given that the current state is low, and let (s)

be the probability of being in the high state after s transitions, given that the current state is high.  Then

The parameter  governs the extent to which successive contract negotiations are linked.  Assume

 $ 0, so that the probabilities (s) and (s) do not oscillate.  If  = 0 information is completely

transitory, so that any inference that the seller might draw from the current contract negotiation will be

irrelevant by the time the next contract is negotiated.  At the other extreme, if  = 1 the current

information is entirely permanent.  Under the interpretation that  summarizes multiple transitions during

the term of a contract, with  = , the linkage across contracts is made weaker if the contract length is

increased, for a given value of .0

A natural equilibrium of this game is a renewal process based on the outcome of screening offers

made by the seller.  If the buyer accepts an offer revealing that the rent is currently high, the continuation

game is the same as it was the last time such a revelation was made, and similarly if the buyer rejects

sufficiently many offers to convince the seller that the rent is currently low.

In each contract negotiation there are two possibilities from the seller’s point of view.  If information

is sufficiently persistent (  is high) and if the seller has inferred from a recent negotiation that the rent

was low, it will be optimal to make a pooling offer.  Alternatively, if the seller believes that the high-rent

state is sufficiently likely, a screening offer will be worthwhile; this offer will be acceptable to the buyer

if the rent is currently high, and unacceptable if the rent is low.  Each offer that the seller makes must
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leave either the high or low buyer type indifferent between acceptance and rejection.  If this were not so,

the offer could be improved, from the seller’s point of view, without changing the buyer’s decision.  A

screening offer is just acceptable to the high type, and unacceptable to the low type.  A pooling offer is

just acceptable to the low type, and more than acceptable to the high type.

If the buyer accepts a screening offer, the seller will infer that the rent is high, and so the seller will

screen again when the next contract is negotiated (unless perpetual pooling is optimal).  Of course the

buyer knows that acceptance of a screening offer weakens its bargaining position next time, so the offer

must be sufficiently generous to compensate for this.  If the buyer rejects a screening offer, on the other

hand, the seller infers that the rent is currently low, and it may then be optimal to make a pooling offer

next time, and perhaps again the time after that, and so on.  A key feature of the equilibrium is the

number of pooling offers, K-1, made by the seller in the sequence of contracts following rejection of a

screening offer.

After rejection of a screening offer the seller concludes that the rent is currently low, and the seller

then makes pooling offers in the next K-1 negotiations, followed by a screen in the K  negotiation.  If theth

buyer accepts an offer revealing a high rent now, the seller screens again when the next contract comes

up. This is sketched in Figure 1, which represents varying degrees of pessimism for the seller.  At one

extreme, the seller believes the buyer has a low valuation now with probability , because there was a

screen in the previous negotiation and the buyer was found to be poor.  In this situation the seller pools

now, and pools again in K-1 successive negotiations until the probability of the low type has decayed

past the screening threshold .  At the other extreme, the seller is most optimistic after the buyer was*

found to be rich in the previous negotiation; then the probability of the low state now is only 1- .

Cyclic equilibria of this kind have been analyzed by Kennan (1995), and by Rustichini and Villamil

(1996).  A nonstrategic version in which buyers are not forward-looking was analyzed by Rustichini and

Wolinsky (1995).  The model considered in Kennan (1995) is more general than the model in this paper,

in that the seller makes a sequence of offers within each contract negotiation.  This leads to

complications that precluded a full characterization of equilibrium, although numerical examples were

computed.  As will be seen below, reducing the problem by allowing only one offer per contract leads to

much sharper results, without making things so simple as to be uninteresting.  Rustichini and Villamil

also assumed one offer per contract, and, in addition, they restricted the Markov chain to be symmetric

( = ).  Their main result was that cyclic equilibria exist if the degree of persistence is sufficiently high

(i.e. if  is close to 1).  This is puzzling since Hart and Tirole (1988) had previously shown (for discount

factors exceeding .5) that only pooling equilibria survive in the limiting case when the buyer’s valuation
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Figure 1: The Screening and Pooling Cycle

is permanent ( = = =1).  But these results are in fact consistent, because the Rustichini and Villamil

equilibrium is a weak Perfect Bayesian equilibrium, in which the seller has strange beliefs off the

equilibrium path (beliefs that are not consistent with the approximating sequence of completely mixed

strategies and Bayesian beliefs used to claim that the equilibrium is a sequential equilibrium).  This paper

indicates that once the seller’s beliefs are straightened out, cyclic equilibria are incompatible with

complete persistence of the high valuation, because a seller who is virtually certain that the buyer’s

current valuation is high will not change this belief just because a single screening offer has been

rejected.  Instead, as in the standard static bargaining model with permanent valuations, a long sequence

of rejected screening offers is needed to overcome the seller’s initial optimism.

Actions and Strategies

The bargaining game is now laid out formally.  The buyer's informational advantage is represented

by introducing a fictional player called nature whose actions are seen by the buyer but not by the seller.

Nature’s Actions



A '
1&

1&

7

Each period, nature chooses 0 or 1.

The Seller’s Actions

Each period, the seller’s set of feasible actions (i.e prices) is the real line.

The Buyer’s Actions

Each period, the buyer’s set of feasible actions (i.e. quantities) is {0,1}.

History

The history of the game, at the beginning of period t, is in three parts:

The sequence of actions chosen by nature is n  = {n ,n ,...n }t
1 2 t

The sequence of actions chosen by the seller is p  = {p ,p ,...p }t
1 2 t

The sequence of actions chosen by the buyer is q  = {q ,q ,...q }t
1 2 t

The seller’s history (i.e. the history available to the seller) is h  = {p ,q }0 t-1 t-1
t

The buyer’s history is h  = {p ,q ,n }t
t t-1 t

Feasible Strategies

Nature’s strategy is a Markov chain, with transition matrix A given by 

That is, n  = 1 with probability 1- + n , where  = + -1, and n  = 0 with probability - n .  It ist t-1 t t-1

assumed that  is nonnegative.

A feasible strategy for the seller in period t is a function from h  to the set of probability distributions0
t

on the real line.  The seller’s strategy set is the set of sequences of such functions.

A feasible strategy for the buyer in period t is a function from h  to the interval [0,1] (specifying thet

probability that q = 1).  The buyer’s strategy set is the set of sequences of such functions.t 

Payoffs

The seller’s payoff in period t is q p .t t

The buyer’s payoff in period t is q (n +  - p ).  That is, the buyer’s valuation is high (v = 1+ ) whent t t

n = 1, and low (v = ) when n = 0.
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Both the seller and the buyer maximize the expected present value of future payoffs, using the

common discount factor .  The buyer’s expectations in period t are based directly on n , while the seller’st

expectations are based on beliefs about n , represented by a variable  denoting the probability that n = 0.t t t 

3. Cyclic Pricing

Starting from any point in the game, the expected future payoffs for any given sequence of prices and

quantities depend only on the current state of nature, n .  Following Maskin and Tirole (1994), it ist

natural to consider equilibria in which the strategies depend on the history of the game only to the extent

that it affects the seller’s beliefs about n .  The main results in this paper deal with equilibria thatt

approximately satisfy this criterion.  Such equilibria involve cycles in which the seller periodically makes

screening offers, with a finite sequence of pooling offers after any offer is rejected.  The seller’s strategy

is based on a belief  about the current state of nature, in relation to a threshold belief, labeled , such*

that the seller makes screening offers whenever the probability of the low valuation falls below the

threshold, and pooling offers otherwise.  The central analytical task is to determine  from the basic*

parameters ( , , , ).  A cyclic equilibrium exists only if  lies above the invariant probability µ, so that*

although the seller might not be optimistic enough to make a screening offer immediately after inferring

that the buyer's valuation was low last time, repeated pooling offers eventually lead to screening.  If

instead  lies below µ, then in the long run the seller makes only pooling offers in equilibrium: this is*

discussed in Section 5 below.

The State Variable

The obvious state variable for this game is the pair (n,) consisting of nature's current action, and the

seller's best estimate of this action.  This yields strategies for the seller that are step functions, and it is

more convenient to simply use the steps as the state variable.  This is done as follows.  Given that the

threshold  lies above the stationary belief µ, let K be the number of transitions needed to drive  below*

, starting from a belief that the current state is low. Define the function  as*

where (4) = µ. Then K = ( ).  For s = 0,1,...,K-1 define*

Note that (K) # (0) =   < (K-1), and that* *
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In particular, (K-2) <  #  (K-1).  Define I  as the half-open interval [1- , ), I  as the open interval* * *
0 s

( (s-1), (s)), for s = 1,2,...,K-2, and I  as the half-open interval ( (K-2), ].  Then the intervals* * *
K-1

{I ,I ,...,I ,...I ,I }, together with the set of endpoints { (s): s = 0,1,...,K-2}, partition the interval0 1 s K-2 K-1
*

[1- , ].   This partition will be used to define a state variable, , that governs the buyer’s and the seller’s5

strategies.  Heuristically,  is the number of pooling offers left before the next screening offer.  The

interpretation is that  summarizes a calculation that uses the strategies and the history of the game to

keep track of the seller’s beliefs.  When this calculation puts  in the interval I , the state is  = s.  Whens

 = (s), the state is  = s+ , for some number  in the unit interval, meaning that there is an immediate*

randomization that sets  = s+1 with probability , and  = s with probability 1- .  Thus as  increases

from 1-  to ,  increases from 0 to K (where K is reached only if (K) coincides with , and  = , with*

 = 1).  This construction is illustrated in Figure 2.
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Figure 2

Cyclic Strategies

The strategies used in a cyclic equilibrium will be defined in terms of the buyer’s reservation prices,

where P ( , ) denotes the reservation price for a buyer of type n, if a rejected offer implies continuationn 0 1

from , and an accepted offer implies continuation from .  An explicit representation of the buyer’s0 1

reservation price function will be derived below, but an abstract definition is enough for the moment.

Definition:

A cyclic price system is a pair of functions P ( , ) and P ( , ), defined for integer values of  and0 0 1 1 0 1 0

 between 0 and K, with the following properties:1



'
1

1&^
1&

^

((s%1)

11

(i) P ( , ) is decreasing in , and increasing in , for n=0,1;n 0 1 0 1

(ii) 0 < P (K,K) # P (K,0)0 1

It will be useful to have an abbreviated notation for some of these prices.  First extend the notation by

defining P ( + , ) = (1- )P ( , ) + P ( +1, ) for  in [0,1].  Then for a given cyclic price system definen 1 n 1 n 1

the screening price as p  = P (K-1+ ,0).  Also define the pooling prices as p ( ) =  P (K-1+ , ) , whereH 1 L 0 1

 = max( -1,0).  The relevance of  here is that there is a nontrivial region of the parameter space in1

which equilibrium requires a cycle lasting more than K-1 periods but less than K periods, which is

achieved by randomization, but in the standard case  can be set to zero and ignored.

Definition: A cyclic threshold strategy for the seller maps the state to the current price in each period,

using a cyclic price system, as follows:

if  $ 1 then p =  p ( )L

if  = 0 then p =  pH

Definition: A cyclic threshold strategy for the buyer maps the state and the current price to the current

quantity in each period, using a cyclic price system, as follows:

For n = 0:

if p #  p ( ) then q = 1 (pooled acceptance)L

if p > p ( ) then q = 0 (low buyer rejects above the pooling price)L

For n = 1:

if p #  P (K-1,0) then q = 11

if p > P ( -1,0) then q = 0 (pooled rejection if p is very high)1

if P (s+1,0) < p # P (s,0), where -1 # s # K-2 then q is random:1 1

q = 1 with probability , and q = 0 with probability 1- ,

where 



The reader who is keeping track of  might wonder why prices slightly above p  are accepted by the6
H

high-valuation buyer, and, if they are accepted, why the seller would offer p  instead of P (K-1,0).  The answer is inH 1

two parts.  First, optimality of the seller’s behavior is checked in Section 4 below, where the condition that governs
this particular deviation by the seller is labeled P .  Second, examples can be found in which this condition fails,K
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Figure 3: Randomization by the high-valuation Buyer

and  is the buyer’s assessment of the seller’s current belief, which is computed by applying the seller’s8

belief system to the seller’s history.  The seller’s belief system, which will be spelled out later, implies

that  # (s+1) # 1, so the probability  is well-defined.8 * 6

Figure 3 shows part of the buyer's strategy, covering the situation that arises when the current

valuation is high and the seller names a price above the screening price p .  This requires randomizationH

by the buyer, because if all buyers would reject such a price, rejection would decrement  by 1, in which

case acceptance would be more attractive for the high buyer; but if all high buyers would accept such a
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price, then rejection would restart the pooling sequence, and this would be more attractive to the high

buyer.7

Definition: A cyclic updating rule uses the buyer’s actions q to determine the next state ', as follows:

if q = 0, then ' = K-1+

if q = 1, then ' = max( -1,0)

where 0 #  # 1, and the notation ' = K-1+  means ' = K with probability , and ' = K-1 with

probability 1- .  

Cyclic Pricing Processes

A matched pair of cyclic threshold strategies for the seller and the buyer, together with a cyclic

updating rule, determine a renewal process for the state variable .  

Definition: A cyclic pricing process is a pair of cyclic pricing strategies (for the seller and the buyer),

using the same cyclic price system, together with a cyclic updating rule, such that the strategies

and the updating rule all use the same values of K and .

A cyclic pricing process gives a complete description of how the game will evolve from any given values

of the buyer's valuation n and the state variable , if the players follow their prescribed strategies.  First

the seller's strategy gives p as a function of , then the buyer's strategy gives q as a function of (,n,p),

then the updating rule determines the next state as a function of q, and the process continues.  In addition,

the updating rule determines the next state if the buyer rejects the current offer, even if the buyer's

strategy prescribes acceptance.  Note that the updating rule pays no attention to prices, because prices

that are consistent with the seller's strategy are rejected (according to the buyer's strategy) if n = 0 and

 = 0, and accepted otherwise.  Thus the updating rule determines the players' continuation values from
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any state, for given cyclic pricing strategies.  It also determines the continuation values if the buyer

deviates, but the continuation after deviations by the seller is left open for the moment.

Equilibrium Continuation Values

Let U ( ) and U ( ) denote the seller’s continuation values from state , where U  applies if theL H L

buyer’s current valuation is low, and U  if it is high; and let g( ) be the difference between these.  DenoteH

the corresponding values for the buyer as V ( ), V ( ) and d( ), and the joint continuation valuesL H

(J=U+V) as J ( ), J ( ) and j( ).  These can all be computed by first determining the joint values, andL H

then the buyer’s continuation values, yielding the seller’s continuation values as a residual.

Consider first the joint continuation value from state  when the buyer’s current valuation is low. 

This is the present value of  periods paying  if the buyer’s valuation is low, and 1+  if the valuation is

high, plus the continuation value from a screening offer after  periods.  Thus

If the state is  and the buyer’s current valuation is high, the joint continuation value is as above, but with

(s) in place of 1- (s).  Note that (s)+ (s)-1 = .  This yieldss

where  is a discounted persistence parameter defined as  = .  The joint continuation values from

accepted and rejected screening offers are given by

Define the discounted present value sums D, B and R as
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Then

where the second equality uses the above equation for J (0).  Then the equations for J (0) and J (0) canH L H

be written as

and these can be solved for J (0) and j(0):L

where r = 1/R(K+ ).  Finally,

This gives a complete description of how the joint continuation values are determined from the basic

parameters ( , , , ), for arbitrary values of K and .  The derivation uses the strategies only to verify

that the equilibrium is a cycle of pooling and screening offers: accepted screening offers are repeated

until there is a rejection, then there is a sequence of K-1+  accepted pooling offers, followed by a

sequence of screening offers and so on.  The joint values are summarized in the top panel of Table 1.
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Table 1: Value Functions

Low High Difference

Joint

  

Buyer

Seller

Notation

  R(K, ) = µD(K, ) + (1-µ)B(K, ) 

  µ=(1- )/(1- ) b=1/B(K, ), r=1/R(K, ), B( )=B( ,0), R( )=R( ,0) 
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Cyclic Prices, and Continuation Values for the Buyer

The next step is to consider prices that are tight in the sense that the low buyer is indifferent between

accepting or rejecting each pooling offer, and the high buyer is indifferent between accepting and

rejecting each screening offer. 

Definition: a cyclic pricing process is tight if the buyer’s continuation value does not depend on q, when

either n = 1 and  = 0, or n = 0 and  > 0.

If the price system is tight, the differences d( ) between the high and low buyer’s continuation values

from state  can be computed without knowing the prices, by considering what happens when screening

offers are rejected and pooling offers are accepted, by both buyer types.  The low buyer’s continuation

values can be computed as the value of a strategy that sets q = n.  These continuation values can then be

used to determine tight prices.  The results of this calculation are given in the following lemma (the proof

is in the Appendix, along with other proofs).

Lemma B1:

Suppose that the strategies constitute a tight cyclic price system.  The buyer’s continuation values

satisfy

where b = 1/B(K+ ).

The low buyer’s continuation value does not depend on , because any rejected offer implies

’=K-1+  next time, and tight pricing means that the low buyer’s value is the value of rejecting.  In any

case, the low buyer is not worth anything unless  is positive, and there is some chance of making a

transition to the high valuation in the future. 

Another noteworthy feature of the buyer’s value function is that changes in  have no effect, for given

values of K and : changes in  are absorbed entirely by the seller.  This is a local result, however, since
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although K is fixed with respect to marginal changes in , the screening threshold is not, as will be shown

below.

Prices

The buyer’s value function immediately yields an explicit version of the reservation price function

used to construct the equilibrium strategies.  Recall that P ( , ) represents the highest price that a buyern 0 1

of type n would accept, if rejection implies continuation from , and acceptance implies continuation0

from .  Thus1

where the left side is the value of rejecting, and the right side is the value of accepting.  So

This formula satisfies the monotonicity requirements used in defining a cyclic price system.   The8

screening price is

Thus the screening price is the high valuation if K=1 and  is zero, but in general the screening price lies

below this level.  

The partial screening prices used in the buyer’s strategy are given by

The pooling prices are determined by the difference, as seen by the low buyer type, between

continuation from  following rejection, or from -1 following acceptance.  Thus0



Here s is an integer, and 0 #  # 1.9
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with the convention that B(-1) = 0.

An interesting aspect of the price system is that the pooling prices are below the low valuation . 

This is because the buyer has the option of rejecting any offer, and rejection means that the pooling

sequence will be re-started.  This option is worth something because even if the buyer’s current valuation

is low there is the prospect of making transitions to the high valuation while the pooling sequence is in

progress.  The result is that the pooling price has to be smaller than  in order to cover the option value

associated with restarting the pooling sequence.  Moreover, for  > 2, the surplus yielded to the low buyer

type increases as the pooling sequence comes closer to the end, because the buyer is more tempted to

push the restart button when screening is imminent.

The Seller’s Beliefs

The seller’s belief system is a sequence of functions, { }, that determine the probability of the lowt

state as a function of the history of the game.  The state variable , which governs the buyer’s and the

seller’s strategies, implicitly uses  to locate the seller’s current belief inside an interval I , or at ant S

endpoint (S).  The belief system and the state are defined sequentially.  In the first period there is no*

history,  is the seller’s prior belief that the buyer’s initial valuation is low, and  = S, where   I  or0 0 S

 = (S).  Thereafter if  = (h ) summarizes the history of the game as of the beginning of period t,0 t-1 t-1
*

and  is the state, then the corresponding values at the beginning of period t+1 will be determined from ,

 and the price and quantity in period t, according to the following definition:

Definition:

A cyclic belief system uses a cyclic price system and the current actions (p,q) to map the current

values of  and  to new values ’ and ’, as follows:

(a) When q= 0:

if p # p  then ’ = , and ’ = K-1+H

if p = P (s+ ,0), -1 # s+  < K-1+ , then ’ = (s), and ’ = s+1
* 9

if p > P ( -1,0) then ’ = +(1- )µ, and ' = max( -1,-1)1
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Alternatively, the seller’s value function can be computed directly from the equilibrium pooling and screening10

prices, using the cyclic updating rule, following the method used above to obtain the joint values.  This alternative
procedure must be used in the more general setting where the buyer and the seller have different discount factors
(e.g. the extreme case where one side of the market is nonstrategic), because in this case the joint values are
assessed differently by the two players.
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(b) When q = 1:

if p # p ( ) then ’ = +(1- )µ and ' = max( -1,0)L

if p > p ( ) then ' = 1- , and ' = 0L

The update when the buyer rejects a price above p  is illustrated in Figure 3 above.H

The Seller’s Continuation Values

A seller using a cyclic belief system infers that the buyer’s current valuation is high if a screening

offer p  is accepted, and infers the low valuation if p  is rejected.  Thus the seller’s and the buyer’sH H

expectations are identical after the buyer has responded to a screening offer, and the seller’s continuation

values can be obtained as the difference between the joint values and the buyer’s values.   The results of10

these calculations are given in Table 1.  Before the buyer responds to an offer the seller does not know

the current valuation, so the seller’s expected continuation value at the point of making a screening offer

is a weighted average of the state-contingent values in Table 1, with weights determined by . t-1

4.  Equilibrium

So far, everything rests on the presumption that there is a threshold belief  governing the seller’s*

choice between screening and pooling offers.  This threshold determines K, the length of the pooling

cycle, which in turn determines the continuation values for the buyer and the seller.  In particular, the

seller’s payoffs from screening and pooling are ultimately determined by the value of  used in the*

buyer’s and seller’s strategies.  So there must be a fixed point: using  to determine the strategies, and*

computing the seller’s payoffs from screening and pooling as the seller’s belief  varies, it must be that

screening and pooling yield the same continuation value for the seller when  = .*

Let u[p,n, ] be the seller’s expected continuation value if the price p is offered when the state is  and

the buyer’s valuation is n.  For any , the value of a screening offer is

For  $ 1, the value of a pooling offer is
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Thus for  $ 1, the value of n that would make the seller indifferent between pooling and screening is

given by 

Recall that a cyclic pricing process governed by ( , ) includes an updating rule that determines the*

continuation from any given values of  and q.  This rule implies that if the seller were to make a pooling

offer when  = 0, the continuation would be identical to the continuation from a pooling offer at  = 1,

namely ’ = 0 if the offer is accepted, and ’ = K-1+  if it is rejected.  Thus the seller would be indifferent

between pooling and screening if n = n , so the screening threshold is 1-n , which can be written as* *
1 1

where the increasing function G(k) is defined as R(k)/B(k).  These computations are summarized in

Figure 4.  Note that n  $ n , since R( ) $ B( ), implying that when  $ , the seller’s equilibrium* * *
1

continuation value in state  exceeds the value of deviating to a screening offer.
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Figure 4: The Screening Threshold

Mapping the Parameters to the Equilibrium Strategies

The above formula does not give a closed-form expression for , because K depends on , and  is* *

unspecified.  Moreover the formula is valid only if  $ µ.  A closed-form expression can be constructed,*

however.  Define the function  mapping the basic parameters (, , , ) to the (possibly randomized)

screening threshold (, ) as follows*

where
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If  = (K), then (K) = 1, and otherwise (K) = 1 just a convention.11 * * *
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and  is defined as the solution of the equation G(k+ ) ¯ (k) = , i.e.k k

Each component of the function  takes values in the unit interval.  The  component is continuous and*

monotonically decreasing in  (although it generally has an infinite number of flat segments).  The 

component increases from 0 to 1 as  increases from G(k)̄(k) to G(k+1)̄ (k).  For  = 0 the function

collapses to  = 1/(1+ ), with =0.  Finally, the domain of the function is restricted by the condition*

 # , which ensures that  $ µ.  If  exceeds this bound there is no cyclic equilibrium, because
4 

*

screening is too expensive: this is discussed in the next section.

Definition: An optimal screening cycle is a pair of cyclic threshold strategies, governed by the same

values of  and , such that*

(i)

and

(ii) (P )s

for 1 # s # K, where K = ( ) and (K) = 1.* * 11

Condition (i) immediately implies that if an optimal screening cycle exists, it is unique.  The role of the

inequalities in (P ) is to ensure that the seller cannot gain by setting a price above the screening price, thats

is, by deviating to a partial screening offer.  This is discussed further below.



('
35

52

281

13090
> 0

2

8

768

544

5

8

768

544

6

8

255

544

24

Examples

A basic example of an optimal screening cycle of length 2 is laid out in Table 2.  When K = 2 and

 = 0, the only condition that needs to be checked is P  (since P  holds with equality when =0).  This1 K

condition indeed holds in the example (although it fails for slightly smaller values of , such as 4/9).  The

equilibrium price-quantity pairs are generated by a Markov chain with three states: (255,1), (768,0) and

(768,1).  The low price is always followed by the high price, and the high price is repeated if q = 1, and

otherwise the high price is followed by the low price.

Table 2: An Optimal Screening Cycle

Parameters Equilibrium

 = ½,   = c,  = ¾,  = ¾ 
µ = ½,  = ½

, =0, K = 2

P : 1

Continuation Valuesa

Joint Buyer Seller Belief Prices
s

State J ( ) J ( ) V V ( ) U ( ) U ( ) U( ) ( ) p , p (1)
b L H L H L H H L

=0 6,528 103,632 2,240 6,160 4,288 97,472 74,176

=0 6,528 103,632 2,240 6,160 4,288 97,472 39,232

=1 35,088 103,632 2,240 64,960 32,848 38,672 34,304

Continuation values are scaled up by the factor 62,475 (in order to provide exact results thata

can easily be compared across states).
The two rows with  = 0 differ only in the seller’s beliefs: the first is reached after ab

successful screening offer, and the second is reached after a pooling offer.



1
'

1

G(K)

(

1& (

25

Figure 5: Random Screening Equilibrium

Random Screening

An equilibrium with random screening is shown in Figure 5, which plots the function  over the

relevant range, with parameter values ( , , , ) = (5/34,41/44,7/22,1/2).  The plot shows the piecewise-

linear function

.

  This function jumps at an inconvenient

spot, which is why randomization by the seller is needed

in equilibrium.  The equilibrium screening threshold in

this example is = (3) =641/704, with  = .10889.  That* 

is, any rejected offer is followed by two pooling offers,

and then another pooling offer with probability  or a

screening offer with probability 1- .  The example

satisfies the conditions of Proposition E1 below (P1

evaluates to .0656, and P  evaluates toK-1

79/1320 < 120/1320).  The screening price is

p = .988214, and the first partial screening price isH 

P (K-1,0) = .988244.1

An Example Showing the Effects of Limited Commitment

A surprising feature of the equilibrium in some examples is that the presence of the high buyer type

makes the seller worse off ex ante.  A seller who could commit to pooling offers in every period would

be worth /(1- ), while in an optimal screening cycle the seller may be worth much less.  An extreme

example is shown in Table 3, using a discount factor close to 1.  This may be interpreted as a limiting

case in which both the seller’s offers and the Markov chain transitions are made in rapid succession, with

the result that the degree of persistence is negligible in real time.
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Similar results can be shown for moderate values of the discount factor (e.g.  = ½, with  = 1, and12

 =  = 5/8).
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Table 3: An Example of the Effect of Limited Commitment

Parameters Equilibrium

 = 8/5,  = .9999,  = 3/4,  = 3/4  = .528, =0, K=5
µ = 1/2,  = 1/2

*

P : .795 > 01

P : K-1

Continuation Values

Joint Buyer Seller Beliefs Prices
b

State p ,J ( ) J ( ) V V ( ) U ( ) U ( ) U( ) ( )L H L H L H H

p ( )L

=0 16 1.8718,691.85 18,694.77 4,837.79 4,838.76 13,854.06 13,856.01 13,855.52

=0 33 1.8718,691.85 18,694.77 4,837.79 4,838.76 13,854.06 13,856.01 13,855.00

=1 34 1.1318,692.31 18,694.77 4,837.79 4,839.28 13,854.52 13,855.49 13,854.97

=2 36 1.3818,692.65 18,694.88 4,837.79 4,839.53 13,854.86 13,855.35 13,855.07

=3 40 1.5118,692.94 18,695.06 4,837.79 4,839.66 13,855.15 13,855.40 13,855.24

=4 48 1.5718,693.20 18,695.26 4,837.79 4,839.73 13,855.41 13,855.53 13,855.44

Probabilities are scaled up by the factor 64b

Coase (1972) conjectured that a seller who could not commit to hold the line on prices for any

appreciable length of time would be forced to sell at the lowest demand price in the market.  Here the

seller does even worse than in the Coase conjecture: the highest value achieved by the seller is 13,856.01,

as compared with 16,000 for a seller who faces the low-valuation buyer for sure.12

Existence of Equilibrium

Existence of an optimal screening cycle is established by the following two propositions, for a non-

trivial region of the parameter space.  The first result provides a simplified test of whether an optimal

screening cycle exists for given parameter values.
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The labels on the inequalities in Propositions E1 and E2 do not quite match the label P  used in the definition13
s

of an optimal screening cycle: although P  is just a rearrangement of P  with s=1, P  is stronger than P  with s=K-1,1 s K-1 s

and P  is a rearrangement of P  with s=1 and K=4.
4 s
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(P )1

(P )K-1

(P )
4

Proposition E1

Suppose ( , ) = ( , , , ) and the following two conditions hold*

and

Then the cyclic screening strategies governed by ( , ) constitute an optimal screening cycle.  Moreover,*

if ’  ( , ), an optimal screening cycle also exists at ( ’, , , ).
4

Proposition E2

Suppose the parameters ,  and  satisfy the inequality

Then there is a number  such that for any  g ( , ) an optimal screening cycle exists.0 0 4

Propositions E1 and E2 are proved in the appendix.   Note that the inequality P  must hold if K is13
K-1

large, but it cannot hold unless K $ 3.  In fact, if K = 2 the inequality can be written as

which is impossible if  is positive.

The main result of the paper is the following:

Theorem 1:
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See the discussion in Maskin and Tirole (1994), for example.14
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An optimal screening cycle is a sequential equilibrium.

The proof is given in a series of Lemmas below.  The function  defines the screening threshold  and*

the randomization probability  for any given parameter vector ( , , , ).  The buyer’s and seller’s cyclic

screening strategies are fully determined by ( , , , ) and ( , ), so there is a well-defined mapping from*

the basic parameters to the equilibrium strategies.  The updating rule is pinned down by the assumption

that the continuation after a rejected pooling offer is the same as the continuation after a rejected

screening offer.  The main difficulty in establishing equilibrium is that the seller’s strategy (constructed

in the manner just described) is generally not optimal if the inequality P  fails, or if  is small.
4

Although an optimal screening cycle is not a Markov equilibrium with respect to payoff-relevant

information, it is nearly so.  The only defect is that if the seller deviates to a price above the screening

price, the continuation depends on what this deviant price was, until the slate is wiped clean at the end of

the current pooling cycle.  This kind of defect seems inevitable in bargaining models with a finite number

of types.14

Optimality of the Buyer’s Strategy

Given the current state  and the current price p, the buyer’s strategy uses the cyclic belief system to

predict the next state , meaning  following rejection and  following acceptance of the seller’s offerq 0 1

(where  may be random).  Then p is compared with the reservation price P ( , ).  It is easy to show,q n 0 1

using the buyer’s equilibrium continuation values, that no profitable (one-period) deviation is available.

Lemma B2:

Given the cyclic belief system, the buyer’s strategy is optimal.

Proof:

Let V ( ) be the continuation value of a type-n buyer choosing q=0 or q=1.  Thennq
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Given  and , V ( ) does not depend on p, while V ( ) is decreasing in p, so a reservation price0 1 n0 n1

strategy is optimal.  All that needs to be shown is that the buyer’s strategy uses the correct prediction of 0

and , for any given values of  and p.  This is true by construction.1

Optimality of the Seller’s Strategy

According to the buyer’s strategy, all prices below the current pooling price p ( ) are acceptable, andL

according to the seller’s belief system, all such acceptances are uninformative, and thus imply the same

stochastic process for future payoffs.  Therefore all prices below p ( ) are dominated by p ( ) from theL L

seller’s point of view.  At the other extreme, all prices above P ( -1,0) are rejected, with no effect on the1

seller’s beliefs, so these prices are dominated by the pooling price, which yields the same future payoffs,

plus some current profit.  Any price in the interval (p ( ),p ] is rejected by the low buyer and accepted byL H

the high buyer.  Again, these prices imply the same future payoffs for the seller, so the prices in this

interval are all dominated by p .H

Thus the only relevant one-period deviations for the seller involve exchanging the pooling price p ( )L

and the screening price p , or else charging a price above p  and below P ( -1,0).  If any profitableH H 1

deviation existed it would be dominated by one of these, so if none of these is profitable the seller’s

strategy is optimal.

In equilibrium, the seller’s belief  falls below  when  = 0, and it follows from the definition of * *

that the seller cannot gain by deviating to p (0) in this situation.  Conversely,  $  when  > 0, and asL
*

was pointed out above, the seller cannot gain by deviating to p  in this situation, because n  $ n .H 1
* *

Partial Screening

It remains to be shown that the seller cannot gain by deviating to a price above the screening price p ,H

with the implication that screening is incomplete.  Recall that the definition of an optimal screening cycle

includes the inequalities (P ) which are supposed to ensure that partial screening offers are not profitable. s

Lemma S1 shows how this works.

Lemma S1:

If the inequalities (P ) hold, and if  P (,0) > p > p , then u[p,, ] # u[p , , ], for all .s 1 H H

The following lemma verifies that the seller's beliefs are consistent with Bayesian updating in an

optimal screening cycle.  Here, following Kreps and Wilson (1982), consistency includes the requirement



Thus the equilibrium would pass a test analogous to the Intuitive Criterion for two-period signaling games15

proposed by Cho and Kreps (1987).  
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that the seller’s belief when a pooling offer is rejected can be rationalized as a Bayesian inference for a

neighborhood of fully mixed buyer strategies around the equilibrium strategy.

Lemma S2:

Given a cyclic pricing process determined by , the cyclic belief system determined by  is* *

consistent.

5.  Alternative Equilibria

A key assumption in the above analysis of optimal screening cycles is that rejection of a pooling

offer would lead the seller to believe that the buyer’s current valuation is low.  This is reasonable, since

the buyer would be indifferent in this case, whereas a high-valuation buyer who rejects a pooling offer

leaves money on the table.   On the other hand, another equally reasonable seller might take the view15

that rejection of a pooling offer invalidates all previously held beliefs, since these beliefs implied that the

offer would certainly not be rejected, and yet it was.  Then the seller might reboot using the invariant

distribution of the buyer’s Markov chain, with  = µ and  = 0 (assuming  > µ).  In general, the seller is*

free to believe anything after rejection of a pooling offer, but an arbitrary choice of beliefs would be of

little interest.  A leading alternative to the specification used in this paper is to simply treat rejected

pooling offers as if they had been accepted.  Rustichini and Villamil (1996) adopted this alternative,

arguing that the buyer might tremble, so that there is a small chance that the buyer would reject an offer

by mistake.  Then, if it is also assumed that the chance of a mistake is unrelated to its cost, it makes sense

for the seller to draw no inference from rejection of a pooling offer.

In general, the continuation after a rejected pooling offer can be represented by a transition matrix 

which maps the current state  and the current actions (p,q) to the next state '.  Then the cyclic updating

rule is replaced by the following rule:

if p=p  and q=0, then ' = K-1+H

if p=p ( ) and q=0, then ' = s with probability , s=0,1,2...KL s

if q=1, then ' = max( -1,0)
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The matrix  is only used to reboot if the equilibrium crashes because a pooling offer is rejected.  The

method used above to compute optimal screening cycles can be applied in this more general context as

well.  The joint values are unchanged, because the equilibrium path is unchanged, but the buyer is

generally worth less.  Moreover, the differential between pooling and screening continuation values for

the seller is affected by , so the equilibrium screening threshold must be recalculated.

Let V  be a vector containing the low buyer’s continuation values [V (0),...V ( )...V (K)], and let dL L L L

be the corresponding vector containing the differences d( ) between the values for the low and the high

buyer.  It is easy to see from the proof of Lemma B1 above that d is unaffected by changes in .  Define

 as the transition matrix obtained when the first row of  is replaced by the vector [0,0,...0,1- , ].  Then0

the general formula for the low buyer’s continuation values can be written as

The expression for the screening threshold can be generalized as follows:

where v  is the amount the low buyer would lose if the seller were to make a pooling offer at  = 0:0

which is zero in the basic specification.

Transient Screening Equilibria

Even in the basic case with v = 0, optimal screening cycles do not provide a complete set of0 

equilibria covering all regions of the parameter space.  Optimal screening cycles exist only if  $ µ,*

which reduces to the condition  # .  If  exceeds this bound, there are equilibria with  < µ.  Such
4

*

equilibria will be called “transient screening equilibria,” because they have the property that a seller who

infers that the buyer’s current valuation is low will never again be optimistic enough to make a screening

offer.  A transient screening equilibrium is like an optimal screening cycle with K = 4, with one

important difference.  In an optimal screening cycle,  is defined as the belief that leaves the seller*

indifferent between screening and pooling, given that a pooling offer now implies a screening offer next
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The state variable construction has to be redone, because the long run state is in the pooling region.  So (1)16 *

is below , and  (2) is below (1), and 1-  is in the interval (k+1), (k), for some k.  If the seller makes a* * * * *

pooling offer, the state advances toward 1, meaning the long run pooling state.  But if the seller were to make a
pooling offer at  = 1- , it might be that ’ = (1+ )(1- ) is still in the screening region, so that a pooling offer now
would be followed by a screen next time.  This deviation is not profitable.

Also, if  is between (1) and , then any price above the screening price would be rejected for sure, and the* *

continuation would be pooling from then on.  But if  is below (1) then a price above p  requires randomization by*
H

the buyer, followed by ’ = , and =0 or =1 with probabilities that depend on how high the price was.  Finally,*

transient screening equilibria must be checked against the partial screening test.

32

time, because ’ is a weighted average of  and µ, so ' < µ.  In a transient screening equilibrium, on the*

other hand, the same logic implies that if a pooling offer is made at , the seller will make pooling offers*

in all future periods.

If  $ 1- , the value of a screening offer in a transient screening equilibrium is exactly as it would be*

in an optimal screening cycle with K = 4, because an accepted screening offer is followed by another

screening offer.  Thus for any value of the state variable , if the screening price p  is set when theH

buyer's valuation is +n, the seller's continuation value is

The value of a pooling offer is

The screening threshold is obtained by finding the value of n = 1- that equates the values of screening

and pooling.  This yields

It is not difficult to construct strategies for the buyer and the seller, and a belief system for the seller,

that constitute a transient screening equilibrium governed by , using the above formula to determine * *

from the basic parameters (note that  does not directly affect , although a decrease in  may cause µ to*

fall below , voiding the equilibrium).  The details of this construction are omitted.* 16
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Repeated Static Equilibria

Finally, if  does not fall in either the interval [µ,1] associated with optimal screening cycles, or the*

interval [1- ,µ] associated with transient screening equilibria, it can only be in the interval [0,1-]. 

Equilibria governed by a screening threshold in this interval may be called “unconditional pooling

equilibria,” because even the most optimistic seller chooses the pooling price.  In this case  solves the*

static problem, equating the value of pooling and screening offers in the current period without regard to

the future, because the future is not affected by what happens in the current period.  At the other extreme,

optimal screening cycles with K = 1 may be called “unconditional screening equilibria,” since even the

most pessimistic seller chooses the screening price, and again  is the solution of the static problem,*

namely = 1/(1+ ).* 

Classification of Equilibria

The inequalities placing  between µ and  can be written as *

where  = 1/ .  Also, the conditions for a transient screening equilibrium with 1- #  # µ can be*

written as

Finally, the condition for an unconditional pooling equilibrium is

These results are illustrated in Figure 6, which shows how the screening threshold varies with , for a

particular ordering of the critical values of  defined above.  The most effective diagram plots the

reciprocal of  against the odds ratio , since these are equal in the static case, and otherwise the

relationship between them is either piecewise-linear (in the case of optimal screening cycles) or affine (in

the transient screening case).
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Figure 6 Alternative equilibria (  = 4/5,  = b,  = b)

Figure 6 indicates that there will generally be either a unique equilibrium, or else three possible

equilibria (at least one of which involves randomization by the seller).  These possibilities may be

classified as follows.  First note that
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This partitions the parameter space into four regions.  Each region is further divided into three subregions

according to where  lies in relation to  and , but two of these regions are empty, becausec
c

and

The 10 parameter regions are illustrated in Figure 7, for fixed values of  and .  In this diagram, any

choice of ( , ) that falls in one of the five outside regions (those containing a segment with  = 1 or

 = 1) gives a unique equilibrium, while a choice in one of the five inside regions yields three equilibria. 

For example, if ( , ) is in the small triangular region just above the diagonal, there is an unconditional

screening equilibrium, a randomized equilibrium with = µ, and a randomized equilibrium with = 1- .* * 
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Figure 7 Alternative Equilibrium Regions (  = b,  = 0.7)
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6.  Conclusion

This paper analyzes repeated bilateral monopoly with a private stochastic process for the buyer’s

valuation.  The main results are concerned with cyclic movements of equilibrium prices and quantities

generated by a two-state Markov chain for the buyer’s valuation.  A novel feature of the model is that

pooling offers give the buyer a surplus even in the bad state, because the buyer has the option of refusing. 

The sequence of pooling prices driven by the value of this option involves a gradual decline while the

seller is in the pooling phase of the equilibrium cycle, and a sudden jump at the end of this phase.

The analysis is based on the idea of Markov-Perfect equilibrium.  At any point in the game, the only

information that is relevant for future payoffs is the buyer’s current valuation.  The seller’s strategy is

driven by a belief about this valuation, using everything that can be inferred from the buyer’s recent

actions in the context of the buyer’s equilibrium strategy.  This belief is summarized by a state variable

that counts the number of pooling offers remaining before the seller will be optimistic enough to make

the next screening offer.  The buyer’s strategy then uses this state variable together with the actual current

valuation.  This is a tractable structure that should be suitable for empirical application: in particular,

explicit solutions are obtained for equilibrium prices and quantities, and for the value functions.

The main limitation of the model is that equilibria in which screening is extended over more than one

contract are ruled out, by excluding a portion of the parameter space in which the cost of an unsuccessful

screening offer is relatively low.  A more general analysis would extend the state variable to count down

the number of rejected offers needed to convince the seller to restart the pooling sequence, as well as the

number of offers remaining in the pooling sequence.  From the point of view of application, a more

useful alternative is to relax the assumption that each negotiation involves just one take-it-or-leave-it

offer, instead allowing a sequence of offers that ends when the seller becomes convinced that the current

state is low.
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Appendix: Proofs

Lemma B1:
For  $ 1, if both buyer types accept the pooling price p ( ), the continuation values for the high andL

low buyer, and the difference between them, are given by

The continuation after rejection of any pooling offer is the same as the continuation after rejection of a
screening offer.  Given that prices are tight, this implies V ( ) = V (0) / V , for  $ 0, and L L L

Thus the differences d( ) are obtained by solving the set of K+1 linear equations defined by 

This yields

This completes the proof.

Lemma S1:
Suppose P (s+1,0) < p # P (s,0), for some integer s, with -1 # s # K-1.  Then the buyer accepts with1 1

probability q(s), with continuation from ’ = 1-  and ’ = 0, and rejects with probability 1-q(s), with
continuation from ’= (s) and ’=s+ , where  is defined by *

The seller’s current payoff P (s+ ,0) and the expected continuation value from next period on are both1

linear in , so if a deviation to P (s+ ,0) is profitable, a deviation to P (s,0) or P (s+1,0) must also be1 1 1

profitable.  Thus  = 0 can be assumed without loss of generality.  
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The probability q(s) that a partial screening offer is accepted is such that if the offer is rejected the
seller’s belief next time will be ’ = (s).  This means that after a rejection and before the transition from*

n to n’ the seller’s belief is (s+1).  Thus *

and in equilibrium  = .8

A partial screening offer is either accepted by the high buyer, or rejected by the high buyer, or
rejected by the low buyer.  So

Take the terms in this expression in reverse order.  Rejection means continuation from ’ = s, and from
the seller’s point of view the difference between n=1 and n=0 in this context is exactly the same as it
would be at  = s+1.  So

Next if the current valuation is high, the difference between acceptance and rejection is just the
difference in the joint continuation values, since the high buyer must be indifferent between acceptance
and rejection.  Acceptance means continuation from ’ = 0 and rejection means ’ = s, so

Now compare the seller’s continuation value from a screening offer with the value of a partial screen:

Consider the first term here.  The joint continuation value is always the same when a screening offer is
accepted, so the first term is just the difference between partial and full screening offers from the high
buyer's point of view, and for any screening offer the high buyer’s continuation value is the value of
rejecting the offer.  Therefore, 

Note here that 
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These results can be summarized as :

Since (s) # 1, and B(s) and R(s) are increasing in s, (s) is an increasing linear function of , so if it is*

positive when  takes its smallest value (which is 1- ) then it is always positive.  But the inequality P  iss

just (s)/  $ 0 with  = 1- .  This completes the proof.

Propositions E1 and E2.
Given the basic parameters ( , , , ), the function  determines  and , and the function *

determines K, so K and (s) can be considered as functions of ( , , , ): each point in the basic
parameter space implies a unique value of K, and unique values of (s), for 1 # s # K.  In this appendix,
the parameters ,  and  are fixed, and K and (s) are considered as functions of , using the notation
K( ) and (s; ).

The proof of E1 uses the following result.

Lemma A: If c is positive, and  and  are in the interval (0,1), then the function f:U6U defined by

is quasiconcave. 

Proof:
It will be shown that f(s) is increasing for s < s , and decreasing for s > s , where s  is the unique0 0 0

solution of the equation

The left side of this equation decreases from 4 to 0, while the right side increases from a to 4, as s
increases from -4 to +4, so the equation does indeed have a unique solution.  Also,

The expression in brackets is decreasing in s, and it is zero at s = s .  Thus, since log( ) is negative, f(s)0

is increasing for s < s , and decreasing for s > s .0 0
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Proof of Proposition E1:
According to Lemma S1, the first part of the proposition can be stated as (s) $ 0, for 1 # s # K. 

This is equivalent to (s) $ 0, where

Write (s) as µ + z , where z  = -µ.  Substituting this in (s) and rearranging terms yields* -s *
0 0

where

After substituting for D(s) and B(s), (s) can be written in the form

where a  and a  are irrelevant constants, and0

The coefficient a  is nonnegative if

This is implied by (P ):K-1
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(P )1

Since a  is positive, the function (s)/a  satisfies the conditions of Lemma A, so (s) is quasiconcave. 
The next step is to show that P  implies (K) $ 0 and (K-1) $ 0.  Then (given P ) quasiconcavityK-1 1

implies (s) $ min[ (1), (K-1)] $ 0, for 1 # s # K-1.
To show that (K) $ 0, write (K) as 

The bracketed term is clearly nonnegative if P  holds.  If  > (K) with =0 then the relevant conditionK-1
*

is (K-1) $ 0.  This condition can be written as 

The first term is nonnegative, and the term involving  is nonnegative if P  holds, so it is enough toK-1

show that the remainder is nonnegative.  But (K-1) $ , so this is also implied by P :*
K-1

This proves the first part of E1.

To prove the second part of E1 it is enough to show that an increase in  relaxes P  and P .  It is1 K-1

obvious that P  is relaxed when  increases, because K( ) is increasing.  The definition of the functionK-1

 shows that there are two possibilities when  increases.  First, if G(K-1) # /G(K) < G(K), then a (small)
increase in  reduces  without disturbing K or .  Write P  as*

1

The first term in brackets here is positive, because (1) # 1 # R(K+ ); also 1/ (1) increases when * * *

decreases, so the left side of the inequality increases when  increases.
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One might well ask how K ever changes, given the assertion that it remains fixed in both cases considered17

above.  This is merely a matter of notation.  Starting from an equilibrium with  = (K), increases in  yield*

equilibria with the same value of  and increasing values of , until  reaches 1.  At this point K is augmented by*

one and  returns to zero, so that the same screening threshold now satisfies  = (K-1), with (K-1) = 1.  Note* *

also that the inequality P  is equivalent to (K-1) $ 0 at this point.K-1
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The other possibility is that  satisfies G(K) # /G(K) < G(K+1).  In this case a (small) increase in 
increases  while K and  remain unchanged.   It will be shown that this increases (1), implying that* 17

an increase in  relaxes P .  Write (1) as1

Then, since  = (K) when  is positive,*

The first term here is obviously positive, since (s) # 1.  To show that the remainder is positive, divide it*

by , and note that K

is positive when P  holds.  This completes the proof.K-1

Proof of Proposition E2:
First consider (1, ) as a function of .  As  increases, K( ) increases, with K=4 for  > .  Also,

4

Substituting  = µ in this equation shows that the inequality (1, ) > 0 is equivalent to (P ).  It follows*
4 4

that there is some open interval (, ) such that (1, ) > 0 for   ( , ).  Since P  necessarily holds0 4 0 4 K-1

for large K,  can be chosen so as to ensure that P  holds for   ( , ).  Then the conditions of0 K-1 0 4

Proposition E1 are satisfied for   ( , ), which proves the result.0 4
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The point here is that the probability of making a mistake is inversely related to its cost: the high buyer is18

more likely to err on the high side, and the low buyer is more likely to err on the low side.
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Proof of Lemma S2:
Consider an arbitrary price p.  It will be shown that if the seller were to offer p, the inference drawn

by the seller from the buyer’s response would be consistent with the buyer’s equilibrium strategy.
First note that if the seller’s current belief is , the belief next period, in the absence of any new

information, is

Thus if the buyer’s strategy specifies that p is accepted whether the current valuation is high or low, then
the above expression gives the correct Bayesian updating rule for the seller when p is chosen; the same is
true if p is a price that the buyer’s strategy unconditionally rejects.  If the buyer’s strategy rejects or
accepts p according to whether the current valuation is low or high, then the seller sets  = 0 if p is
rejected, and  = 1 if p is accepted, implying ’ = 1-  and ’ = , respectively.  

The buyer’s strategy specifies randomization if the current valuation is high, and the seller names a
price p between p  and P ( -1,0).  In equilibrium, the seller’s belief  agrees with the estimate used by theH 1

buyer to determine the probability that p is accepted.  Let  be the seller’s posterior belief that the current0

valuation is low, if the buyer rejects p.  Then

Thus ’ = (s), so the seller’s belief is correct following randomization by the buyer.*

Finally, it must be shown that the seller’s belief following a rejected pooling offer can be supported
as the limiting Bayesian inference for a sequence of fully mixed buyer strategies approaching the
equilibrium strategy.  This is easily done.  Modify the buyer’s equilibrium strategy so that wherever the
strategy specifies q =1, the buyer instead accepts with probability 1-g , and rejects with probability g ;1+n 1+n

while if the strategy specifies q = 0, the buyer accepts with probability g , and rejects with probability2-n

1-g .  In particular (setting n = 1), g  is the probability that a pooling offer is rejected by the high-2-n 2

valuation buyer and (setting n = 0) g is corresponding probability for the low buyer.   Then if a pooling18

offer is rejected, Bayes rule implies that the probability of the low type is 

Taking g = 1/m yields a sequence  converging to 1 as m increases, supporting the seller’s belief that if am

pooling offer is rejected, the buyer’s valuation is low.


