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1. Introduction

Repeated bargaining relationships are important in many economic contexts. An obvious exampleis
the continuing rel ationship between a union and an employer, involving periodic negotiation of contracts
determining the price and quantity of labor services for a period of afew years. More generally, repeated
contracts arise in international trading relationships, and in various intermediate product industries:
examples include vineyards selling grapes to wineries under contract, and mining companies selling coal
to electric utilities.

Thetypical situation in these negotiationsis surely that each side knows more about its own
reservation price than its opponent does. If the reservation prices are correlated across contracts,
information that is revealed in the negotiation of one contract has strategic value in subsequent
negotiations, and each side must take this into account in choosing an optimal bargaining strategy. This
paper analyzes the strategic role of serially correlated private information on one side of arepeated
bargaining relationship.

Recent work on labor contracts has emphasi zed the possibility of explaining collective bargaining
outcomes in terms of the truth-telling constraints arising when either party to a bargaining game is
endowed with unverifiable private information.? Meanwhile the empirical literature on labor contracts
has shown convincingly that the outcome of the current negotiation is substantially influenced by what
happened when the previous contract was negotiated.® At this point, we do not have any model that
could be used to explain the regularities found in the labor contract data: that is one motivation for this
paper.

A trader who is uncertain about the other side’s valuation faces the standard monopoly tradeoff
between prices and quantities. In the most basic case there are two choices. a pooling offer that ensures
that trade will occur, at arelatively unfavorable price, or a screening offer that ensures a high price at the
risk of afailure to trade. When the relationship is repeated one would expect the val uations to have both
permanent and transitory components. This complicates the decision on whether to play soft or hard,
because the hard strategy reveals more information, and information about present valuations will be

valuable in future negotiations. This naturally leads to cycles: atrader who screens this time and loses

%See, for example, Sobel and Takahashi (1983), Hayes (1984), Fudenberg, Levine and Ruud (1985), Kennan
(1986), Hart (1989), Kennan and Wilson (1989, 1993), Card (1990), and Cramton and Tracy (1992)

3See, for example, Riddell (1979, 1980), Card (1988, 1990), and Ingram, Metcalf and Wadsworth (1991).
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will be pessimistic in subsequent negotiations, but the pooling offers induced by this pessimism do not
reveal new information, and so the pessimism wears off.

In order to abtain concrete results it is necessary to make some strong simplifying assumptions.

First, there is private information only on one side, the other side’s valuation being common knowledge.
Second, the bargaining rules offset the informational advantage by giving the uninformed party the right
to make offers that the informed party must either accept or reject, so the equilibrium involves screening,
with little room for signaling. For concreteness, say an uninformed seller makes take-it-or-leave-it offers
to an informed buyer (with the understanding that if these labels are reversed nothing changes except that
high prices become low prices, etc). Moreover, the analysis is restricted to the case where the seller can
commit to one take-it-or-leave-it offer in each negotiation, although the seller has no commitment power
regarding future negotiations. Third, the buyer's valuation is a two-state Markov chain, which is the
simplest process that includes both transient and permanent components. At one extreme, no transitions
occur, so that the high-valuation buyer is wary of revealing its type, because of the "ratchet effect": once
the high valuation is revealed, the seller will claim the entire rent in all future negotiations. This

situation was analyzed by Hart and Tirole (1988). At the other extreme, the current valuation is purely
transitory, and the model reduces to a sequence of one-shot screening negotiations. Between these
extremes the model generates cyclic equilibria. The paper focuses on the strategic complications arising
when both parties are forward-looking, so that while the seller thinks about the value of learning the
current state of demand in order to choose more profitable prices in the future, the buyer makes a similar
calculation from the opposite point of view. The main result characterizes a class of Markov-Perfect
equilibria that exhibit cycles.

In some respects, this paper is related to the literature on learning and experimentation in markets.
For example, the seller faces a tradeoff between actions that are myopically optimal, and actions that
improve future payoffs by revealing information about the state of demand. Aghion, Bolton, Harris and
Jullien (1991) focus on whether an agent who faces such a tradeoff will eventually learn all there is to
know about the environment. Rustichini and Wolinsky (1995) analyze a model in which a monopoly
seller faces a nonstrategic buyer with a rectangular demand curve driven by a symmetric Markov chain.
Here the seller decides whether it is worthwhile to learn the buyer's valuation always, by making
screening offers, or never, by making pooling offers, or sometimes, by using the information revealed by
a previous screening offer to determine whether a screening offer is worthwhile now. This is also the
problem analyzed in this paper, but for the more complicated situation in which both the buyer and the

seller both behave strategically, so that the seller is trying to learn something that the buyer may wish to



conceal. Bergemann and Valimaki (1996) consider a monopsony buyer facing two competing sellers,
where the buyer's valuation (i.e. the quality) of each seller's product is a stochastic process. Thisisa
two-armed bandit problem in which the bandits are smart, but there is no private information involved.
In earlier work Blume (1990) and Vincent (1997) analyzed the effects of private information that
arrives while a bargaining gameisin progress. Blume considered a two-type model where the low type
can temporarily assume the valuation of the high type, emphasizing that even if the informed party can
only accept or reject offers made by the uninformed party, there is an important signaling aspect of the
negotiations. The model in this paper differs from Blume's in two respects: both types change valuations,
and the game involves repeated contract negotiations, as opposed to afinal sale. In Vincent's model the
buyer has alinear demand curve with an intercept driven by a Markov chain and the seller is precluded
from using two-part tariffs and must instead set a price and let the buyer choose quantity. Inthis
situation the buyer can signal alow valuation by purchasing a quantity that is|ess than the myopic

optimum, but nevertheless positive, with the result that pooling equilibria are difficult to sustain.

2. An Infinite Horizon Markov Model of Repeated Negotiations

Consider an infinite sequence of contract negotiations between a buyer and a seller where the rent to
be divided in each T-period contract follows a simple Markov process, with transitions that are observed
privately by the buyer. Both sides maximize the present value of expected income, with a common
discount factor A=8". For example, if v isthe present value of afirm’s revenue during the term of alabor
contract, net of all nonlabor costs, and if w,, is the highest wage available to workers during a strike, then
therent isv-w,. Assume that the rent follows a two-state Markov chain with continuation probabilities p
and ¢ over the length of a contract, so that if the rent islow now (v=v,), it will again below T periods
hence with probability p, and if the rent is high now (v=v,) it will be high again next time with
probability ¢.* It is convenient to use w, as the origin and v,;-v, asthe unit, so relabel 6 = (v -w)/(V,;-V,)
asthe low rent, with 1+6 as the high rent and zero as the seller’s opportunity cost. Then the model is

summarized by the four parameters (p,s,0,A).

“This notation may be taken as a summary of multiple transitions in the Markov chain during the term of the
contract: for instance if the chain makes one transition per period, and the basic transition matrix is A,, then the
transition matrix from one contract to the next is A = AJ, and p and ¢ may be interpreted as the diagonal elements of
this matrix. Under thisinterpretation, v, and v,, denote expected present values over the life of the contract, given
the state in the initial period.



The rules of bargaining are simple: the uninformed party makes an offer, and if thisis rejected there
isno trade until this contract period expires. Thus the seller has full commitment power within the
current contract (but no commitment power across contracts). A more interesting, but more complicated,
possibility isto allow one offer per period, so that there might be as many as T offers per negotiation.

In the absence of any historical information, the probability of the low valuation isthat implied by

the stationary distribution of the Markov chain, i.e.

u - l-¢  _1l-0
l-c+1-p )

where ¢ = p+o-1 measures the degree of persistence in the Markov chain. Let p(s) denote the probability
that the Markov chain isin the low state after stransitions, given that the current state is low, and let o(S)
be the probability of being in the high state after stransitions, given that the current state is high. Then

pe) = u+ol-p]
o(s) = 1-U+o°H

The parameter ¢ governs the extent to which successive contract negotiations are linked. Assume
¢ > 0, so that the probabilities p(s) and o(s) do not oscillate. 1f ¢ = 0 information is completely
transitory, so that any inference that the seller might draw from the current contract negotiation will be
irrelevant by the time the next contract is negotiated. At the other extreme, if ¢ = 1 the current
information is entirely permanent. Under the interpretation that ¢ summarizes multiple transitions during
the term of a contract, with ¢ = (pg, the linkage across contracts is made weaker if the contract length is
increased, for a given value of o,.

A natural equilibrium of this game is arenewal process based on the outcome of screening offers
made by the seller. If the buyer accepts an offer revealing that the rent is currently high, the continuation
gameisthe same asit was the last time such arevelation was made, and similarly if the buyer rejects
sufficiently many offersto convince the seller that the rent is currently low.

In each contract negotiation there are two possibilities from the seller’s point of view. If information
issufficiently persistent (¢ is high) and if the seller has inferred from a recent negotiation that the rent
was low, it will be optimal to make a pooling offer. Alternatively, if the seller believes that the high-rent
state is sufficiently likely, a screening offer will be worthwhile; this offer will be acceptable to the buyer

if therent is currently high, and unacceptable if the rent islow. Each offer that the seller makes must
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leave either the high or low buyer type indifferent between acceptance and rejection. If thiswere not so,
the offer could be improved, from the seller’s point of view, without changing the buyer's decision. A
screening offer is just acceptable to the high type, and unacceptable to the low type. A pooling offer is
just acceptable to the low type, and more than acceptable to the high type.

If the buyer accepts a screening offer, the seller will infer that the rent is high, and so the seller will
screen again when the next contract is negotiated (unless perpetual pooling is optimal). Of course the
buyer knows that acceptance of a screening offer weakens its bargaining position next time, so the offer
must be sufficiently generous to compensate for this. If the buyer rejects a screening offer, on the other
hand, the seller infers that the rent is currently low, and it may then be optimal to make a pooling offer
next time, and perhaps again the time after that, and so on. A key feature of the equilibriumisthe
number of pooling offers, K-1, made by the seller in the sequence of contracts following rejection of a
screening offer.

After rgjection of ascreening offer the seller concludes that the rent is currently low, and the seller
then makes pooling offersin the next K-1 negotiations, followed by a screen in the K™ negotiation. If the
buyer accepts an offer revealing a high rent now, the seller screens again when the next contract comes
up. Thisis sketched in Figure 1, which represents varying degrees of pessimism for the seller. At one
extreme, the seller believes the buyer has alow valuation now with probability p, because there was a
screen in the previous negotiation and the buyer was found to be poor. In this situation the seller pools
now, and pools again in K-1 successive negotiations until the probability of the low type has decayed
past the screening threshold £'. At the other extreme, the seller is most optimistic after the buyer was
found to be rich in the previous negotiation; then the probability of the low state now isonly 1-c.

Cyclic equilibria of this kind have been analyzed by Kennan (1995), and by Rustichini and Villamil
(1996). A nonstrategic version in which buyers are not forward-looking was analyzed by Rustichini and
Wolinsky (1995). The model considered in Kennan (1995) is more general than the model in this paper,
in that the seller makes a sequence of offers within each contract negotiation. Thisleadsto
complications that precluded a full characterization of equilibrium, although numerical examples were
computed. Aswill be seen below, reducing the problem by allowing only one offer per contract leadsto
much sharper results, without making things so simple as to be uninteresting. Rustichini and Villamil
a so assumed one offer per contract, and, in addition, they restricted the Markov chain to be symmetric
(p=c). Their main result was that cyclic equilibriaexist if the degree of persistence is sufficiently high
(i.e.if o iscloseto 1). Thisispuzzling since Hart and Tirole (1988) had previously shown (for discount

factors exceeding .5) that only pooling equilibria survive in the limiting case when the buyer’s valuation



is permanent (p=oc=p=1). But these results are in fact consistent, because the Rustichini and Villamil

equilibrium is aweak Perfect Bayesian equilibrium, in which the seller has strange beliefs off the

equilibrium path (beliefs that are not consistent with the approximating sequence of completely mixed

strategies and Bayesian beliefs used to claim that the equilibrium is a sequential equilibrium). This paper

indicates that once the seller’s beliefs are straightened out, cyclic equilibria are incompatible with
complete persistence of the high valuation, because a seller who is virtually certain that the buyer’s
current valuation is high will not change this belief just because a single screening offer has been
rejected. Instead, as in the standard static bargaining model with permanent valuations, a long sequence

of rejected screening offers is needed to overcome the seller’s initial optimism.

Screen Pool
< > <« >
< P >
1-6 u p(K) - p

Figure 1: The Screening and Pooling Cycle

Actionsand Strategies
The bargaining game is now laid out formally. The buyer's informational advantage is represented

by introducing a fictional player called nature whose actions are seen by the buyer but not by the seller.

Nature's Actions



Each period, nature chooses 0 or 1.
The Seller’s Actions

Each period, the seller’s set of feasible actions (i.e prices) isthereal line.
The Buyer’s Actions

Each period, the buyer’s set of feasible actions (i.e. quantities) is{0,1}.

History

The history of the game, at the beginning of period t, isin three parts:
The sequence of actions chosen by natureis n'={n,n,,...n}
The sequence of actions chosen by the seller is P ={pPy,Ps---P
The sequence of actions chosen by the buyer is g ={q,0,-.-9}

The seller’s history (i.e. the history available to the seller) is h?={p*,q™"}
The buyer’s history is h,={p\q~,n}

Feasible Strategies

Nature's strategy is aMarkov chain, with transition matrix A given by
p1-p
l6 o

That is, n,= 1 with probability 1-p+¢n,,, where ¢ = o+p-1, and n, = 0 with probability p-on,,. Itis

A:

assumed that ¢ is nonnegative.

A feasible strategy for the seller in period t is a function from h? to the set of probability distributions
onthereal line. The sdller’s strategy set isthe set of sequences of such functions.

A feasible strategy for the buyer in period t is afunction from h, to the interval [0,1] (specifying the
probability that g,= 1). The buyer’s strategy set is the set of sequences of such functions.

Payoffs
The seller’s payoff in period t is g, p,.
The buyer’s payoff in period t is g, (n,+6 - p). That is, the buyer's valuation is high (v = 1+6) when

n=1,andlow (v=06) whenn=0.



Both the seller and the buyer maximize the expected present value of future payoffs, using the
common discount factor A. The buyer’s expectationsin period t are based directly on n,, while the seller’s

expectations are based on beliefs about n,, represented by a variable ; denoting the probability that n,= 0.

3. Cyclic Pricing

Starting from any point in the game, the expected future payoffs for any given sequence of prices and
quantities depend only on the current state of nature, n,. Following Maskin and Tirole (1994), itis
natural to consider equilibriain which the strategies depend on the history of the game only to the extent
that it affects the seller’s beliefs about n.. The main resultsin this paper deal with equilibriathat
approximately satisfy this criterion. Such equilibriainvolve cyclesin which the seller periodically makes
screening offers, with afinite sequence of pooling offers after any offer isrejected. The seller’s strategy
is based on abelief ¢ about the current state of nature, in relation to a threshold belief, labeled £, such
that the seller makes screening offers whenever the probability of the low valuation falls below the
threshold, and pooling offers otherwise. The central analytical task isto determine £’ from the basic
parameters (0,p,6,A). A cyclic equilibrium exists only if £ lies above the invariant probability u, so that
although the seller might not be optimistic enough to make a screening offer immediately after inferring
that the buyer's valuation was low last time, repeated pooling offers eventually lead to screening. If
instead" lies below y, then in the long run the seller makes only pooling offers in equilibrium: this is

discussed in Section 5 below.

The State Variable

The obvious state variable for this game is the paij ¢mnsisting of nature's current action, and the
seller's best estimate of this action. This yields strategies for the seller that are step functions, and it is
more convenient to simply use the steps as the state variable. This is done as follows. Given that the
threshold." lies above the stationary belief y, let K be the number of transitions needed tolubives

¢, starting from a belief that the current state is low. Define the funetamn
k(C") = kif p(k) < <pk-1) , k=1,2,..,
wherep(=) = . Then K =¢({’). Fors=0,1,...,K-1 define
C'(8) = u+o>(C -1

Note thatp(K) < £'(0) = { < p(K-1), and that



p(K-9) < £'(s) < p(K-s-1)

In particular, {'(K-2) < p < £ (K-1). Definel, asthe half-open interval [1-6,(’), I as the open interval

(€ (s1),£(9), fors=1,2,....K-2, and I, asthe half-open interval ({'(K-2),p]. Thentheintervals
{1osl1seeesl gl sl 1}, together with the set of endpoints{£'(s): s=0,1,...,K-2}, partition the interval
[1-6,p].°> This partition will be used to define a state variable, t, that governs the buyer’s and the seller’s
strategies. Heuristically, tisthe number of pooling offers left before the next screening offer. The
interpretation isthat © summarizes a calculation that uses the strategies and the history of the game to
keep track of the seller’'s beliefs. When this calculation puts  in the interval |, the stateist =s. When
{=C(9), the state ist = s+&, for some number & in the unit interval, meaning that there is an immediate
randomization that setst = s+1 with probability &, and t = swith probability 1-&. Thusas( increases
from 1-c to p, t increases from 0 to K (where K isreached only if p(K) coincideswith £, and ¢ = p, with

&=1). Thisconstruction isillustrated in Figure 2.

*More precisely, |, is the half-open interval unless p(K) coincides with {; in this case p coincides with
{'(K-1), and I, , isthe open interval (p(2),p), and the partition includes the K endpoints { p(K),...p}.
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Beliefs and States

K
State K-1 €
T+2
t+1 &
T JE
2 <l ko > < a7~
1
< IO > 1« Il >
: ﬁ p(K) X p(!K-l)*e *e p(K!-l-g) * p?Z)* * ; X 6
1o g () v @+ C(K-2) C(K-1)
Belief
Figure2

Cyclic Strategies

The strategies used in acyclic equilibrium will be defined in terms of the buyer’s reservation prices,
where P,(t,,t,) denotes the reservation price for a buyer of type n, if arejected offer implies continuation
from 1, and an accepted offer implies continuation fromt;. An explicit representation of the buyer’'s

reservation price function will be derived below, but an abstract definition is enough for the moment.
Definition:

A cyclic price systemisapair of functions Py(t,,1,) and P;(z,,t,), defined for integer values of 7, and

1, between 0 and K, with the following properties:
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(i) P.(to1,) isdecreasingin t,, and increasing in t,, for n=0,1;
(i) 0<Py(K,K) < P,(K,0)

It will be useful to have an abbreviated notation for some of these prices. First extend the notation by
defining P,(t+A,1,) = (1-A)P.(t,1;) + AP,(t+1,1;) for X in [0,1]. Then for agiven cyclic price system define
the screening price as p, = P,(K-1+4,0). Also define the pooling pricesas p,(t) = Py(K-1+A,1,) , where
1, = max(z-1,0). Therelevance of i hereisthat thereisanontrivia region of the parameter spacein
which equilibrium requires acycle lasting more than K-1 periods but less than K periods, whichis

achieved by randomization, but in the standard case A can be set to zero and ignored.

Definition: A cyclic threshold strategy for the seller maps the state to the current price in each period,
using a cyclic price system, as follows:
ift>1 then p= p.(r)
ift=0 then p= py

Definition: A cyclic threshold strategy for the buyer maps the state and the current price to the current

quantity in each period, using a cyclic price system, as follows:

Forn=0:

ifp< p(v) then g = 1 (pooled acceptance)

if p>p.(z) then g = 0 (low buyer rejects above the pooling price)
Forn=1:

if p< Py(K-1,0) theng=1

if p>P;(7-1,0) then g = 0 (pooled rejection if pisvery high)

if P,(st1,0) <p < Py(s0), wheret-1 < s< K-2 thenqisrandom:
g = 1 with probability v, and q = 0 with probability 1-v,

where
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and 6; is the buyer’s assessment of the seller’s current belief, which is computed by applying the seller’'s
belief system to the seller’s history. The seller’s belief system, which will be spelled out later, implies

thaté < {'(s+1)< 1, so the probability is well-definec’

146 P,(t-1,0)
Reject (q=0)
P,(z,0) \
T,=T'
Py 7,=0
T,=K-1+A °g
t,=0
o
I
— pu(?)
K
T,=1-1
\ \ A \
0 1 -1 T T T =s+§& K-1 K-1+A K

Figure 3: Randomization by the high-valuation Buyer

Figure 3 shows part of the buyer's strategy, covering the situation that arises when the current
valuation is high and the seller names a price above the screening,price p . This requires randomization
by the buyer, because if all buyers would reject such a price, rejection would dearéménin which

case acceptance would be more attractive for the high buyer; but if all high buyers would accept such a

®The reader who is keeping track of A might wonder why prices slightly above p,, are accepted by the
high-valuation buyer, and, if they are accepted, why the seller would offer p,, instead of P,(K-1,0). The answer isin
two parts. First, optimality of the seller’s behavior is checked in Section 4 below, where the condition that governs
this particular deviation by the seller islabeled P,. Second, examples can be found in which this condition fails,
and in that case an equilibrium can be constructed in which the seller offers P,(K-1,0) when { = 1-c.
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price, then rejection would restart the pooling sequence, and this would be more attractive to the high

buyer.’

Definition: A cyclic updating rule uses the buyer’s actions g to determine the nextstate follows:
ifg=0, them'=K-1+p
ifq=1, them'=maxg-1,0)
where O< A < 1, and the notatioti = K-1+A meang' = K with probabilityx, andz' = K-1 with
probability 1.

Cyclic Pricing Processes
A matched pair of cyclic threshold strategies for the seller and the buyer, together with a cyclic

updating rule, determine a renewal process for the state variable

Definition: A cyclic pricing processis a pair of cyclic pricing strategies (for the seller and the buyer),
using the same cyclic price system, together with a cyclic updating rule, such that the strategies

and the updating rule all use the same values of k.and

A cyclic pricing process gives a complete description of how the game will evolve from any given values

of the buyer's valuation n and the state variabithe players follow their prescribed strategies. First

the seller's strategy gives p as a functiom, dfien the buyer's strategy gives q as a functiom,ofp),

then the updating rule determines the next state as a function of g, and the process continues. In addition,
the updating rule determines the next state if the buyer rejects the current offer, even if the buyer's
strategy prescribes acceptance. Note that the updating rule pays no attention to prices, because prices
that are consistent with the seller's strategy are rejected (according to the buyer's strategy) if n = 0 and

1 =0, and accepted otherwise. Thus the updating rule determines the players' continuation values from

"See Maskin and Tirole (1994) for atwo-period version of this argument. Rustichini and Villamil (1996)
specify that both buyer types reject prices above p,, but the seller nevertheless infers that the buyer’s valuation is
low if this situation arises. Thisis consistent with weak Perfect Bayesian equilibrium only because the situation
does not arise on the equilibrium path. Given any completely mixed strategy for the seller that approximates the
equilibrium strategy, the correct Bayesian inference is that rejection of a price above p,, conveys no information,
since the buyer’s equilibrium strategy rejects such prices unconditionally. Thus the Rustichini-Villamil equilibrium
is not a sequential equilibrium.
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any state, for given cyclic pricing strategies. It also determines the continuation valuesiif the buyer

deviates, but the continuation after deviations by the seller isleft open for the moment.

Equilibrium Continuation Values

Let U, (1) and U,(t) denote the seller’s continuation values from state T, where U, appliesif the
buyer’s current valuation is low, and Uy, if it is high; and let g(t) be the difference between these. Denote
the corresponding values for the buyer as V| (z), V4(t) and d(t), and the joint continuation values
(J=U+V) as J (1), Ju(z) and j(t). These can al be computed by first determining the joint values, and
then the buyer’s continuation values, yielding the seller’s continuation values as aresidual .

Consider first the joint continuation value from state T when the buyer’s current valuation is low.
Thisisthe present value of 1 periods paying 6 if the buyer’s valuation islow, and 1+6 if the valuation is

high, plus the continuation value from a screening offer after T periods. Thus

-1

J(@ = 2; AT0+1-p(9)] + A3 (0) +[1-p(1)] (0)]

If the state is T and the buyer’s current valuation is high, the joint continuation value is as above, but with
o(9) in place of 1-p(s). Notethat o(s)+p(s)-1 = ¢°. Thisyields

j(M = 1+Bj(r-1)

where 3 is adiscounted persistence parameter defined asf3 = Ap. Thejoint continuation values from
accepted and rejected screening offers are given by

3,.(0) = (1-1)J (K) +1J (K+1) -0

34(0) = 3,(0)+j(0) = 1+0+A[J_(0) +0j(0)]

Define the discounted present value sums D, B and R as

-1
1-AF
D(q) = AN
() g A
-1
1-fF
B(x) = ) PB° -
%" T
-1 -1

R@ = X A%(9 = X Adu-(1-0)e’] - 1D+ (1-WB()

Il
o
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Then

D(1) (1+0) - R(1) + [1-D(1) (1-4) ]9, (0) +[(1-P)R(x) - (1-Ac) D(1) ](0)
= J(0)+R@[(1-P)j(0) - 1]

(@)

where the second equality uses the above equation for J,(0). Then the equationsfor J, (0) and J,(0) can
be written as
J.0) = I (K1) -0 = J,(0) +R(K+1)[(1-P)j(0) -1] -
(1-A)J,(0) = 1+6-(1-A0)j(0)

and these can be solved for J (0) and j(0):

. 1+r6
O =
i) 1-p
1+6-(1-Ac) 11*j6
0) = T

wherer = UR(K+4). Finaly,

i(®) = B(1) +f(0)
j(0)-B(r)ro

This gives a compl ete description of how the joint continuation values are determined from the basic

parameters (6,A,p,c), for arbitrary values of K and &. The derivation uses the strategies only to verify
that the equilibrium is acycle of pooling and screening offers: accepted screening offers are repeated

until there is arejection, then there is a sequence of K-1+) accepted pooling offers, followed by a

sequence of screening offersand so on. The joint values are summarized in the top panel of Table 1.
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Table1: Value Functions

Low High Difference
3,9 - L2L2IO) 3, - -0 9O -2
Joint
+R(7)ro +[R(r)-B(z)]r6 j(®) =j(0) - r6B(7)
1-b
_1-p __o-p dO) = T
V, = d(0 V(1) = d(0) +B(x)b 1-B
e T @ d(x) = d(0) +bB(x)
1+0-(1-Ac)g(0) —%[1—b] 1+0-A(1-0)g(0) —%[1—b] 9(0) - b+ro
U (o) - A Up(r) = A 1-p
+ R(1)ro +R(z)r0-B(z)[b+r 0] g(r) =9(0) -[b+r6] B()
Seller
U =11 - (‘;82)) -9 g0) -¢g0) +R@ro- (1-0BE[b+ro]
R(K,A) = uD(K) + (1-u)B(KA)
D(K ) - 1-AK(1-1+AA) BK.2) - 1-BX(1-L+AB)
1-A 1-B
Notation

u=(1o)/(1p) b=1/B(KA), r=1/R(K}), B()=B(z,0), Rt)=R(z,0)
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Cyclic Prices, and Continuation Values for the Buyer
The next step isto consider prices that are tight in the sense that the low buyer isindifferent between
accepting or rejecting each pooling offer, and the high buyer isindifferent between accepting and

rejecting each screening offer.

Definition: acyclic pricing processistight if the buyer’s continuation value does not depend on g, when

ethern=1andt=0,orn=0and t > 0.

If the price system is tight, the differences d(t) between the high and low buyer’s continuation values
from state t can be computed without knowing the prices, by considering what happens when screening
offers are rejected and pooling offers are accepted, by both buyer types. The low buyer’s continuation
values can be computed as the value of a strategy that sets g = n. These continuation values can then be
used to determine tight prices. The results of this calculation are given in the following lemma (the proof

isin the Appendix, along with other proofs).

LemmaB1:
Suppose that the strategies constitute atight cyclic price system. The buyer’s continuation values
satisfy

_1-p 1-b

V (1) =

L) @
dw = 2PP _ 40) « B

1-p

where b = /B(K+4).

The low buyer’s continuation value does not depend on t, because any rejected offer implies
v'=K-1+X next time, and tight pricing means that the low buyer’s value is the value of rejecting. In any
case, the low buyer is not worth anything unless A is positive, and there is some chance of making a
transition to the high valuation in the future.

Another noteworthy feature of the buyer’s value function is that changesin 6 have no effect, for given

values of K and A: changesin 6 are absorbed entirely by the seller. Thisisalocal result, however, since



although K isfixed with respect to marginal changesin 6, the screening threshold is not, as will be shown
below.

Prices

The buyer’s value function immediately yields an explicit version of the reservation price function
used to construct the equilibrium strategies. Recall that P,(z,,t,) represents the highest price that a buyer
of type n would accept, if rejection implies continuation from z,, and acceptance implies continuation

fromt,. Thus
ALV (1) +(1-p)d(zy)] +nPd(zy) = n+6-P (15,7 +A[V, (z)) +(1-p)d(r;)] +nPd(ry)
where the left side is the value of rejecting, and the right side is the value of accepting. So
Pa(tet) = n+6-[A(1-p) +np]b[B(ty) - B(ry)]
This formula satisfies the monotonicity requirements used in defining a cyclic price system.® The
screening priceis

o BK-1+2)

=1+0-A
P = 27 B(K-%)

Thus the screening priceis the high valuation if K=1 and A is zero, but in general the screening price lies
below thislevel.
The partial screening prices used in the buyer’s strategy are given by

B(7)
B(K+A)

P,(x,0) = 1+6-Ac

The pooling prices are determined by the difference, as seen by the low buyer type, between
continuation from 1, following rejection, or from 1-1 following acceptance. Thus

B(K-1+%) - B(t-1)

U = 0-ALp) S

8Note that Py(K K) =6, and P,(K,0) =6 +1-Ac >0

B(K)
B(K+2)
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with the convention that B(-1) = 0.

An interesting aspect of the price system isthat the pooling prices are below the low valuation 6.
Thisis because the buyer has the option of rejecting any offer, and rejection means that the pooling
sequence will be re-started. This option is worth something because even if the buyer’s current valuation
islow there is the prospect of making transitions to the high valuation while the pooling sequenceisin
progress. The result is that the pooling price has to be smaller than 6 in order to cover the option value
associated with restarting the pooling sequence. Moreover, for T > 2, the surplus yielded to the low buyer
type increases as the pooling sequence comes closer to the end, because the buyer is more tempted to

push the restart button when screening is imminent.

The Seller’s Beliefs

The seller's belief system is a sequence of functions, {\V}, that determine the probability of the low
state as a function of the history of the game. The state variable 7, which governs the buyer’s and the
seller’s strategies, implicitly uses W, to locate the seller’s current belief inside an interval I, or at an
endpoint £ (S). The belief system and the state are defined sequentially. In thefirst period thereis no
history, {, isthe seller’s prior belief that the buyer'sinitial valuation islow, andt = S, where {, ¢ I or
L = (S). Thereafter if { =W, ,(h.,) summarizes the history of the game as of the beginning of period t,
and t is the state, then the corresponding values at the beginning of period t+1 will be determined from ¢,

7 and the price and quantity in period t, according to the following definition:

Definition:
A cyclic belief system uses a cyclic price system and the current actions (p,q) to map the current

values of { and t to new values (' and 7', as follows:

(8 Wheng=0:
if p < py then ¢’ = p, and v’ = K-1+4
if p=P,(s+£,0), 1-1 < S+& < K-1+2, then ' = (9), and 7’ = s+&°
if p>P,(1-1,0) then 0’ = ol+(1-9)u,  andc' = maxg-1,-1)

*Heresisaninteger,and 0 < & < 1.
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(b) When g = 1:
ifp<p(v) then £’ = ol+(1-@)u andt' = maxg-1,0)
if p>p @) then( = 1o, andt' =0

The update when the buyer rejects a price abgve p is illustrated in Figure 3 above.

The Seller’s Continuation Values

A seller using acyclic belief system infersthat the buyer’s current valuation is high if a screening
offer py isaccepted, and infers the low valuation if p, isrejected. Thusthe seller’s and the buyer’s
expectations are identical after the buyer has responded to a screening offer, and the seller’s continuation
values can be obtained as the difference between the joint values and the buyer’'s values.’® The results of
these calculations are given in Table 1. Before the buyer respondsto an offer the seller does not know
the current valuation, so the seller’s expected continuation value at the point of making a screening offer

is aweighted average of the state-contingent values in Table 1, with weights determined by ;.

4. Equilibrium

So far, everything rests on the presumption that there is athreshold belief £ governing the seller’s
choi ce between screening and pooling offers. This threshold determines K, the length of the pooling
cycle, which in turn determines the continuation values for the buyer and the seller. In particular, the
seller’s payoffs from screening and pooling are ultimately determined by the value of  used in the
buyer’'s and seller’s strategies. So there must be a fixed point: using {” to determine the strategies, and
computing the seller’s payoffs from screening and pooling as the seller’'s belief € varies, it must be that
screening and pooling yield the same continuation value for the seller when { = (.

Let u[p,n,7] be the seller's expected continuation value if the price p is offered when the statelis

the buyer’s valuation is n. For amythe value of a screening offer is
u[py.n,t] = U (0) +ng(0)

Fort > 1, the value of a pooling offer is

A lternatively, the seller’s value function can be computed directly from the equilibrium pooling and screening
prices, using the cyclic updating rule, following the method used above to obtain the joint values. This alternative
procedure must be used in the more general setting where the buyer and the seller have different discount factors
(e.g. the extreme case where one side of the market is nonstrategic), because in this case the joint values are
assessed differently by the two players.
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ulp.(),n,7] = U () +ng(r)

Thusfor t > 1, the value of n that would make the seller indifferent between pooling and screening is

given by

. U.(1) -U(0)
" 90)-g()
___R@mro

B(t)[b+r0]

Recall that a cyclic pricing process governed by (£',1) includes an updating rule that determines the
continuation from any given values of t and q. Thisruleimpliesthat if the seller were to make a pooling
offer when t = 0, the continuation would be identical to the continuation from a pooling offer at t = 1,
namely ' = 0 if the offer is accepted, and v’ = K-1+x if it isrgjected. Thusthe seller would be indifferent

between pooling and screening if n = n;, so the screening threshold is 1-n;, which can be written as

where the increasing function G(k) is defined as R(k)/B(k). These computations are summarized in
Figure 4. Notethat n’ > n;, since R(t) > B(t), implying that when { > ', the seller’'s equilibrium

continuation value in stateexceeds the value of deviating to a screening offer.
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u[p(v).C.7]

u[p.(0),6,0]

$

g ¢
Figure 4: The Screening Threshold

Mapping the Parameters to the Equilibrium Strategies

The above formula does not give a closed-form expression for £, because K dependson {’, and % is
unspecified. Moreover the formulaisvalid only if £ > p. A closed-form expression can be constructed,
however. Define the functiah mapping the basic parametedg(c,A) to the (possibly randomized)

screening threshold (1) as follows

( L ,o) if G p(k-1) < 0 < GK)p(K)
(C*J\‘) _ l+%
(p0A)  if GRIPK <0< GkLRK < 0,

, k=1,2,3,.

where
—n _ 1-p(K)
Ky = = PW&
p(K) 0
_RK _,,,/D®_
GM - B 1 “{ B(K) 1}
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o - 1-Ac 1y
K

h 1-A

and 4, is defined as the solution of the equation G(k+4,) p (K) =9, i.e.

_ BR[0-GRp®)]
A1-p(R)]-B*0

Each component of the functi@ntakes values in the unit interval. Ttiecomponent is continuous and
monotonically decreasing th(although it generally has an infinite number of flat segments).AThe
component increases from 0 to 10dacreases from G(k)(k) to G(k+1) (k). ForA = 0 the function
collapses td" = 1/(140), with 2=0. Finally, the domain of the function is restricted by the condition
0 < 0., which ensures thdt > 1. 1f 8 exceeds this bound there is no cyclic equilibrium, because

screening is too expensive: this is discussed in the next section.

Definition: An optimal screening cycleis a pair of cyclic threshold strategies, governed by the same

values of.” andx, such that

() €A = Z(0,p,0,4)

and

(ii) 140 _O[R9-BO]l_ Bl _ o - BO |, (P)
(9 RK+W)C(9 BEKWC (@A-0)¢| BK+)

for 1 < s< K, where K =({’) and{' (K) = 1."

Condition (i) immediately implies that if an optimal screening cycle exists, it is unique. The role of the
inequalities in (P ) is to ensure that the seller cannot gain by setting a price above the screening price, that

is, by deviating to a partial screening offer. This is discussed further below.

Mt = p(K), then {'(K) = 1, and otherwise {’(K) = 1 just a convention.
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Examples

A basic example of an optimal screening cycle of length 2 islaid out in Table 2. When K =2 and
A =0, the only condition that needs to be checked is P, (since P, holds with equality when A=0). This
condition indeed holds in the example (although it fails for slightly smaller values of 6, such as4/9). The
equilibrium price-quantity pairs are generated by a Markov chain with three states: (255,1), (768,0) and
(768,1). Thelow priceisaways followed by the high price, and the high priceisrepeated if q =1, and
otherwise the high priceis followed by the low price.

Table2: An Optimal Screening Cycle

Parameters Equilibrium
0=%, A=, p=%0=% (=2 3=0,K=2
u:l/z,(P:J/z 52 -
Py 13090 >0

Continuation Vaues®

Joint Buyer Seller Belief Prices

bState J.(2) Ju(z) \A V(1) UL(z) Un(t) U(z) () Pr: PL(2)

=0 6,528 103,632 | 2,240 6,160 | 4,288 97,472 74,176 2 re8
8 544
=0 6,528 103,632 | 2,240 6,160 | 4,288 97,472 39,232 5 68
8 544
=1 35,088 103,632 | 2,240 64,960 | 32,848 38,672 34,304 s 25
8 544

4Continuation values are scaled up by the factor 62,475 (in order to provide exact results that
can easily be compared across states).

*The two rows with ¢ = 0 differ only in the seller’s beliefs: the first is reached after a
successful screening offer, and the second is reached after a pooling offer.
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Random Screening
An equilibrium with random screening is shown in Figure 5, which plots the function Z over the

relevant range, with parameter values (6,p,6,A) = (5/34,41/44,7/22,1/2). The plot shows the piecewise-

linear function
1.1 ¢ . :
% G0 1o rho =41/44, sigma="7/22, Delta= 1/2
1 This function jumps at an inconvenient 7
spot, which iswhy randomization by the seller is needed r_,_/_,—/_'

in equilibrium. The equilibrium screening threshold in
thisexampleis £’ = p(3) =641/704, with  =.10889. That

is, any rejected offer is followed by two pooling offers,

GG

and then another pooling offer with probability A or a B

screening offer with probability 1-A. The example
5.2

satisfies the conditions of Proposition E1 below (P,

evaluates to .0656, and P, _, evaluates to

79/1320 < 120/1320). The screening priceis

p, = .988214, and the first partial screening priceis
P,(K-1,0) =.988244.

G410 1005 1001 10.15 102 1025

-I_:igure 5: Random Screening Equilibrium

An Example Showing the Effects of Limited Commitment

A surprising feature of the equilibrium in some examplesis that the presence of the high buyer type
makes the seller worse off ex ante. A seller who could commit to pooling offersin every period would
be worth 6/(1-A), while in an optimal screening cycle the seller may be worth much less. An extreme
exampleis shown in Table 3, using a discount factor closeto 1. This may be interpreted as alimiting
case in which both the sdller’s offers and the Markov chain transitions are made in rapid succession, with

the result that the degree of persistenceis negligiblein real time.
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Table 3: An Example of the Effect of Limited Commitment

Parameters Equilibrium
6=8/5 A=.9999, p=3/4, =34 ¢ =.528, A=0, K=5
pH=12, o¢=1/2 P,:.795>0
1 _ 16
Lt < -
P R R

Continuation Values

Joint Buyer Seller Beliefs | Prices

State | J (@) 34 @) Vi V(1) UL(z) Un(t) U(z) @ | P
p.(7)

=0 | 18,691.85 18,694.77 | 4,837.79 4,838.76 | 13,854.06 13,856.01 13,855.52 16 1.87

7=0 | 18,691.85 18,694.77 | 4,837.79 4,838.76 | 13,854.06 13,856.01 13,855.00 33 1.87
t=1 | 18,692.31 18,694.77 | 4,837.79 4,839.28 | 13,854.52 13,855.49 13,854.97 34 1.13
t=2 | 18,692.65 18,694.88 | 4,837.79 4,839.53 | 13,854.86 13,855.35 13,855.07 36 1.38

=3 | 18,692.94 18,695.06 | 4,837.79 4,839.66 | 13,855.15 13,855.40 13,855.24 40 1.51

=4 | 18,693.20 18,695.26 | 4,837.79 4,839.73 | 13,855.41 13,855.53 13,855.44 48 1.57

Probabilities are scaled up by the factor 64

Coase (1972) conjectured that a seller who could not commit to hold the line on prices for any
appreciable length of time would be forced to sell at the lowest demand price in the market. Here the
seller does even worse than in the Coase conjecture: the highest value achieved by the seller is 13,856.01,

as compared with 16,000 for a seller who faces the low-valuation buyer féf sure.

Existence of Equilibrium
Existence of an optimal screening cycle is established by the following two propositions, for a non-
trivial region of the parameter space. The first result provides a simplified test of whether an optimal

screening cycle exists for given parameter values.

2Gimilar results can be shown for moderate values of the discount factor (e.g. A = %, withe = 1, and
p =c =5/8).
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Proposition E1
Suppose ({',1) = Z(9,p,0,A) and the following two conditions hold

146 b _o(-b) 0

cm ¢ Qoe ")
and

K-1 ) _ < 1- P

¢ (1-0)¢ U} H (Px-0)

Then the cyclic screening strategies governed by (£',4) constitute an optimal screening cycle. Moreover,

if & ¢(6,0.), an optimal screening cycle also exists at Z(6',p,6,A).

Proposition E2
Suppose the parameters p, o and A satisfy the inequality
1-p c

1-p
+ > -
Alo) 1A 1¢ °© (P.)

Then there is a number 6, such that for any 6 € (6,,6.) an optimal screening cycle exists.

Propositions E1 and E2 are proved in the appendix.”®* Note that the inequality P, , must hold if K is

large, but it cannot hold unlessK > 3. Infact, if K = 2 theinequality can be written as

(¢

<1-p(l-9) =0
1-o0

which isimpossibleif ¢ is positive.

The main result of the paper isthe following:

Theorem 1:

The labels on the inequalities in Propositions E1 and E2 do not quite match the label P, used in the definition
of an optimal screening cycle: although P, isjust arearrangement of P, with s=1, P, is stronger than P, with s=K-1,
and P_ isarearrangement of P, with s=1 and K=c.
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An optimal screening cycleisasequential equilibrium.

The proof isgiven in aseries of Lemmas below. The function Z defines the screening threshold ¢ and
the randomi zation probability A for any given parameter vector (6,p,6,A). The buyer’'s and seller’s cyclic
screening strategies are fully determined by (0,p,5,A) and ({',1), so there is awell-defined mapping from
the basic parameters to the equilibrium strategies. The updating rule is pinned down by the assumption
that the continuation after a rejected pooling offer is the same as the continuation after arejected
screening offer. The main difficulty in establishing equilibrium is that the seller’s strategy (constructed
in the manner just described) is generally not optimal if the inequality P, fails, or if 6 issmall.

Although an optimal screening cycle is not a Markov equilibrium with respect to payoff-relevant
information, it is nearly so. The only defect isthat if the seller deviates to a price above the screening
price, the continuation depends on what this deviant price was, until the slate is wiped clean at the end of
the current pooling cycle. Thiskind of defect seemsinevitable in bargaining models with a finite number

of types.*

Optimality of the Buyer’s Strategy

Given the current state t and the current price p, the buyer’s strategy uses the cyclic belief system to
predict the next state t,, meaning t, following rejection and t, following acceptance of the seller’s offer
(where T, may be random). Then p is compared with the reservation price P, (z,,7,). Itiseasy to show,

using the buyer’s equilibrium continuation values, that no profitable (one-period) deviation is available.

Lemma B2

Given the cyclic belief system, the buyer’s strategy is optimal.

Proof:

Let V ,(t) be the continuation value of atype-n buyer choosing g=0 or g=1. Then

Vi@ = aln+0-p] +AE,[V, (r) +(1-p)dlr,) + nedl(x,)]

1See the discussion in Maskin and Tirole (1994), for example.
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Given 1, and 1,, V (1) does not depend on p, while V ,(t) is decreasing in p, SO areservation price
strategy isoptimal. All that needs to be shown is that the buyer’s strategy uses the correct prediction of 1,

and 7,, for any given values of T and p. Thisistrue by construction.

Optimality of the Seller’s Strategy

According to the buyer’s strategy, all prices below the current pooling price p, () are acceptable, and
according to the seller’s belief system, all such acceptances are uninformative, and thus imply the same
stochastic process for future payoffs. Therefore all prices below p,(z) are dominated by p, (t) from the
seller’s point of view. At the other extreme, all prices above P,(z-1,0) are rejected, with no effect on the
seller's beliefs, so these prices are dominated by the pooling price, which yields the same future payoffs,
plus some current profit. Any priceintheinterval (p (t),py] is rejected by the low buyer and accepted by
the high buyer. Again, these pricesimply the same future payoffs for the seller, so the pricesin this
interval are al dominated by p,,.

Thus the only relevant one-period deviations for the seller involve exchanging the pooling price p,(z)
and the screening price py, or else charging a price above p, and below P,(z-1,0). If any profitable
deviation existed it would be dominated by one of these, so if none of these is profitable the seller's
strategy is optimal.

In equilibrium, the seller’s belieffalls below( whenz = 0, and it follows from the definition gf
that the seller cannot gain by deviating to p (0) in this situation. Convetselywhent >0, and as

was pointed out above, the seller cannot gain by deviating to p in this situation, bécanse n

Partial Screening

It remains to be shown that the seller cannot gain by deviating to a price above the screenipg price p ,
with the implication that screening is incomplete. Recall that the definition of an optimal screening cycle
includes the inequalities (P ) which are supposed to ensure that partial screening offers are not profitable.

Lemma S1 shows how this works.

Lemma S1:

If the inequalities (P ) hold, and if, R,Q) > p > R, , then u[g,7] < u[p, &.1], for all 7.

The following lemma verifies that the seller's beliefs are consistent with Bayesian updating in an

optimal screening cycle. Here, following Kreps and Wilson (1982), consistency includes the requirement
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that the seller’s belief when a pooling offer is rejected can be rationalized as a Bayesian inference for a

neighborhood of fully mixed buyer strategies around the equilibrium strategy.

Lemma S2:
Given acyclic pricing process determined by ', the cyclic belief system determined by (" is
consistent.

5. Alternative Equilibria

A key assumption in the above analysis of optimal screening cyclesis that rejection of a pooling
offer would lead the seller to believe that the buyer’s current valuation islow. Thisisreasonable, since
the buyer would be indifferent in this case, whereas a high-valuation buyer who rejects a pooling offer
leaves money on the table.®> On the other hand, another equally reasonable seller might take the view
that rejection of a pooling offer invalidates all previously held beliefs, since these beliefsimplied that the
offer would certainly not be rejected, and yet it was. Then the seller might reboot using the invariant
distribution of the buyer's Markov chain, with { = p ande = 0 (assuming” > ). In general, the seller is
free to believe anything after rejection of a pooling offer, but an arbitrary choice of beliefs would be of
little interest. A leading alternative to the specification used in this paper is to simply treat rejected
pooling offers as if they had been accepted. Rustichini and Villamil (1996) adopted this alternative,
arguing that the buyer might tremble, so that there is a small chance that the buyer would reject an offer
by mistake. Then, if it is also assumed that the chance of a mistake is unrelated to its cost, it makes sense
for the seller to draw no inference from rejection of a pooling offer.

In general, the continuation after a rejected pooling offer can be represented by a transitiofi matrix
which maps the current stat@nd the current actions (p,q) to the next statdhen the cyclic updating

rule is replaced by the following rule:

if p=py and g=0, then' =K-1+
if p=p_.(r) and =0, then'= s with probability7,, s=0,1,2...K
if g=1, thent' = max-1,0)

Thus the equilibrium would pass a test analogous to the Intuitive Criterion for two-period signaling games
proposed by Cho and Kreps (1987).
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The matrix T isonly used to reboot if the equilibrium crashes because a pooling offer isrejected. The
method used above to compute optimal screening cycles can be applied in this more general context as
well. Thejoint values are unchanged, because the equilibrium path is unchanged, but the buyer is
generally worth less. Moreover, the differential between pooling and screening continuation values for
the seller is affected by 7, so the equilibrium screening threshold must be recal cul ated.

Let V, be avector containing the low buyer’s continuation values [V (0),...V (7)...V (K)], and et d
be the corresponding vector containing the differences d(z) between the values for the low and the high
buyer. It iseasy to see from the proof of LemmaB1 above that d is unaffected by changesin 7. Define
7° as the transition matrix obtained when the first row of 7'is replaced by the vector [0,0,...0,1-2,A]. Then

the general formulafor the low buyer’s continuation values can be written as

V. = A@L-p) (I -AT?)* 1Od

The expression for the screening threshold can be generalized as follows:

~ b-yv
T

*

where v, is the amount the low buyer would lose if the seller were to make a pooling offer at t = O:

K
V, = V,(0) - S}; IOS[AVL(S) +A(1-p) d(s)]

which is zero in the basic specification.

Transient Screening Equilibria
Even in the basic case with v,= 0, optimal screening cycles do not provide a compl ete set of
equilibria covering all regions of the parameter space. Optimal screening cyclesexist only if { > p,
which reduces to the conditiéne 0.. If 6 exceeds this bound, there are equilibria Witk pi. Such
equilibria will be called “transient screening equilibria,” because they have the property that a seller who
infers that the buyer’s current valuation is low will never again be optimistic enough to make a screening
offer. A transient screening equilibrium is like an optimal screening cycle witke Kindth one
important difference. In an optimal screening cy€lés defined as the belief that leaves the seller

indifferent between screening and pooling, given that a pooling offer now implies a screening offer next
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time, because {’ is aweighted average of ' and {4, s@' < y. In a transient screening equilibrium, on the
other hand, the same logic implies that if a pooling offer is madetat seller will make pooling offers
in all future periods.

If > 1, the value of a screening offer in a transient screening equilibrium is exactly as it would be
in an optimal screening cycle with Ke= because an accepted screening offer is followed by another
screening offer. Thus for any value of the state varighfehe screening price,p is set when the

buyer's valuation ig8+n, the seller's continuation value is

ulpy,n,z] = U (0) +ng(0)

_ AB o 1+(1—A)9
1-A 1-Ac
The value of a pooling offer is
Wp ()Nl = —
1-A

The screening threshold is obtained by finding the value of g that equates the values of screening

and pooling. This yields

1- A(1l-6)0
c = 1-Ac
1+ (1-A)6
1-Ac

It is not difficult to construct strategies for the buyer and the seller, and a belief system for the seller,
that constitute a transient screening equilibrium governed, Imging the above formula to determifie
from the basic parameters (note thatoes not directly affecf, although a decreasegmmay cause p to

fall below(’, voiding the equilibrium). The details of this construction are omitted.

%The state variable construction has to be redone, because the long run state is in the pooling region. So £'(1)
ishelow (', and {'(2) isbelow (1), and 1-c isin theinterval {'(k+1), {'(K), for somek. If the seller makes a
pooling offer, the state advances toward 1, meaning the long run pooling state. But if the seller wereto make a
pooling offer at { = 1-c, it might be that {' = (1+¢)(1-0) is till in the screening region, so that a pooling offer now
would be followed by a screen next time. This deviation is not profitable.

Also, if { isbetween (1) and £, then any price above the screening price would be rejected for sure, and the
continuation would be pooling from then on. But if { is below {'(1) then a price above p, requires randomization by
the buyer, followed by {’ = (', and t=0 or t=1 with probabilities that depend on how high the price was. Finally,
transient screening equilibria must be checked against the partial screening test.
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Repeated Satic Equilibria

Finaly, if ' does not fall in either the interval [u,1] associated with optimal screening cycles, or the
interval [16,] associated with transient screening equilibria, it can only be in the interval.[0,1-
Equilibria governed by a screening threshold in this interval may be called “unconditional pooling
equilibria,” because even the most optimistic seller chooses the pooling price. In thissoasss the
static problem, equating the value of pooling and screening offers in the current period without regard to
the future, because the future is not affected by what happens in the current period. At the other extreme,
optimal screening cycles with K = 1 may be called “unconditional screening equilibria,” since even the
most pessimistic seller chooses the screening price, andiagathe solution of the static problem,
namely¢ = 1/(140).

Classification of Equilibria
The inequalities placing between p ang can be written as
1-A 1-¢

= < 0O < L = @°
© 1-Ac 1-p 1-p

where® = 10. Also, the conditions for a transient screening equilibrium with<1& < p can be

written as

®t = l-c < 0O < (1_0)(1_[3) = ®t
c(1-Ao) (1-p)(1-Ao)
Finally, the condition for an unconditional pooling equilibrium is

1-o
o

0<0O < = P

These results are illustrated in Figure 6, which shows how the screening threshold vatickowith

particular ordering of the critical values®fdefined above. The most effective diagram plots the

reciprocal o6 against the odds rati¢— , since these are equal in the static case, and otherwise the
1-¢*

relationship between them is either piecewise-linear (in the case of optimal screening cycles) or affine (in

the transient screening case).
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Figure 6 Alternative equilibria (p = 4/5, 6 = %5, A = %3)

Figure 6 indicates that there will generally be either a unique equilibrium, or else three possible
equilibria (at least one of which involves randomization by the seller). These possibilities may be

classified asfollows. First note that

Os@ps®tg®t<m



This partitions the parameter space into four regions. Each region is further divided into three subregions

according to where © liesin relation to ©, and ©°, but two of these regions are empty, because

® _
Ze 14 <1
ot 1
and
OF = 1-o < P _ ®°
c 1-p

The 10 parameter regions are illustrated in Figure 7, for fixed values of 6 and A. In this diagram, any
choice of (p,o) that fallsin one of the five outside regions (those containing a segment with p = 1 or

o = 1) givesaunigque equilibrium, while a choice in one of the five inside regions yields three equilibria.
For example, if (p,c) isin the small triangular region just above the diagonal, there is an unconditional

screening equilibrium, arandomized equilibrium with £ = 1, and a randomized equilibrium withe 1.
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6. Conclusion

This paper analyzes repeated bilateral monopoly with a private stochastic process for the buyer's
valuation. The main results are concerned with cyclic movements of equilibrium prices and quantities
generated by atwo-state Markov chain for the buyer’s valuation. A novel feature of the model is that
pooling offers give the buyer a surplus even in the bad state, because the buyer has the option of refusing.
The sequence of pooling prices driven by the value of this option involves agradual decline while the
seller isin the pooling phase of the equilibrium cycle, and a sudden jump at the end of this phase.

The analysisis based on the idea of Markov-Perfect equilibrium. At any point in the game, the only
information that is relevant for future payoffsis the buyer’s current valuation. The seller's strategy is
driven by abelief about this valuation, using everything that can be inferred from the buyer’s recent
actions in the context of the buyer’s equilibrium strategy. This belief is summarized by a state variable
that counts the number of pooling offers remaining before the seller will be optimistic enough to make
the next screening offer. The buyer’s strategy then uses this state variabl e together with the actual current
valuation. Thisisatractable structure that should be suitable for empirical application: in particular,
explicit solutions are obtained for equilibrium prices and quantities, and for the value functions.

The main limitation of the model is that equilibriain which screening is extended over more than one
contract are ruled out, by excluding a portion of the parameter space in which the cost of an unsuccessful
screening offer isrelatively low. A more general analysis would extend the state variable to count down
the number of rejected offers needed to convince the seller to restart the pooling sequence, as well as the
number of offers remaining in the pooling sequence. From the point of view of application, a more
useful alternative isto relax the assumption that each negotiation involves just one take-it-or-leave-it
offer, instead allowing a sequence of offers that ends when the seller becomes convinced that the current

stateislow.
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Appendix: Proofs

Lemma B1:
For = > 1, if both buyer types accept the pooling price p, (t), the continuation values for the high and
low buyer, and the difference between them, are given by
Vy(1) = 1+6-p (1) +AV (t-1) +Acd(z-1)
V(1) = 0-p.(7) +AV, (t-1) +A(1-p)d(z-1)
d(t) = 1+Bd(t-1)

The continuation after rejection of any pooling offer is the same as the continuation after rejection of a
screening offer. Given that prices are tight, thisimpliesV (z) =V, (0) = V, for = > 0, and
V,0) =AV + Ao [(1—%) d(K-1) +7»d(K)}
V. = AV, + A(1-p)[(1-2)d(K-1) + Ld(K)]
d(0) B [(1-2)d(K-1) +rd(K)]

v, - (1-p)d(0)
¢ (1-4)

Thus the differences d(z) are obtained by solving the set of K+1 linear equations defined by
d(zr) = 1+Bd(z-1) , z=1,2,..K

d(0) = B[(1-1)d(K-1) +1d(K)]
Thisyields
do) - -+ - B
1-B 1-pX@A-A+Ap)
_1-pb
1-B

This compl etes the proof.

Lemma Sl:

Suppose P,(s+1,0) < p < Py(s,0), for some integer s, witht-1 < s < K-1. Then the buyer accepts with
probability g(s), with continuation from £’ = 1-c and 7’ = 0, and rejects with probability 1-g(s), with
continuation from {'={(s) and t'=s+&, where £ is defined by

p = P1(5+(t:>10)

The seller’s current payoff P,(s+£,0) and the expected continuation value from next period on are both
linear in &, soif adeviation to P,(s+&,0) is profitable, a deviation to P,(s,0) or P,(s+1,0) must also be
profitable. Thus& = 0 can be assumed without loss of generality.
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The probability q(s) that a partial screening offer is accepted is such that if the offer isrejected the
seller’s belief next time will be ' =’ (s). This means that after arejection and before the transition from
nto n'the seller'sbelief is ' (s+1). Thus

N

" __ ¢
+1) =
C'(s+1) -a®

and in equilibrium { = ¢.
A partial screening offer is either accepted by the high buyer, or rejected by the high buyer, or
rejected by the low buyer. So

upStl = a©ug+[1-a(9)-Cluy +gu’
= ud - [L-a@1ug - ui]-dlus-u]

Take thetermsin this expression in reverse order. Rejection means continuation from ¢’ = s, and from
the seller’s point of view the difference between n=1 and n=0 in this context is exactly the same as it
would beat t =st+1. So

Uy -u' = g(s+1)

Next if the current valuation is high, the difference between acceptance and rejection isjust the
difference in the joint continuation values, since the high buyer must be indifferent between acceptance
and regjection. Acceptance means continuation from ¢’ = 0 and rejection meanst’' = s, SO

J,,(0) —[JH(s+1) - (1+e)]
= 1+0+[B(s+1) -R(s+1)]ro

us - Uy

Now compare the seller’s continuation value from a screening offer with the value of a partial screen:
Q(s+1) = Uy(0)-¢9(0) ~ulp.Lir]
= -[ud- U@ ]+ [1-a1]us - ul] - [e© - g(s+1)]
Consider the first term here. The joint continuation value is always the same when a screening offer is
accepted, so the first termisjust the difference between partial and full screening offers from the high

buyer's point of view, and for any screening offer the high buyer’'s continuation value is the value of
rejecting the offer. Therefore,

Uy -U,(0) = AV, +Acd(K-1+1) -AV, -Acd(9)

2 11-B(s+1)b]
¢

Note here that
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d(0)
d(s+1)

Bd(K-1+%)
1+Bd(s) = d(0)+B(s+1)b

These results can be summarized as

Q9 = ~Z[1-B9b] + —>—[1+0+[B(S - RS 0] - (BEO[b+r0]

¢ ¢'(s)

Since £ (s) < 1, and B(s) and R(s) areincreasing in s, €(s) isan increasing linear function of ¢, soif itis
positive when { takesits smallest value (which is 1-6) then it is always positive. But the inequality P,is
just Q(s)/C > 0 with { = 1-6. This completes the proof.

PropositionsE1 and E2.

Given the basic parameters (0,p,0,A), the function Z determines { and %, and the function «
determines K, so K and €(s) can be considered as functions of (6,p,s,A): each point in the basic
parameter space implies aunique value of K, and unique values of €(s), for 1 < s < K. In thisappendix,
the parameters p, ¢ and A arefixed, and K and «(s) are considered as functions of 8, using the notation
K(6) and w(s;0).

The proof of E1 uses the following result.
LemmaA: If cispositive, and A and ¢ arein the interval (0,1), then the function f: %t~ defined by

f(9 = ans- ﬁs - (Ag)®

¢
iS quasiconcave.

Proof:

It will be shown that f(s) isincreasing for s< s,, and decreasing for s > s,, where s, is the unique
solution of the equation
c(1-y) log(A)

P e " Tog(a) +logle)

The left side of this equation decreases from « to 0, while the right side increases from yato ~, ass
increases from -« to +e, S0 the equation does indeed have a unigue solution. Also,

f(s) = alog(A)A®+clog(e) ¢ °-log(Ap) (Ag)®

cl-p

= -log(Ag) A®
’ (doy

P°-ya-

The expression in bracketsisdecreasing ins, and itiszero at s='s,. Thus, since log(Ag) is negative, f(9)
isincreasing for s< s,, and decreasing for s > s,.
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Proof of Proposition E1:
According to Lemma S1, the first part of the proposition can be stated as (s) > 0, for 1 < s< K.
Thisisequivaent to w(s) > 0, where

(9 B(K+4)Q3(S)

o - & =

Write {'(s) as 1 4z, where g <'-|. Substituting this im(s) and rearranging terms yields

L1 |[RK+)-uD(] +[L-pE+1)]BK 1) +HEB(S)

C

o(9) =

B(S) - ¢ °%(E+1)B(K+))

+ ¢ °Z)|=E+1 _C_]:‘

where

— (¢
=

" oo

After substituting for D(s) and B(sh(s) can be written in the form
o) = a+a,A%-a, ¢ °-a,f°
where @ and,a are irrelevant constants, and

a, = [ Yo B (1) (1-M1-p])|

0=

%"

The coefficient @ is nonnegative if

This is implied by (R, ):




Since g, is positive, the function w(s)/a, satisfies the conditions of LemmaA, so «(s) is quasiconcave.
The next step isto show that Py, implies w(K) > 0 and o(K-1) > 0. Then (given P,) quasiconcavity
implies o(s) > min[w(1),0(K-1)] > 0, for 1 < s < K-1.

To show that »(K) > 0, write »(K) as

o(K) = kAK[ 1-p —( ° —u) (pK} > 0

¢(1-0)

The bracketed term is clearly nonnegative if P, holds. If ' > p(K) with A=0 then the relevant condition
isw(K-1) > 0. Thiscondition can be written as

_ B(K_l) o K-1 *
K-1) = + 1-0"(K-1
oKD = ! [1-C°(K-1)]

L

! Kl( o _1) AT

’ MK[ ol ( i “) (PK}

Thefirst term is nonnegative, and the term involving A is nonnegative if P, ; holds, so it is enough to
show that the remainder is nonnegative. But p(K-1) > ', so thisisaso implied by P ;:

1 K-1 G K-1 o
K-1)|=-11- -1 > 1-p(K-1) - -1
P e ((p(l—c) ) P e ((p(l—c) )
o1 _ KA1 ) _
e ((P(l—c) u)

This proves thefirst part of E1.

To prove the second part of E1 it is enough to show that an increasein 6 relaxes P, and P;. Itis
obvious that P, , is relaxed when 6 increases, because K(6) isincreasing. The definition of the function
Z shows that there are two possibilities when 6 increases. First, if p(K-1) < 6/G(K) < p(K), then a (small)
increasein 0 reduces {” without disturbing K or 4. Write P, as

1

col L 1
&)

(1) ) R(K+X)

— © +
(1-0)e

c 1 .
(1-0)¢ 1} B(K+A) 0 (P)

Thefirst term in brackets here is positive, because {'(1) < 1 < R(K+2); also 1/{'(1) increases when {
decreases, so the left side of the inequality increases when 6 increases.



The other possibility isthat 6 satisfies G(K) < 6/p(K) < G(K+1). Inthiscasea(small) increasein 6
increases A while K and ¢’ remain unchanged."” It will be shown that this increases (1), implying that
anincreasein 6 relaxes P,. Write o(1) as

[1-0(0)]

1 c
1) =|—+ B(K+A)-1
o(1) [c* oy (BN

—[B(K+x)—1]( ° —1)+[R(K+x)—1] 1

¢(1-0)

Then, since{” = p(K) when & is positive,

do() _ opf1-C@] K( s )+ Krq
> o(1-0) p o0 1| +A%1-p(K)]

The first term hereis obviously positive, since {'(s) < 1. To show that the remainder is positive, divide it
by A, and note that

1-p(K) - o*| —> —1)_1——K( o —)
" (P(w(l—c) SRA RSN

is positive when P, , holds. This completes the proof.

Proof of Proposition E2:
First consider (1,0) asafunction of 0. As 0 increases, K(0) increases, with K=« for 6 > 0_. Also,

(1-po) _ 6 og

— 4+ -
A A ¢ l-o0

|1, 10 1-¢ - ol

A 1-A - l-o0

Substituting ' = W in this equation shows that the inequali¢y,0.) > 0 is equivalent to (P ). It follows
that there is some open intervdy,§.) such thats(1,6) > 0 for6 ¢ (6,,6.). Since R, necessarily holds
for large K,6, can be chosen so as to ensure that P holdsef@,,6.). Then the conditions of
Proposition E1 are satisfied for (6,,0.), which proves the result.

One might well ask how K ever changes, given the assertion that it remains fixed in both cases considered
above. Thisis merely a matter of notation. Starting from an equilibrium with " = p(K), increasesin 0 yield
equilibria with the same value of {" and increasing values of A, until 2 reaches 1. At this point K is augmented by
one and  returns to zero, so that the same screening threshold now satisfies £’ = p(K-1), with {’(K-1) = 1. Note
also that the inequality P, is equivalent to w(K-1) > O at this point.
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Proof of Lemma S2:

Consider an arbitrary price p. It will be shown that if the seller were to offer p, the inference drawn
by the seller from the buyer’s response would be consistent with the buyer’s equilibrium strategy.

First note that if the seller’s current belief is ¢, the belief next period, in the absence of any new
information, is

(' =p+A-0)1-0) = eC+(1-9)u

Thusif the buyer’s strategy specifies that p is accepted whether the current valuation is high or low, then
the above expression gives the correct Bayesian updating rule for the seller when p is chosen; the sameis
trueif pisapricethat the buyer’s strategy unconditionally rejects. If the buyer's strategy rejects or
accepts p according to whether the current valuation islow or high, then the seller sets{ = 0if pis
rejected, and { = 1 if pisaccepted, implying {’ = 1-c and (' = p, respectively.

The buyer’s strategy specifies randomization if the current valuation is high, and the seller names a
price p between p, and P,(z-1,0). In equilibrium, the seller’s belief { agrees with the estimate used by the
buyer to determine the probability that p is accepted. Let (° be the seller’s posterior belief that the current
valuation islow, if the buyer rejects p. Then

e

Thus ¢’ = (s), so the seller’s belief is correct following randomization by the buyer.

Finally, it must be shown that the seller’s belief following arejected pooling offer can be supported
asthe limiting Bayesian inference for a sequence of fully mixed buyer strategies approaching the
equilibrium strategy. Thisiseasily done. Modify the buyer’s equilibrium strategy so that wherever the
strategy specifies =1, the buyer instead accepts with probability 1-*", and rejects with probability £**";
whileif the strategy specifies q = 0, the buyer accepts with probability €2, and rejects with probability
1-¢*". In particular (setting n = 1), £? isthe probability that a pooling offer is rejected by the high-
valuation buyer and (setting n = 0) ¢ is corresponding probability for the low buyer.®® Then if a pooling
offer isrejected, Bayes rule implies that the probability of the low typeis

C:s:1

g+82 l+¢

Taking € = 1/m yields a sequence {,, converging to 1 as m increases, supporting the seller's belief that if a
pooling offer is rejected, the buyer’s valuation is low.

8The point here is that the probability of making a mistake isinversely related to its cost: the high buyer is
more likely to err on the high side, and the low buyer is more likely to err on the low side.

46



