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Abstract
The paper analyzes repeated contract negotiations involving the same buyer and seller where the contracts
are linked because the buyer has persistent (but not fully permanent) private information.  The size of the
surplus being divided is specified as a two-state Markov chain with transitions that are synchronized with
contract negotiation dates.  Equilibrium involves information cycles triggered by the success or failure of
aggressive demands made by the seller.  Because there is persistence in the Markov chain generating the
surplus, a successful demand induces the seller to make another aggressive demand in the next negotiation,
since the buyer’s acceptance reveals that the current surplus is large.  Rejection of an aggressive demand,
on the other hand, leads the seller to be pessimistic about the size of the surplus in the next contract, so the
seller makes a "soft" offer that is sure to be accepted.  Then, after several such offers have been accepted,
the seller is optimistic enough to again make an aggressive demand, creating an information cycle.  An
interesting feature of this cycle is that the soft price is not constant, but declines as the cycle continues, so
as to offset the buyer’s option value of re-starting the cycle when the current state is bad.  An explicit
mapping is given for the relationship between the basic parameters and the equilibrium prices and
quantities; in particular, there is a closed-form solution for the threshold belief that makes the seller
indifferent between hard and soft offers.
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1.  Introduction

Repeated bargaining relationships are important in many economic contexts.  An obvious example is

the continuing relationship between a union and an employer, involving periodic negotiation of contracts

determining the price and quantity of labor services for a period of a few years.  Repeated contracts also

arise in international trading relationships, and in intermediate product industries: examples include

vineyards selling grapes to wineries under contract, and mining companies selling coal to electric utilities. 

The typical situation in these negotiations is surely that each side knows more about its own valuation

than its opponent does.  If the valuations are correlated over time, information revealed in the negotiation of

one contract has strategic value in subsequent negotiations, and this must be taken into account in choosing

an optimal bargaining strategy.  The paper analyzes the strategic role of serially correlated private

information in this context.

A trader who is uncertain about the other side’s valuation faces the usual monopoly tradeoff between

prices and quantities.  In the most basic case there are two choices: a pooling offer that ensures trade, at a

low price, or a screening offer that specifies a high price at the risk of a failure to trade.  In repeated

bargaining with persistent (but not permanent) private information this choice is more complicated, because

screening reveals information that will be valuable in future negotiations.  This naturally leads to cycles: an

unsuccessful screening offer induces pessimism in subsequent negotiations, but the pooling offers induced

by this pessimism do not reveal information, and so the pessimism wears off.

Recent work on labor contracts has emphasized the possibility of explaining collective bargaining

outcomes in terms of the incentive-compatibility constraints arising when either party has unverifiable

private information.  This literature deals with static bargaining, in the sense that the game ends as soon as

a contract is signed.2  The main emphasis in applications of the static model is on the relationship between

wages and strike durations: if a strike is a screening device, then an employer must endure a long strike to

reach a low-wage contract.  Meanwhile the empirical literature on labor contracts has shown convincingly

that the outcome of the current negotiation is substantially influenced by what happened when the previous

contract was negotiated.  In particular, the probability of a strike rises to about 39% if there was a short

strike in the previous contract negotiation, compared with probabilities between 10% and 20% following
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either no strike or a long strike.3  Since each negotiation is about dividing future surpluses, it is difficult to

see why past outcomes should affect current negotiations.

Such history-dependent outcomes admit a natural explanation if private valuations are serially

correlated.  Indeed, if a short strike reflects an early concession by the employer, then the union infers that

the employer’s valuation is likely to be high again in the next negotiation, so the union makes a screening

offer; then in the (relatively unlikely) event that the valuation has fallen, a strike will ensue.  On the other

hand a long strike reflects a refusal by the employer to concede to a screening offer.  Then the union infers

that the employer’s valuation is likely to be low again in the next negotiation, so a pooling offer is optimal,

implying that long strikes are followed by peaceful settlements.

The paper builds a dynamic bargaining model in which this intuition can be analyzed.  To obtain

results, some strong simplifying assumptions are needed.  There is private information only on one side; the

uninformed party is called the seller, and the informed party is the buyer.  The buyer's valuation is a two-

state Markov chain.  At one extreme, no transitions occur, so that the high-valuation buyer is wary of

revealing its type, because of the ratchet effect; at the other extreme, the current valuation is purely

transitory, and the model reduces to a sequence of one-shot screening negotiations.  The seller has the right

to make offers that the buyer must accept or reject, so the ability to signal is severely restricted (but not

eliminated, as will be seen).  The seller can commit to a single offer in each negotiation, but cannot make

any commitment regarding future negotiations.  Although this entails a considerable sacrifice of realism

(with respect to labor contracts, for example), suppressing the details of the screening process within each

contract negotiation provides a much sharper focus for the analysis of linkages across contracts, which is

the main point of the paper. 

The analysis centers on the strategic interactions arising from forward-looking behavior: while the

seller thinks about the value of learning the current valuation in order to choose more profitable prices in

the future, the buyer makes a similar calculation from the opposite point of view.   The main result is the

derivation of a cyclic equilibrium in which the strategies and beliefs are simple functions of the

fundamental parameters (the buyer's valuations, the transition probabilities and the discount factor).  The

equilibrium is unique in the sense that it has the same payoffs as every other equilibrium that satisfies a set

of properties motivated by the heuristic description of cyclic screening and pooling given above. 
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A novel feature of the equilibrium is that an informational rent accrues to both buyer types.  This

contrasts with the usual result that a pooling equilibrium drives the low type down to a reservation utility

level, conceding an informational rent to the high type.  The key to this result is the inference that the seller

would draw if a pooling offer were to be rejected.  No matter what the inference might be, the high-

valuation buyer’s continuation value is strictly less than the value of accepting the pooling offer, while the

low-valuation buyer is indifferent between acceptance and rejection.  A forward induction argument then

implies that rejection would convince the seller that the current valuation is low.  This means that the buyer

has the option of resetting the seller’s belief to its most pessimistic level, thereby ensuring that pooling

offers will be made in the next few contracts.  This option is valuable to the low buyer, because the Markov

chain might make a transition to the high valuation while pooling offers are being made.  Thus the pooling

price must be below the low valuation, in order to buy out the value of this option.  In fact, the price must

be declining while the cycle of pooling offers is in progress, because the option to reset the seller’s belief

becomes more valuable to the buyer as the next screening offer comes closer.

A surprising implication of this result is that the potential presence of the high-valuation buyer can

actually make the seller worse off.  This arises because the seller cannot commit to refrain from screening

in the future, when the high valuation becomes sufficiently likely.  Screening wastes part of the pie while

increasing the seller’s share of what remains, and although this will be a good deal for the seller when

screening is called for, the prospect of future screening means that the seller must concede an informational

rent during the pooling phase.  In some cases the seller would do better under a contract that binds unless

both parties agree to renegotiate.  But this would require an enforcement mechanism that can be trusted to

prevent the seller from ever raising prices, and the lack of such a long-term enforcement mechanism is

presumably one reason why we see repeated negotiations covering a few years at a time.

In some respects, this paper is related to the literature on learning and experimentation in markets.  For

example, the seller faces a tradeoff between actions that are myopically optimal, and actions that improve

future payoffs by revealing information.  Aghion, Bolton, Harris and Jullien (1991) focus on whether an

agent who faces such a tradeoff will eventually learn all there is to know about the environment.  Keller and

Rady (1999) consider the more general issue of whether a monopolist will choose to learn in a changing

environment, in which demand is driven by a Markov process.  Harris and Holmstrom (1987) consider a

two-state model in which the optimal decision depends on the current state, and the state probabilities are

determined by a Markov chain, which is costly to observe.  They show that because information is most

valuable when the two candidate decisions seem equally good, the optimal policy is to buy information only

when the prior belief does not put heavy weight on either state, with the implication that there is a
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deterministic bound on the length of time between information purchases.  Rustichini and Wolinsky (1995)

analyze a model in which a seller faces a nonstrategic buyer with a rectangular demand curve driven by a

Markov chain.  The seller decides whether it is worthwhile to learn the buyer’s valuation always, by making

screening offers, or never, by making pooling offers, or sometimes, by using the information revealed by a

previous screening offer to determine whether a screening offer is worthwhile now.  That is also the

problem analyzed here, but for the more complicated situation in which the buyer and the seller both act

strategically, so that the seller is trying to learn something that the buyer may wish to conceal.  Bergemann

and Valimaki (1996) consider a monopsony buyer facing two competing sellers, where the  buyer’s

valuation (i.e. the quality) of each seller’s product is a stochastic process.  This is a two-armed bandit

problem in which the bandits are smart, but there is no private information involved.

Blume (1998) and Vincent (1998) analyzed the effects of private information that arrives while a

bargaining game is in progress.  Blume considered a two-type model where the low type can temporarily

assume the valuation of the high type, emphasizing that even if the informed party can only accept or reject

offers made by the uninformed party, there is an important signaling aspect of the negotiations.  The model

in this paper differs from Blume’s in two respects: both types change valuations, and the game involves

repeated contract negotiations, as opposed to a final sale.  In Vincent’s model the buyer has a linear demand

curve with an intercept driven by a Markov chain, and the seller is precluded from using two-part tariffs

and must instead set a price and let the buyer choose quantity.  In this situation the buyer can signal a low

valuation by purchasing a positive quantity that is below the myopic optimum, with the result that pooling

equilibria are difficult to sustain.

The paper proceeds as follows.  After the infinite-horizon game is formally defined in the next section,

a two-period version is briefly analyzed in order to illustrate the basic idea of the screening threshold, and

to discuss the possibility that screening might be extended over more than one period.  The two-period

model also shows the variety of equilibria that can be obtained if the belief following rejection of a pooling

offer is unrestricted, and it shows how a forward induction argument can be used to select a specific belief

in this contingency, namely that the current valuation must have been low.  The results for the two-period

model are then used to motivate a set of properties defining what is meant by cyclic screening equilibrium

in the infinite-horizon game.  The screening threshold naturally divides the belief space into intervals

indexed by the number of pooling offers that would be needed to reach the threshold (starting from a the

most pessimistic belief), and this index is used to construct a state variable that drives both players’

strategies.  After computing the value functions in terms of the state variable, the equilibrium screening

threshold is derived as a function of the fundamental parameters: this is one of the main results of the
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paper.  Then the equilibrium strategies are defined, and there is an analysis of conditions ensuring that the

seller does not find it profitable to extend screening over more than one period.  The other main result is

that the cyclic screening equilibrium always exists in a region of the parameter space defined by a simple

inequality involving the discount factors and the transition probabilities, together with a lower bound on the

opportunity cost of screening.  Numerical examples are then presented, and the paper closes with a brief

discussion of equilibria supported by alternative beliefs off the equilibrium path.

2.  An Infinite Horizon Markov Model of Repeated Negotiations

Consider an infinite sequence of contract negotiations between a buyer and a seller where the surplus to

be divided in each contract is determined by a two-state Markov chain with continuation probabilities DL

and DH (where Di denotes the probability of remaining in state i).  The realizations of the surplus are seen

only by the buyer.  It is convenient to use the seller’s opportunity cost as the origin and the difference

between the high and low surplus as the unit, so let the surplus in period t be nt + 2, where nt is either 0 or

1.4  Both sides maximize the present value of expected income, with a common discount factor *.  Thus the

model is summarized by the four parameters (2,DL,DH,*).  The rules of bargaining are simple: the seller

makes an offer, and if this is rejected there is no trade until this contract period expires.  Thus the seller has

full commitment power within the current contract (but no commitment power across contracts).

Let Di(s) be the probability that the Markov chain is in state i after s periods, starting from state i. Then

where N / DL + DH - 1, and : / (1-DH)/(1-N) is the invariant probability of the low state.  The persistence

parameter N governs the link between successive negotiations: Prob [nt = 0 | nt-1 ] = N(1-nt-1 ) + 1-DH.  It is

assumed that N $ 0; if N = 0, any inference drawn from the current negotiation will be irrelevant when the

next contract is negotiated; at the other extreme, if N = 1 the current information is permanent.

For each period t, the actions at = (pt,qt), payoffs u(at) and v(at), and history ht are specified as follows:

Actions

first the seller chooses a price, pt, from the real line;

then the buyer chooses a quantity, qt, which is either 0 or 1.

Payoffs

The payoffs in period t are u(at) = qt pt for the seller, and v(at) = qt (nt +2 - pt) for the buyer.



5The notation F t
B(q | ht) will be used to mean the probability that qt = q, where q is 0 or 1.

6That is, a set of sample paths with probability 1.  Thus A(F) may have many supports, and one is identified as the path.  In
practice, all strategies for the seller considered in this paper are supported on a finite set of prices, so there is no real
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7This an abuse of notation: At [nt = 0 | ht
0
 ] is the marginal distribution, so . 

Similarly, At [nt-1 = 0 | ht
0
 ] will be used to represent the marginal distribution over nt-1.
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Both sides maximize expected present values, with a common discount factor *; these are written as

History

The sequence of actions chosen by nature is nt-1  = {n1,n2,...nt-1}

The sequence of actions chosen by the seller is pt-1 = {p1,p2,...pt-1}

The sequence of actions chosen by the buyer is qt-1 = {q1,q2,...qt-1}

The public history (i.e. the history available to the seller) is h0
t = {pt-1, q

t-1}

The history (when the buyer chooses qt ) is ht = {nt, p
t
 ,q

t-1}

Strategies

Let ,t be the set of possible histories at t, and let , t
0 be the set of public histories.  A behavioral

strategy for the seller, FS, is a sequence of functions F t
S from , t

0 to the set of probability distributions on

ß. The seller’s strategy set ES is the set of such sequences.  A behavioral strategy for the buyer, FB, is a

sequence of functions F t
B from ,t to )({0,1}), the set of probability distributions on {0,1}.  The buyer’s

strategy set EB is the set of such sequences.5

Each strategy profile F = (FS,FB) determines a stochastic process A(F) for at, taking values in

ß V {0,1}.  This gives a complete description of what will happen if the players follow F.  The path of F,

denoted by F, is a support of this process.6  A history is on the path of F if the set of sample paths

beginning with this history has positive probability.  The continuation of A(F) following any history ht,

written as A(F | ht), is itself a stochastic process that describes future actions following ht, and, for s < t, a

history ht is on the continuation path of F from hs if ht is on the path of A(F | hs).

Beliefs

A belief-system A is a sequence of mappings from ßt-1 V{0,1}t-1 to )({0,1}t ); each term specifies a

probability distribution At(n
t | ht

0
 ) over the (finite) set of possible realizations of nt, for each possible

realization of ht
0.  Since nt is Markov, the only part of the seller’s belief relevant for the future is the

marginal distribution over nt.  This will be represented by .t = At [nt = 0 | ht
0
 ].

7
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Equilibrium

There is no general definition of sequential or perfect Bayesian equilibrium for games with infinite

strategy sets, but a straightforward adaptation of the definitions in Kreps and Wilson (1982) and

Fudenberg and Tirole (1991) yields a suitable definition of equilibrium for the game analyzed here.

Consistency

 The strategy-belief pair (F,A) is consistent if, for all t, and for all public histories ht
0 

(a)

(b) and for all prices pt, and for all private histories nt, and for q = 0,1

where A6 t+1(n
t | ht

0
+1) = At+1(n

t ,1 | ht
0

+1) + At+1(n
t ,0 | ht

0
+1), the marginal belief regarding nt as of period t+1.

That is, (a) the belief in period t about nt is the belief in period t about nt-1 updated by the Markov

transition probabilities; and (b) the belief after seeing the buyer’s action satisfies a Bayesian updating

equation of the form At(q) At+1(n | q) = At(n1 q), where q stands for the buyer’s action, and n stands for the

private history.  This must hold for all prices: even after a history that is inconsistent with F, the seller has

a belief about nt, and if there are no further deviations, subsequent beliefs are determined by Bayes rule.8

Sequential Optimality

For a given strategy-belief pair (F,A), the expected payoffs, conditional on history, are

where E refers to expectations with respect to the stochastic process A(F | ht) / A(F | <
t,ht

0).

Definition (Sequential Optimality)

(a) F is sequentially optimal for the buyer if, for all t, and all histories ht, and all F̂0EB

(b) (F,A) is sequentially optimal for the seller if, for all t, and all public histories ht
0, and all F̂0ES
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The pair (F,A) is sequentially optimal if both (a) and (b) are true.

Definition A0: A strategy-belief pair (F,A) is an equilibrium if it is consistent and sequentially optimal.

3.  A Two-Period Game

To motivate the equilibrium analysis for the infinite-horizon game, it is useful to consider a truncated

version with just two periods.  The set of sequential equilibria of the two-period game is fully characterized

in Kennan (1998).  Denote the first period as t = 1, and the last as t = 0.  The last period is a one-shot game

in which the seller chooses a price, and the buyer says yes or no.  Let .0 be the probability that the buyer’s

valuation is low, as perceived by the seller at the beginning of the last period.  In any sequential equilibrium

of the two-period game, the continuation equilibrium in the last period is based on the threshold

.0
* = 1/(1+2).  If .0 < .0

*, then the equilibrium involves screening: the seller chooses the price 1+2, which

the high-valuation buyer accepts and the low-valuation buyer rejects.  If .0 > .0
*, the equilibrium involves

pooling: the price is 2, and both buyer types accept.  In the borderline case .0 = .0
*, there are two pure

strategy equilibria: the seller may choose either the pooling or the screening price.  Let J0 be a state

variable representing the probability that the seller makes a pooling offer, so that J0 = 1 if .0 > .0
*, and

J0 = 0 if .0 < .0
*.  Then the seller’s strategy in the last period is fully described by J0, as a function of the

history.  This is a trivial example of the state variable that will be used to construct strategies for the

infinite-horizon game.

Now consider the first period.  Let .1 be the prior probability that the buyer’s valuation is low, at the

beginning of the game.  The seller’s belief .0 in the last period will be an update of .1, based on the

transition probabilities DL and DH, and on information revealed by the buyer’s first-period action.  Assume

that N.1 + 1-DH < .0
*, so that the seller is optimistic enough to screen in the last period if a pooling offer

was accepted in the first period.

The equilibrium analysis is complicated by the buyer’s ability to signal, even though the buyer can only

accept or reject offers: the buyer might reject a pooling offer, and the seller’s belief in the last period is then

not determined by Bayes rule.  The set of equilibria may be characterized as follows.

• In any equilibrium, the seller either pools in the first period, by offering a price that is surely accepted,

or screens, by offering a price that is rejected by the low-valuation buyer; or else the seller randomizes

between these two alternatives.  Thus equilibria can be labeled as J1 = 1 (pooling), or J1 = 0

(screening), or 0 < J1 < 1 (randomization).

• If there are equilibria with J1 = 0, they all have the same equilibrium path:

• either p1 = 1+2-*DH, q1 = n1, p0 = q1 + 2, q0 = n0 (screening) 



9It might seem that there is something wrong here: can’t the seller do better by raising the price?  No, because if the buyer
rejects any higher price, the seller infers the low valuation, and makes a pooling offer in the last period; and since this is
profitable for the low buyer, no price higher than 2 - ½*(1-DL) would be accepted by the low buyer.
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• or p1 = 1+2, q1 = q̂n1, p0 = 1 + 2, q0 = n0 (extended screening), where q̂, the probability that the

high buyer accepts p1, is such that if this offer is rejected, then the belief in the last period is .0
*.

• If there is an equilibrium with J1 = 1, there is a continuum of such equilibria, with different first-period

prices.  In this case the equilibrium path satisfies p1 0 [2-*(1-DL),2], q1 = 1, p0 = 1 + 2, q0 = n0.

First-Period Pooling Equilibria

Given that p0 is either 2 or 1+2 in any equilibrium, define R(p1) as the probability (specified by FS)

that p0 = 2, if the price p1 has been rejected.  The reason for the multiplicity of pooling equilibria can seen

by considering three equilibria, labeled P1, P2 and P3, in which the seller pools in the first period, and

screens in the last period.  The strategies in these equilibria differ only in the specification of R(p1) for

p1 # 2, as follows

P1: R(p1) = 0 for p1 # 2,  p1 = 2

P2: R(p1) = 1 for p1 # 2, p1 = 2 - *(1-DL)

P3: R(p1) = 0 for p1 # 2 - ½*(1-DL), R(p1) = 1 for 2 - ½*(1-DL) < p1 # 2, p1 = 2 - ½*(1-DL)

These equilibria differ in the way the seller's strategy reacts when the buyer rejects an offer that should

have been accepted.  In P1, the seller treats the rejection as a mistake, and screens in the last period as if no

information had been revealed in the first period.  Then since the seller's action in the last period does not

depend on whether the pooling offer is accepted or rejected, the pooling price is 2.  But in P2, rejection of a

pooling offer is interpreted as a signal that the buyer's current valuation is low, and in light of this the seller

pools in the last period.  The option to reject the pooling offer is then valuable to the low buyer, because the

buyer's valuation might switch in the last period.  The pooling price is below the current valuation by the

amount *(1-DL), which is just enough to offset the value of the buyer's option to induce a pooling offer in

the last period.  The point of the P3 example is that the low buyer strictly prefers to accept the pooling offer

in the first period, because rejection would lead to a screening offer in the last period, and thus a zero

payoff for the buyer in both periods, while acceptance yields a current payoff of ½*(1-DL).
9

A notable feature of these equilibria is that the seller's strategy is not Markov: the function R(p1), which

determines p0, is not constant on the interval (1+2-*DH,1+2], even though p1 is not payoff-relevant in the

last period.  This is unavoidable: as Maskin and Tirole (1994) point out, in bargaining games with a finite

number of types there is generally no equilibrium in Markov strategies.



10Cho (1987) defines forward induction equilibrium as a refinement of sequential equilibrium in general (finite) games; this
generalizes the Cho-Kreps (1987) Intuitive Criterion, which is formally defined only for signaling games.  This definition can
be used here, even though the seller’s action space is infinite; Cho’s existence results are then not available, but existence is
proved directly in this paper.
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Figure 1: The Screening and Pooling Cycle

Implications of Forward Induction.

In examples P1 and P2, the high buyer gets an immediate payoff of at least 1 by accepting the first-

period offer, while the payoff from rejection is no more than *DH < 1.  On the other hand the low buyer’s

equilibrium payoff is zero in P1, while the payoff from rejection of p1 would be *(1-DL) if the seller

believed that rejection signaled the low valuation.  Forward induction then implies that the seller should

indeed interpret an unexpected rejection as a signal that the valuation was low, since the low-valuation

buyer might gain by rejection, while the high-valuation buyer necessarily loses.  This means that the

equilibrium in example P1 is not a forward-induction equilibrium, in the sense of Cho (1987).10  The same

argument rules out all pooling equilibria with p1 > 2 - *(1-DL), so that P2 is the only pooling equilibrium

that survives forward induction.

The most surprising feature of the forward induction equilibrium in the two-period game is that, if there

are informational rents, they accrue to both types of the buyer.  This result is explored further in

Kennan (1998), and it plays a central role in the analysis of the infinite-horizon game below.

4.  Cyclic Screening Equilibria

The screening cycle in the infinite-horizon

game is sketched in Figure 1, which represents

varying degrees of pessimism for the seller, based

on the results of the previous negotiation.   At

one extreme, the seller’s belief that the buyer has

a low valuation now is DL, following rejection of

a screening offer in the previous negotiation.  In

this situation the seller pools now, and again in

K-1 successive negotiations until the probability

of the low type, DL(K), has decayed past the screening threshold .*.  At the other extreme, the seller is most

optimistic after acceptance of a screening offer; then the probability of the low state now is only 1-DH.

The analysis proceeds by imposing a set of “reasonable” properties that are motivated by the heuristic

discussion in the Introduction, tempered by the analysis of the two-period game.  The aim is to show that

the equilibrium sketched in Figure 1 is not an arbitrary choice: in fact it is shown that all equilibria



11That is, equilibria in which the seller makes a screening offer several times in succession, before inferring that the current
valuation is low.  Such equilibria are familiar from the static bargaining literature, so this paper focuses on equilibrium features
that arise only in the context of repeated negotiations, such as cyclic pricing and informational rents accruing to the low buyer.

12It would be desirable to extend the analysis to cover the part of the parameter space excluded by this restriction, but it
would also be very difficult, as can be seen from the attempt made in Kennan (1995).

13More precisely, the seller’s strategy specifies a screening offer after any history ht
0 such that At [nt = 0 | ht

0
 ] < .*.

14If instead .* lies below :, then in the long run the seller makes only pooling offers: see Section 10 below.
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satisfying these properties are payoff-equivalent.  The properties are roughly as follows.  The strategies are

cyclic, and are driven by the current belief of the seller. The forward induction argument used in the two-

period game motivates a similar restriction on the seller’s belief following rejection of a pooling offer: such

a rejection would convince the seller that the buyer’s current valuation is low.  Extended screening

equilibria11 are ruled out: this involves a substantive restriction on the fundamental parameters which is

spelled out later, and in particular it rules out cases in which the buyer’s valuations are very persistent.12 

Prices are assumed to be tight, in the sense that any offer made by the seller leaves either the high buyer or

the low buyer indifferent between acceptance and rejection; moreover, the buyer’s continuation value

following rejection is stationary.  The main result is the existence of a “cyclic screening equilibrium”

satisfying these properties.  The proof is constructive, and yields an explicit mapping from the basic

parameters to the equilibrium path.

The Screening Threshold

Given a belief system A, let .t = At [nt = 0 | ht
0
 ] be the probability that the buyer's current valuation is

low after some history.  The basic property of a cyclic screening equilibrium is that the seller's strategy

compares the current belief .t with a threshold belief, labeled .*, and the strategy makes screening offers

whenever .t falls below .*, and pooling offers otherwise.13  The main analytical task is then to determine .*

from the basic parameters (2,DL,DH,*).  A cyclic equilibrium exists only if .* lies above the invariant

probability :, so that repeated pooling offers eventually lead to screening.14

When defining the screening threshold it is necessary to pay particular attention to prices above the

screening price, as was seen in the analysis of the two-period game.  Recall that FS denotes the support of

the seller's strategy.  For any strategy FS, define the price ceiling F6  S as the highest price in FS:

Definition A1:  The pair (F,A) has the screening threshold property if it is consistent, and if there is a

“threshold” .* > :, and a probability 8*, such that, for all t and for all histories ht such that pt 0 F t
S(h0

t):



15The reason for (c) is that it may be necessary to allow the buyer’s strategy to respond to an excessive price ps by
randomizing if nt = 1, and to support this the seller’s strategy must randomize later in a way that depends on ps.
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(a) if .t < .*, then qt = nt

(b) if .t > .*, then qt = 1

(c) if .t = .*, and if ps # F6  S for all s < t, then qt = 1 with probability 8*, and qt = nt with probability 1-8*.

That is (a) if the seller is optimistic, there is a screening offer, and (b) if the seller is pessimistic, there is a

pooling offer.  Also, (c) on the borderline between these, the seller randomizes, provided there has been no

previous deviation by the seller that exceeded the price ceiling.15

Property A1 is enough to determine the probability of trade in all future periods after any history such

that the price has never exceeded F6  S.  This will be shown by constructing a state variable J that

summarizes the continuation possibilities associated with the seller’s current belief; then it will be shown

that A1 determines a Markov chain for (n,J), and this Markov chain determines the probability of trade.

The State Variable

Suppose (F,A) satisfies A1.  Given .*, define .*(s), for nonnegative integers s, as

Then if the current belief is .t = .*(s), consistency requires that the belief will be .* after s periods, if no

new information is revealed in the meantime.  Let K* 
/ 6(.*) be the number of transitions needed to drive .

below .*, starting from . = 1.  Then K* is defined by the inequalities DL(K
*) # .* < DL(K

*-1), and

The seller’s belief can now be partitioned as follows

Definition T: Given probabilities .* and 8, the threshold state variable Q8 is a mapping J = Q8(.) from

[0,1] to ß defined as follows.  If . < .*, then J = 0; if .*(s-1) < . < .
*(s), for some positive integer s,

then J = s; otherwise . = .*(s) for some nonnegative integer s, and then J = s+8.  The mapping

J = Q*(.), is defined as Q8*(.). 



16Only Q* is relevant for the moment, because J = Q*(.) on the equilibrium path.  The mapping Q8 is used later when
behavior off the equilibrium path is specified: if the seller deviates to a price above F6  S, then J = Q8(.), for some probability 8
that depends on the deviant price, until the next screening offer is made; after this, J reverts to Q*(.).

17That is, At [nt = 0 | ht
0
 ] ú .* for all histories h0

t  that have positive probability under the strategy profile F.
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Figure 2: Beliefs and States

The function Q8 is illustrated in Figure 2.  The point of the definition is that if (F,A) satisfies A1, with

screening threshold (.*,8*), then after any history on the path of F, the state J = Q*(.) is sufficient to

determine the continuation path: the seller will make pooling offers for the next J periods, and the belief

will then cross the screening threshold.16

The equilibrium cycle sketched in Figure 1 can now be described in detail.  Consider first the case in

which .* is not on the path of F.17  Then A1 implies the following cycle.  After any history such that

. < .*, the seller’s offer is accepted if the current valuation is high, and rejected otherwise: the state is

J = Q*(.) = 0 for all such histories.  Consistency implies that the next value of . is .' = 1-DH if a screening

offer is accepted, and .' = DL if it is rejected.  Since 1-DH < : < .*, the seller again makes a screening offer

in the next period after a screening offer is accepted, and this continues until an offer is rejected.  Then



18It might seem that this is a knife-edge that is not worth worrying about.  Unfortunately, it is not: it will be shown that there
is a nontrivial region of the parameter space in which the only way to construct a cyclic screening equilibrium is to let the seller
randomize between pooling and screening at the end of each pooling cycle, with . = .* at this point.

19The timing of this randomization is arbitrary.  A public randomization could be used to set J = K* with probability 8* and
J = K*-1 with probability 1-8*, following rejection of a screening offer.  This does not affect the probability of trade, and the
effect on prices is merely a change in the timing of payments, with no effect on present values.
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.’ = DL, and (if DL > .*) A1 implies a pooling offer.  After this, consistency implies .’’ = DL(2), and so on

until . = DL(K
*) < .* after K*-1 pooling offers (and K* = 1 if DL < .*, meaning that the seller is never

pessimistic enough to make a pooling offer).  At this point the cycle repeats itself, and so ad infinitum. 

After any history such that . > .*, the seller makes a sequence of pooling offers, and . evolves toward the

invariant point :, until it reaches or crosses .*.  The state variable counts the number of pooling offers

remaining in the current cycle: thus J = K*-1 if a screening offer was rejected in the previous period, with

J = K*-2 in the next period, and so on until J reaches 0.

Now consider the case in which .* = DL(K
*) for some integer K* 

$ 1.18  Again, after any history such

that . < .*, screening offers are made until one is rejected, with J = 0 while this is going on.  Rejection of a

screening offer starts a sequence of K*-1+8* pooling offers (meaning K*-1 for sure, and one more with

probability 8*), followed by a screening offer.  The state is J = Q*(DL) = K*-1+8* after a screening offer is

rejected, and the countdown to the next screening offer continues as above; when J reaches 8* there is one

more pooling offer with probability 8*.19

5. Equilibrium Continuation Values

The equilibrium continuation values will now be determined as functions of the state variable J, for any

pair (F,A) that satisfies A1 and the other properties mentioned above.  First, it is shown that if A1 holds,

the joint continuation value after any history that has not violated the price ceiling depends only on the

current value of n, and on the value of J derived from the current belief.  Simple formulae for the joint

continuation values are derived, for given values of (.*,8*).  Then the remaining properties of (F,A) are

used to compute the buyer’s continuation values, yielding the seller’s values as a residual.  Finally, the

threshold .* and the randomization probability 8* are obtained as functions of the basic parameters.

The first result shows that A1 determines a Markov chain for (n,J).  Proofs of the main results are in

the Appendix (proofs of the other results are available from the author’s web page).

Lemma M:

For any public history ht
0, let .t = At [nt = 0 | ht

0 ] and Jt = Q*(.t).  If (F,A) satisfies A1, then after any

history ht such that ps # F6  S for all s < t, the values of n and J on the continuation path of F from ht are
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determined by a Markov chain with state space {0,1}V{0,8*,1+8*,...K*-1+8*} and the following transition

probabilities from (n,J) to (n’,J’):

if n = 1, then n’ = 0 w.p. 1-DH, n’ = 1 w.p. DH, and J’ = max(J-1,0);

if n = 0, then n’ = 0 w.p. DL, n’ = 1 w.p. 1-DL, 

and if J = 0, then J’ = K*-1+8*

if J = 8*, then J’ = K*-1+8* w.p. 1-8*, J’ = 0 w.p. 8*

if J $ 1, then J’ = J-1

Under the conditions of Lemma M, the Markov chain for (n,J) determines the probability of trade in all

future periods.  In fact, qt = nt if Jt = 0, and qt = 1 if Jt $ 1, while if Jt = 8* then qt = 1 with probability 8*

and qt = nt with probability 1-8*.  Thus (since joint payoffs depend only on n and q) the joint continuation

values are determined by n and J.  Let JL(J) and JH(J) be the joint continuation values from state J,

depending on whether the current valuation is low or high, with j(J) = JH(J) - JL(J).  Define the discounted

persistence parameter $ as $ = *N, and for nonnegative integers s define the following discounted sums:

Also, for J = s+8 where 8 0 [0,1], define D(J) = D(s) + 8*
s, and similarly for B(J) and R(J).

The following result determines the joint continuation values from the basic parameters (2,*,DL,DH ),

for any strategy-belief pair (F,A) that satisfies A1.  The joint values are shown in the top panel of Table 1.

Proposition J1:

Suppose that the pair (F,A) satisfies the screening threshold property.  For any public history ht
0 such

that ps # F6  S for all s < t, let .t = At [nt = 0 | ht
0 ] and J = Q*(.t).  Then

The Buyer’s Continuation Values

Three additional properties are now introduced, and it is shown that for any pair (F,A) that satisfies

these properties, the buyer’s continuation values are determined by the Markov chain derived in Lemma M. 

Let VL(J) and VH(J) denote the buyer’s continuation values from state J, depending on whether the current

valuation is low or high, and let d(J) =  VH(J) - VL(J).

Definition A2: The pair (F,A) has the immediate signaling property if for all t and for all histories ht, if

pt # F6  S and qt = 0, then At+1 [nt = 0 | ht
0
+1 ] = 1.



20It might seem intuitively obvious that this is implied by sequential optimality for the seller, but the P3 equilibrium in the
two-period model shows that the intuition is wrong. On the other hand, it is possible that A4 is implied by A0-A3.
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That is, rejection of any price below F6  S convinces the seller that the current valuation is low.  This

captures two features of the cyclic equilibrium described in the Introduction.  First, the high buyer accepts

screening offers for sure, ruling out equilibria in which screening extends over several periods.  In

Section 8, this will be translated into a restriction on the basic parameters (2,DL,DH,*).  Second, rejection

of a pooling offer would convince the seller that the current valuation is low.  This can be rationalized by

forward induction, as in the two-period game.  In fact, no matter what inference the seller might draw, the

continuation value following rejection of a pooling offer in a cyclic screening equilibrium is strictly lower

for the high-valuation buyer than the equilibrium value, and this is not true for the low-valuation buyer.

Under A2, prices and quantities in earlier periods have no relevance for future payoffs.  This motivates

Definition A3: The profile F has the stationary values property if there are two numbers, VH(0) and VL

such that, for all t and for all histories ht such that pt # F6  S, .  

That is, for any offer on the continuation path of F from any history, the buyer’s value following rejection

depends only on the current valuation, and not on previous prices and quantities, or on calendar time.

Definition A4: The profile F has the tight pricing property if for all t and all ht: if pt0F t
S(h0

t), and either (i)

FB
t  (ht) = {1} with nt = 0, or (ii) FB

t  (ht) = {nt} with nt = 1, then ,

where the expectations are taken over all continuations of the stochastic process A(F) starting from ht

followed by qt = 0 (on the left) or qt = 1 (on the right).

That is, for any pooling offer on the continuation path of F, the low buyer  is indifferent between

acceptance and rejection, and for any screening offer on the path, the high buyer is indifferent.20

Properties A1, A3 and A4 together imply that for any history that has not breached the price ceiling, 

the low buyer’s continuation value is a constant.  To see this, note from A1 that the seller makes either a

pooling or a screening offer after any such history.  Then A3 immediately implies that the low buyer’s

continuation value is VL for any history such that a screening offer is made; and A4 implies that the low

buyer’s continuation value when a pooling offer is made is the value of rejecting, which is again VL.
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Table 1: Value Functions

Low High Difference

Joint

Buyer

Seller

Notation

 :=(1-DH)/(1-N)

  R(K,8) = :D(K,8) + (1-:)B(K,8)  b*=1/B(K*,8*), r*=1/R(K*,8*)   B(J)=B(J,0), R(J)=R(J,0) 
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The next result shows that any strategy-belief pair satisfying A1-A4 implies the same screening and

pooling prices, and the same value function for the buyer.

Lemma B1:

Suppose that (F,A) satisfies A1-A4.  For any public history ht
0, let .t = At [nt = 0 | ht

0 ] and Jt = Q*(.t). 

Then for any history ht such that ps # F6  S for all s < t,

(a) the price specified by FS depends only on Jt, and 

where K* = 6(.*) and the screening price pH and the pooling prices pL(Jt) are defined as

with the understanding that B(-1) is defined as zero, so pL(J) = pL(0) for J # 1.

(b) the buyer’s continuation values depend only on nt and Jt, and

Two implications of this result are worth noting.  First, the low buyer is not worth anything unless * is

positive, and there is some chance of making a transition to the high valuation in the future.  Second,

changes in 2 are absorbed entirely by the seller, with no effect on the buyer’s value, for given values of K*

and 8*.  This is a local result, however, since although K* is fixed with respect to marginal changes in 2,

the screening threshold is not, as will be shown below.

Informational Rents

A novel feature of the equilibrium is that the pooling prices are below the low valuation 2.  This is

because the buyer has the option of rejecting any offer, with the result that the pooling sequence is re-

started.  This is worth something to the low buyer, because of the prospect of making transitions to the high

valuation while the pooling sequence is in progress, so the pooling price has to be below 2 in order to cover

the option value associated with restarting the pooling sequence.  Moreover, for J > 2, this informational

rent increases as the pooling sequence comes closer to the end, because the buyer is more tempted to push

the restart button when screening is imminent.

The Seller’s Continuation Values

For any consistent pair (F,A), the seller infers that the current valuation is high if a screening offer is

accepted, and infers the low valuation if it is rejected.  Thus the seller’s and the buyer’s expectations are



21Alternatively, the seller’s value function can be computed directly from the equilibrium prices, following the method used
above to obtain the joint values.  This procedure must be used in the more general setting where the buyer and the seller have
different discount factors, because in this case the joint values are assessed differently by the two players.
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identical after the buyer has responded to a screening offer, and the seller’s continuation values can be

obtained as the difference between the joint values and the buyer’s values.21  The results of these

calculations are given in Table 1, where UL(J) and UH(J) denote the seller’s continuation values from state

J, and g(J) = UH(J) - UL(J).  The seller’s expected continuation value at the point of making a screening

offer is the weighted average U(.,J) of the state-contingent values.

6.  The Equilibrium Screening Threshold

This section shows how the screening threshold .* and the randomization probability 8* are derived

from the basic parameters (2,DL,DH,*).  Then (in Section 7) .* is used to construct a strategy-belief pair

(F*,A*) that satisfies properties A1-A4.  Finally (in Section 8) it is shown that this pair satisfies the

sequential optimality conditions in A0, subject to some restrictions on the parameters; this completes the

proof that cyclic screening equilibria exist.

Proposition T0:  Suppose that the pair (F,A) satisfies properties A0-A4.  Then 

where .* and 8* are given by A1, K* = 6(.*), and the increasing function G(J) is defined as R(J)/B(J).  

Proposition T0 does not give a closed-form expression for .*, because K* depends on .*, and 8* is

unspecified.  Moreover the formula is valid only if .* 
$ :.  On the other hand, given the parameters

(DL,DH,*), the formula determines 2 as a function of .* and 8*.  The next result shows how this function

can be inverted to obtain a closed-form expression for the pair (.*,8*).

Proposition T1:  Suppose that (F,A) satisfies A0-A4.  Then (.*,8*) = -(2,DL,DH,*), where - is defined

as 

where
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and 8k is defined as the solution of the equation G(k+8k) D6L(k) = 2, i.e.

Each component of the function - lies in [0,1].  The .* component is continuous and decreasing in 2

(although it generally has an infinite number of flat segments).  The 8* component increases from 0 to 1 as

2 increases from G(k) D6L(k) to G(k+1) D6L(k).  For * = 0 the function collapses to .* = 1/(1+2), with

8* = 0.  Finally, the domain of the function is restricted by the condition 2 # 2
4 , which ensures that

.* $ :.  If 2 > 2
4
 there is no cyclic equilibrium, because screening is too expensive: this is discussed in

Section 10.

Proposition T1 implies that the pooling prices are positive.  Since pL(J) is increasing in J it suffices to

show this for J = 0.  If 2 # D6L(1) then .* = 1/(1+2) and K* = 1, so pL(0) = 2.  Otherwise

2 > D6L(1) > *(1-DL), and pL(0) > 2 - *(1-DL).

7.  Cyclic Screening Strategies

Suppose (F,A) satisfies A1-A4, with a screening threshold (.*,8*) determined by the mapping -. 

Then the equilibrium prices and quantities are fully determined: (n,J) follows the Markov chain specified in

Lemma M, the seller offers pL(J) when J is positive, and pH when J is zero, and the buyer accepts unless pH

is offered when n is zero.  Thus all equilibria satisfying A1-A4 are payoff-equivalent.

This section shows how to complete the construction of cyclic screening strategies by specifying

behavior and beliefs off the equilibrium path.  Then it will be verified that the construct does indeed satisfy

properties A1-A4.  The last step is to show that the strategies are sequentially optimal: this finally

demonstrates the existence of cyclic screening equilibria.

The strategies will be written in terms of the state variable J=Q8(.), so it is necessary to say how 8 is

determined for every realization of the public history.  It is also necessary to specify the belief system

associated with (.*,8*), and these are closely related.  First, for J 0 [0,K*-1+8] define the prices pGH (J) as

so that pH = pGH(K*-1+8*).  These prices will be used to determine the continuation in case the seller offers a

price above pH.  The equilibrium beliefs are then defined as follows.

Definition:  Given a screening threshold (.*,8*), the threshold belief system A*(.*,8*) is a sequence of

mappings (.t,8t) = A t
*(ht

0) determining (.t,8t) as functions of ht
0, as follows.  For t = 1, .1 is the seller’s



22This can be rationalized as a secondary belief system used by the seller as a tie-breaking rule when . = .*.
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prior belief and 81 = 8*.  For t > 1, (.t,8t) is determined by repeated application of the following rule,

which uses (.t,8t) = A t
*(ht

0) and , together with pt and qt, to specify (.t+1,8t+1):

(a) When qt = 0:

if pt # pH then .t+1 = DL, and 8t+1=8
*

if pt = pGH(s+80), Jt-1#s+80 <K-1+8*, then .t+1 = .*(s), and 8t+1=80, where 80 solves

pt=pGH(s+80)

if pt > pGH(Jt-1) then .t+1 = N.+(1-N):, and 8t+1=8
*

(b) When qt = 1:

if pt # pL(Jt) then .t+1 = N.+(1-N): and 8t+1=8t

if pt > pL(Jt) then .t+1 = 1-DH,  and 8t+1=8
*

In addition to specifying the belief as a function of the public history, this definition also specifies the

probability that the seller will make a pooling offer if the belief coincides with the threshold.22  The

definition is incomplete in that it does not say how the buyer’s current action changes the seller’s beliefs

about the entire history, but the missing data can easily be filled in using Bayes’ rule, and in any case

beliefs about the past are irrelevant for equilibria that satisfy A1.

The Seller’s Strategy

Definition: The cyclic pricing rule associated with (.*,8*) is the mapping p = P*(J) defined as follows:

if J $ 1 then p =  pL(J)

if J = 0 then p =  pH

if 0 # J # 1then p =  pL(1) with probability J, and p =  pH with probability 1-J

Definition: The cyclic pricing strategy FS(.*,8*) associated with (.*,8*) is the sequence of mappings

pt = P*
BQ*

BA t
*(ht

0) defined by the composition of the cyclic pricing rule P*, the threshold state variable

Q*, and the threshold belief system A*.

This defines a strategy for the seller that is uniquely determined by the basic parameters (2,DL,DH,*). 

First, the function - determines .* and 8*, with K* = 6(.*).  Next, K* and 8* are used to obtain pH and

pL(J), and these determine P*.  Then K*, 8*, pH, pL(J) and pGH(J) and the numbers .*(s) = :+N-s(.*-:) are

used to construct the mapping A t
*, for every t.  Finally, for every t, and for every public history ht

0, the state

Jt is found by applying Q8 to (.t,8t) = A t
*(ht

0), and the price is set by applying P* to Jt.



23One might wonder why prices slightly above pH are accepted by the high buyer, and, if they are accepted, why the seller
would offer pH instead of pGH(K*-1).  The answer is in two parts.  First, optimality of the seller’s behavior is checked in
Proposition S3 below, where the condition that deters a deviation to pGH(K*-1) is labeled XK.  Second, examples can be found in
which XK fails, and in that case there is an equilibrium in which the seller does indeed offer pGH(K*-1) when . = 1-DH.  For some
parameter values this equilibrium involves incomplete screening: when . = 1-DH the high buyer rejects the screening offer with
positive probability, and J’ = K*-1, so that (if K* > 1) the seller makes a pooling offer next period even though this period’s
valuation was not fully revealed.  There are also equilibria in which .* = DL(K*), with J’ = K*-1 if a screening offer is rejected
when . = 1-DH, and J’ = K* if a screening offer is rejected when . =.*.  Note that such equilibria violate A1.
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The Buyer’s Strategy

Definition: The cyclic trading rule associated with (.*,8*) is the mapping q=Q*(J,p,n,.) defined as follows:

For n = 0, if p # pL(J) then q = 1; if p >  pL(J) then q = 0

For n = 1: if p # pGH(K*-1) then q = 1, and if p >  pGH(J-1) then q = 0

if pGH(s+1) < p #  pGH(s), where J-1 # s # K*-2 then q = 1 w. p. L, and q = 0 w. p. 1-L,

where 

Definition: The cyclic trading strategy FB(.*,8*) associated with (.*,8*) is the sequence of mappings

defined by the composition of the cyclic trading rule Q* with the cyclic belief system A* and the

threshold state variable Q, given by qt = Q*(Jt,pt,nt,.t), where (.t,8t) = A t
*(ht

0) and Jt = Q(.t,8t)

The strategy FB(.*,8*) is uniquely determined by the basic parameters (2,DL,DH,*).  The components

described above for the seller’s strategy determine Q*, and the quantity is chosen by applying Q* to

(Jt,pt,nt,.t).  Since the belief system implies .t # .*(s+1) # 1, the probability < is well-defined.23
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Figure 3: Randomization by the high-valuation Buyer (the next state is J0 if q=0, and J1 if q=1)

Figure 3 shows how the buyer’s strategy responds to a price p above pH, given that n = 1.  The response

must be random, because if all buyers reject, the end of the pooling cycle comes one period closer, in which

case acceptance would be more attractive for the high buyer; but if all high buyers accept, then rejection

would restart the pooling sequence, and this would be more attractive to the high buyer.  The arrows in the

diagram show how the next state Jq depends on p and q.

The complete equilibrium construct can now be formally defined.

Definition:  The cyclic screening equilibrium for the parameter vector (2,DL,DH,*), is the pair

, where (.*,8*) = -(2,DL,DH,*).

The following results show that if the parameters (2,DL,DH,*) lie in a region defined by a set of inequalities

derived below, then (F*,A*) is indeed an equilibrium.

Lemma C:

 The strategy-belief pair (F*,A*) is consistent

Corollary:

 The strategy-belief pair (F*,A*) satisfies the immediate signaling property A2.

Lemma T2:
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 The strategy-belief pair (F*,A*) satisfies the screening threshold property A1.

Lemma J2:

 For any t, and for any public history ht
0, let (.t,8t) = A t

*(ht
0), and Jt = Q(.t,8t). The strategy profile F*

implies that the joint continuation value from period t is JL(Jt) + (1-nt)j(Jt).

Lemma B1 shows that the buyer’s value function is uniquely determined by consistency and properties

A1-A4.  But the tight pricing property is not easy to check.  The following result shows directly that F*

implies the value function in Lemma B1, and that F* is sequentially optimal for the buyer.

Proposition B2:

 The profile F* is sequentially optimal for the buyer.  After any history, the buyer’s continuation value

is VL + n d(J), where n and J are current values, and VL and d(J) are as defined in Lemma B1

Corollary:

The profile F* satisfies properties A3 and A4.

Lemma J2 and Proposition B2 immediately imply the following result for the seller’s values.

Lemma S1:

 For any t, and for any public history ht
0, let (.t,8t) = A t

*(ht
0), and Jt = Q(.t,8t). The pair (F*,A*)

implies that the seller’s continuation value is UL(Jt) + (1-.t)g(Jt), where the functions g(J) and UL(J) are

defined by

To complete the proof that (F*,A*) is an equilibrium, it remains only to show sequential optimality for

the seller.  First, Lemma S2 shows that there is no profitable one-period deviation below pH, and in

particular that the seller cannot gain by deviating from a pooling to a screening offer, or vice versa.

Lemma S2:

Let F̂S(p) be a strategy for the seller that selects the price p in period t, and follows the cyclic pricing

strategy FS(.*,8*) in all subsequent periods.  Then for any public history ht
0, and for any p # pH

The second part of the optimality proof, in Proposition S3, shows that there is no profitable one-period

deviation that sets a price above pH, provided that the parameters satisfy the following:



24If .* = D(K*), then .*(K*) = 1, and otherwise .*(K*) = 1 is just a convention.
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(Xs)

(X1)

(X6K-1)

Definition A5:

The parameter vector (2,DL,DH,*) satisfies the complete screening conditions if 

for 1 # s # K*, where (.*,8*) = -(2,DL,DH,*), K* = 6(.*), b* = 1/B(K*+8*), r* = 1/R(K*+8*) and

.*(K*) = 1.24

Proposition S3:

If (2,DL,DH,*) satisfies A5, then (F*,A*) is sequentially optimal for the seller.

The proof (in the Appendix) shows that the left side of A5 is the difference between the equilibrium

continuation value and the value of deviating to a  price p such that pGH(s) < p # pGH(s-1), when . = 1-DH.

8.  Existence of Equilibrium

To prove existence of the cyclic screening equilibrium (F*,A*), it remains only to show that A5 can be

satisfied.  This is established by the following two results, for a non-trivial region of the parameter space. 

The first gives a simplified test that is sufficient for A5.

Proposition E1

Suppose (.*,8*) = -(2,DL,DH,*) and the following two conditions hold

and

Then (2’,DL,DH,*) satisfies A5 for any 2’ 0 [2,2
4
).

 Note that X1 is a rearrangement of the inequality Xs in A5 with s = 1, while X6K-1 is stronger than Xs with

s = K
*-1.  Also, X6K-1 must hold if K* is large, but it cannot hold unless K* 

$ 3.  In fact, if K*
 = 2 the

inequality can be written as DH # DH (1-DH ), which is impossible for DH > 0.  But this does not mean that X1

fails when K* = 2, as is illustrated in Table 2 below.

The second result gives a condition on the parameters (DL,DH,*) guaranteeing that the complete

screening conditions hold when 2 is large (i.e. when the cost of screening is high).



25The inequality X1
4 is a rearrangement of Xs with s = 1 and K = 4.
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(X1
4)

Proposition E2

Suppose the parameters DL, DH and * satisfy the inequality25

Then there is a number 20 such that for any 2 0 (20,24) a cyclic screening equilibrium exists.

9.  Applications and Examples

Patience and Learning

If the seller is myopic then there is no point in screening to gain information, although screening may

still be profitable if the high valuation is sufficiently likely.  If the seller is forward-looking the value of

information provides an additional motive for screening, but a forward-looking buyer will resist the seller’s

attempts to learn the current valuation.  Rustichini and Wolinsky (1995) showed that if the buyer is not

forward-looking, and the valuations are permanent, an increase in * implies more screening.  The following

proposition shows that this is valid more generally, even when the buyer is forward-looking.

Proposition L:

Suppose that (2,DL,DH,*) satisfies A5 for all values of * in some interval I.  Then for * 0 I the

screening threshold .* in the cyclic screening equilibrium at (2,DL,DH,*) is increasing in *.

Proof:

The function G(k) is increasing in *, for each k.  This implies that the value of 2 associated with a

given value of .* increases with *, and since .* is a decreasing function of 2, the result follows.

Thus the screening region expands as * increases.  By the same argument, when 8* is positive, an

increase in * implies a decrease in 8*, which again means more screening.
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Table 2: An Optimal Screening Cycle

Parameters Equilibrium

2 = ½,  * = F,DL = ¾, DH = ¾ 

: = ½, N = ½

, 8*=0, K* = 2 X1: 

Continuation Valuesa

Joint Buyer Seller Beliefs Prices

Stateb JL(J) JH(J) VL VH(J) UL(J) UH(J) U(J) .(J) pH, pL(1)

J=0 6,528 103,632 2,240 6,160 4,288 97,472 74,176

J=0 6,528 103,632 2,240 6,160 4,288 97,472 39,232

J=1 35,088 103,632 2,240 64,960 32,848 38,672 34,304

aThe values are scaled up by 62,475, to give exact results that are easy to compare across states.
bThe two rows with J = 0 differ only in the seller’s beliefs: the first is reached after a successful

screening offer, and the second after a pooling offer.

A Basic Example

A cyclic screening equilibrium with a cycle of length 2 is shown in Table 2.  When K*
 = 2 and 8*

 = 0,

the only condition to be checked is X1 (since XK holds with equality when 8* = 0).  This condition indeed

holds in the example (although it fails for slightly smaller values of 2, such as 4/9).  The equilibrium price-

quantity pairs are generated by a Markov chain with three states: (8/17,1), (24/17,0) and (24/17,1).

Random Screening

An equilibrium with random screening is shown in Figure 4, which plots the function - over the

relevant range, with parameters (2,DL,DH,*) = (5/34,41/44,7/22,1/2).  The plot shows the piecewise-linear

function .  This function jumps at an inconvenient spot, which is why randomization by

the seller is needed in equilibrium.  The screening threshold is .* = D(3) =641/704, with 8* = .10889. 

Thus a rejected offer is followed by two pooling offers, and then another pooling offer with probability 8*

or a screening offer with probability 1-8*.  The example satisfies the E1 conditions above (X1 evaluates to
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Figure 4: Random Screening Equilibrium
(DL=41/44,DH=7/22, *=½)

.0608, and XK-1 evaluates to 79/1320 < 120/1320).  The screening price is pH = .988214, and the first

extended screening price is pGH(K-1) = .988244.

An Example Showing the Effects of Limited Commitment

A surprising feature of the equilibrium is that the

presence of the high buyer type can make the seller worse

off ex ante.  An extreme case is shown in Table 3, using a

discount factor close to 1.  Coase (1972) conjectured that a

monopoly seller of a durable good who could not commit to

hold the line on prices for any length of time would be

unable to obtain any monopoly profit.  In the case of the

rectangular demand curve used in this paper, the

implication is that the seller can do no better than the

pooling price, with a value of 16,000.  But in the cyclic

screening equilibrium the seller does even worse than this: the highest value achieved is 13,856, so that the

seller would prefer to face the low-valuation buyer for sure.  One reason for this is that a substantial piece

of the pie is wasted due to unsuccessful screening offers; the other is that the low-valuation buyer gets a

large informational rent.  The seller would be happy to guarantee that future prices will never exceed 2 (as

if the high buyer type did not exist).  But this guarantee is credible only if there is a mechanism that will

enforce even the most ancient contracts, because there will come a time after which the seller will always

wish to renege.



26Evaluating Z at DH=1 shows that .*=1/(1+2); also : = 0, so .* > :.  Fix 2 so that 1/(1+2) < DL (if 2 is not in this region
there is an unconditional screening equilibrium).  Then K*  > 1, and so b* < 1, and then X1 fails as DH approaches 1.  Thus
(F*,A*) is not an equilibrium.  Given any initial belief the seller eventually becomes optimistic enough to screen, and the high 
buyer accepts, and this implies .’ = 0.  Then if the buyer follows the cyclic screening strategy, the response to p = 1+2 is q = 1
(for the high type, which is the only type entertained by the seller at this point), so the seller gains by deviating from pH to 1+2.
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Table 3: An Example of the Effect of Limited Commitment

Parameters Equilibrium

2 = 8/5, * = .9999, DL = 3/4, DH = 3/4

: = 1/2, N = 1/2

.* = .528, 8*=0, K* = 5

X1: .795 > 0; XK*-1: 

Continuation Values

Joint Buyer Seller Beliefsb Prices

Stat

e

JL(J) JH(J) VL VH(J) UL(J) UH(J) U(J) .(J) pH,

pL(J)

J=0 18,691.85 18,694.77 4,837.79 4,838.76 13,854.06 13,856.01 13,855.52 16 1.87

J=0 18,691.85 18,694.77 4,837.79 4,838.76 13,854.06 13,856.01 13,855.00 33 1.87

J=1 18,692.31 18,694.77 4,837.79 4,839.28 13,854.52 13,855.49 13,854.97 34 1.36

J=2 18,692.65 18,694.88 4,837.79 4,839.53 13,854.86 13,855.35 13,855.07 36 1.49

J=3 18,692.94 18,695.06 4,837.79 4,839.66 13,855.15 13,855.40 13,855.24 40 1.55

J=4 18,693.20 18,695.26 4,837.79 4,839.73 13,855.41 13,855.53 13,855.44 48 1.58

bProbabilities are scaled up by the factor 64

A Cyclic Screening Equilibrium with High Persistence

For any given value of 2, condition X1 generally fails as DH approaches 1, meaning that the seller

would deviate from the cyclic screening strategy so as to extend screening over more than one period.26  On

the other hand, Proposition E2 indicates that cyclic screening equilibria exist even if DH is arbitrarily close

to 1, provided that 2 is large.  This is illustrated in Table 4.
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Table 4: An Example with Almost Permanent Valuations

Parameters Equilibrium

2 = 100,* = 3/4, DL = .99 , DH = .9999

: = 1/101 = .00990099, N = .9899

.* = .00990393, 8*=0, K* = 1254

X1: 2672.682659 > 0 X6K*-1: .9598790345 > 0

Continuation Values

Joint Buyer Seller Beliefs Prices

State JL(J) JH(J) VL VH(J) UL(J) UH(J) U(J) .(J) pH, pL(J)

J=0 300.110 403.9688 0.1165 2.9988 299.99 400.97 400.959911 0.00010000 100.250075

J=0 300.110 403.9688 0.1165 2.9988 299.99 400.97 399.969946 0.00990392 100.250075

J=1 325.860 403.9688 0.1165 3.2564 325.74 400.71 399.969946 0.00990395 99.9925

J=2 344.980 403.9708 0.1165 3.4476 344.86 400.52 399.971884 0.00990398 99.99443

J=1252 400.110 403.9988 0.1165 3.9988 399.99 400.00 399.993658 0.98010100 100.0

J=1253 400.110 403.9988 0.1165 3.9988 399.99 400.00 399.993594 0.99000000 100.0

The main point of this example is that the ratchet effect does not preclude screening, despite the above-

mentioned Hart-Tirole (1988) result that there are no equilibria with screening in early periods when the

valuations are completely permanent,  and the horizon is long.  What happens in the example is that the

buyer is willing to reveal the high valuation because the seller never becomes quite certain that the current

valuation is high, and even a small doubt leaves the seller willing to pool,  because the cost of screening is

high.  Thus the buyer knows that even if a screening offer is accepted now, the seller will restart the pooling

cycle if a screening offer is rejected next time.

10.  Alternative Equilibria

Cyclic screening equilibria exist only if .* $ :, which reduces to the condition 2 # 2
4
.  If 2 exceeds

this bound, there are “transient screening equilibria” with .* < :, so called because a seller who infers that

the current valuation is low will never again be optimistic enough to screen.  Such equilibria resemble a

cyclic screening equilibrium with K* = 4, with one important difference.  In a cyclic equilibrium, .* is the

belief that leaves the seller indifferent between screening and pooling, given that pooling now implies

screening next time.  But in a transient screening equilibrium, a pooling offer at .*  implies pooling in all

future periods.  If .* $ 1-DH, the value of a screening offer in a transient screening equilibrium is exactly as

it would be in a cyclic equilibrium with K* = 4, because an accepted screening offer is followed by another

screening offer.  The value of a pooling offer is 2/(1-*), and the screening threshold is obtained by finding

the value of n = 1-. where this matches the value of screening.  This yields
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Figure 5: Alternative equilibria (DL = E, DH = E, * = ½)

If .* is not in either the cyclic screening interval [:,1] or the transient screening interval [1-DH,:], it

must be in the “unconditional pooling” interval [0,1-DH ], so called because even the most optimistic seller

chooses pooling.  At the other extreme, there is an “unconditional screening” interval [DL,1] where even the

most pessimistic seller chooses screening.  In these unconditional cases, .* equates the value of pooling and

screening offers in the current period without regard to the future, because the future is not affected by

what happens now, so .* is the solution of the static problem, namely .* = 1/(1+2).

For a nontrivial cyclic equilibrium, .* must lie between : (with K* = 4) and DL (with K* = 1).  Thus

where 1 = 1/2.  The conditions for a transient screening equilibrium with 1-DH # .* # : can be written as

Finally, the condition for an

unconditional pooling

equilibrium is

0 # 1 < 1/DH - 1.  These

results are illustrated in

Figure 5, which shows how .*

varies with 2, for a particular

ordering of the critical values of

1 defined above. The diagram

plots 1 against .*/(1-.*), since

these are equal in the static

case, and otherwise the

relationship between them is

either piecewise-linear (in the

case of screening cycles) or

affine (in the transient screening

case).  In this example, the complete screening conditions are satisfied by all values of 1 below the dashed

line labeled X1 (which is just above the transient screening region).



27The details of these results are in an unpublished appendix, at http://www.ssc.wisc.edu/~jkennan/research/App_C_cyc.pdf.
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Alternative Beliefs27

A key assumption in the above analysis is that rejection of a pooling offer would convince the seller

that the buyer’s current valuation is low (A2).  A simple alternative that might seem appealing is to treat

rejected pooling offers as uninformative mistakes, and proceed as if they had been accepted.  Then since the

continuation will be the same whether the price is accepted or not, the pooling price is just the low

valuation, 2.  But it can be shown that the derivation of the screening threshold becomes more difficult.  In

fact, there is no simple way to determine .* from the basic parameters, so the analysis of equilibria

supported by these alternative beliefs is problematic.

11.  Conclusion

This paper analyzes repeated bilateral monopoly with a private stochastic process for the buyer’s

valuation.  The main results are concerned with cyclic movements of equilibrium prices and quantities

generated by a two-state Markov chain for the buyer’s valuation.  A novel feature of the model is that

pooling offers give the buyer a surplus even in the bad state, because the buyer has the option of refusing. 

The sequence of pooling prices driven by the value of this option involves a gradual decline while the seller

is in the pooling phase of the equilibrium cycle, and a sudden jump at the end of this phase.

At any point in the game, the only information that is relevant for future payoffs is the buyer’s current

valuation.  The seller’s strategy is driven by a belief about this valuation, using everything that can be

inferred from the buyer’s actions in the context of the buyer’s equilibrium strategy.  This belief is

summarized by a state variable that counts the number of pooling offers remaining before the seller will be

optimistic enough to make the next screening offer.  The buyer’s strategy then uses this state variable

together with the actual current valuation.  This is a tractable structure that is be suitable for empirical

application: in particular, explicit solutions are obtained for equilibrium prices and quantities.

Cyclic equilibria of this kind have previously been analyzed by Kennan (1995), and by Rustichini and

Villamil (1996).  The model in Kennan (1995) allows a sequence of offers within each contract negotiation. 

This led to complications that precluded a systematic equilibrium analysis; in this paper, these

complications are suppressed so as to focus on linkages across contracts.  Rustichini and Villamil also

assumed one offer per contract, and their main result was that cyclic equilibria exist if persistence is high. 

This is puzzling since Hart and Tirole (1988) showed (for discount factors exceeding ½) that only pooling

equilibria survive in the limiting case when the buyer’s valuation is permanent.  But these results are in fact

compatible, because the Rustichini and Villamil equilibrium is merely a weak Perfect Bayesian equilibrium,
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in which the seller’s beliefs off the equilibrium path are not consistent with the buyer’s strategy.  This paper

indicates that once consistency is imposed, cyclic equilibria disappear as DH approaches 1 (with 2 fixed),

because a seller who is virtually certain that the current valuation is high will not abandon this belief just

because a single screening offer has been rejected.  Instead, as in the standard static bargaining model, a

long sequence of rejected screening offers may be needed to overcome the seller’s initial optimism.

The main limitation of the model developed here is that such extended screening equilibria are ruled

out, by excluding a portion of the parameter space in which the cost of an unsuccessful screening offer is

low.  A more general analysis would expand the state variable to count down the number of rejected offers

needed to convince the seller to restart the pooling sequence.  From the point of view of application, a more

important question is whether the results obtained here can be generalized to cover the case in which the

seller makes a sequence of offers within each contract negotiation, and does not infer that the current state

is low until all of these offers have been rejected.

The paper does not address the larger question of why the parties cannot commit to long-term

contracts: it is assumed that contract duration is given, and that the Markov chain makes one transition per

contract.  The literature contains no good theory of contract duration.  This paper can shed some light on

this question, by linking the contract duration to the degree of persistence in the buyer's private information. 

In particular, if the use of short-term contracts is interpreted as being due to uncertainty about whether

long-term contracts will be enforced, the model shows how improvements in the enforcement technology

affect the equilibrium of the bargaining game, by weakening the persistence of private information across

contracts.
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Appendix: Proofs
Proposition J1:
Lemma M implies that J = s+8* for some nonnegative integer s, and that the joint continuation value is
determined by the Markov chain for (n,J).  Thus JL(J) is the value of s periods paying n+2,  plus the continuation
value from J = 8* after s periods:

If nt = 1, the joint continuation value JH(J) is as above, but with DH(i) in place of 1-DL(i).  Note that
DH(i) +

 DL(i) - 1 = Ni.  This yields j(J) = 1+$j(J-1).  When J = 8*, the continuation is as if J = 0 or J = 1, with
probabilities J and 1-J, so JL(8*) = 8*

 J
L(1) + (1-8*) J

L(0) and j(8*) = 8*
 j(1) + (1-8*) j(0).  The joint continuation

values from accepted and rejected screening offers are given by

So

where the second equality uses the above equation for JH(0).  Then the equations for JL(0) and JH(0) can be solved
for JL(0) and j(0):

Finally, j(J) = j(0) - B(J)r*2, which completes the proof.
Proposition T0:

By A1, the seller randomizes between pooling and screening after any history such that .t = .* and ps # F6 S for
all s < t, so (by A0) the seller must be indifferent between these alternatives.  A2-A4 imply that the continuation
after a pooling offer, conditional on nt, is identical to the continuation after a pooling offer with Jt = 1 (i.e. the
continuation under (F,A) for .t just above .* ).  These properties also imply that the continuation after a screening
offer, conditional on nt, is identical to the continuation after a screening offer with Jt = 0 (i.e. the continuation
under (F,A) for .t just below .* ).  Thus the seller’s expected payoffs are UL(1) + (1-.*)g(1) for a pooling offer, and
UL(0) + (1-.*)g(0) for a screening offer, so .* must equate these, i.e.

Proposition T1:
Fix DL, DH and *.  Using Proposition T0, the values of 2 can be partitioned into adjacent pairs of intervals,

indexed by k.  The first pair (with k=1) is .  If 2 is in the first interval, then

.* = 1/(1+2) > DL and 8* = 0, meaning that the seller always makes screening offers.  In the second interval,

.* = DL and , meaning that after each rejected screening offer, the seller makes another

screening offer next period with probability 1-8*.  Progressively higher values of 2 fall in the first interval labeled
k=2, then in the second interval labeled k=2, and so on for larger values of the index k.

From now on, for any t, and for any public history ht
0, let (.t,8t) = A t

*(h t
0) and Jt = Q(.t,8t).  

Lemma C:
For any price that is surely accepted by FB(.*,8*), Bayes’ rule implies that the posterior after acceptance must

be the same as the prior, so the belief next time is .’ = N.t + (1-N):.  This covers all prices below pL(Jt), with
qt = 1.  If any such price is rejected, any belief is consistent with Bayes’ rule.  Similarly, the seller’s belief is



28The seller’s belief following a rejected pooling offer can be supported as the limiting Bayesian inference for a sequence of
fully mixed buyer strategies approaching the equilibrium strategy.  Modify the buyer’s strategy so that wherever q =1, the buyer
instead accepts with probability 1-g1+n, while if q = 0, the buyer accepts with probability g2-n.  In particular, g2 is the probability
that a pooling offer is rejected by the high buyer and  g is the probability for the low buyer (the point here is that the probability
of a mistake is inversely related to its cost: the high buyer is more likely to err on the high side, and the low buyer is more
likely to err on the low side).  Then if a pooling offer is rejected, Bayes rule implies .=1/(1+,).  Taking g = 1/m yields a
sequence .m converging to 1, supporting the belief that if a pooling offer is rejected, the buyer’s valuation is low.
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consistent for any price that is rejected by FB(.*,8*); this covers all prices above pGH(Jt-1).  If p is accepted by
FB(.*,8*) when nt=1 and rejected when  nt=0, then the seller must believe that (1) nt = 0 if qt = 0, which implies
.’ = DL, and (2) nt = 1 if qt = 1, so .’ = 1-DH.  This covers all p in (pL(Jt),pGH(K*-1)].  The leaves only prices in
(pGH(K*-1),pGH(Jt-1)].  These prices are accepted with positive probability by FB(.*,8*)  iff nt = 1, so the belief next
time is .’ = 1-DH following acceptance.  The belief following rejection depends on p.  If nt = 1, FB(.*,8*) locates p
in a subinterval (pGH(s+1),pGH(s)], where J-1# s# K*-2, and uses s and .t = A t

*(h t
0) to determine the acceptance

probability <t.  The posterior belief if p is rejected is

Thus .’ = .*(s), so the belief is consistent for prices in the interval (pGH(K*-1),pGH(Jt-1)], which completes the
proof.28

Proof of Corollary:
If qt = 0 and pt # pH then .t+1 = DL.  But consistency requires .t+1 = 1-DH+NAt+1 [nt = 0 | h t

0
+1 ], so

At+1 [nt = 0 | h t
0
+1 ] = 1.

Lemma T2:
Consider any period t, and any public history h t

0.  Let (.t,8t) = A t
*(h t

0), and Jt = Q(.t,8t).  If .t < .*, then
Jt = 0, and F* specifies pt = pH and qt = nt.  If .t > .*, then Jt $ 1, and F* specifies pt = pL(Jt) and qt = 1.  If .t = .*,
then Jt = Q(.*,8t) = 8t, so it suffices to show that if ps # pH for all s < t, then 8t = 8*.  But this follows immediately
from the definition of A*(.*,8*), because in the first period 81 = 8*, and subsequently ps # pH implies either
8s+1 = 8s, or 8s+1 = 8*, so 8t = 8*.

Lemma J2:
This follows immediately from Proposition J1 and Lemmas C and T2 if 8t  = 8*.  For any value of 8t, the

continuation path of F* is the same as if 8t  = 8* except that the first time Jt+i = 8t the probability of a pooling offer
is 8t instead of 8*, with 8s  = 8* for all s > t+i.  Thus the result holds for s > t+i, so j(Jt+i) = 8t j(1) + (1-8t )j(0), and
similarly for JL.

Proposition B2:
Given that the seller follows FS(.*,8), the buyer’s value is the value of a dynamic programming problem with

control q and state J.  For J $ 1, the seller offers pL(J), and if q = 1 then J’ = J-1, and if q = 0 then J’ = K-1+8.  If
J = 0 the seller offers pH and if q = 1 then J’ = 0, and if q = 0 then J’ = K-1+8.  For 0 < J < 1, the seller behaves as
if J = 1 with probability J, and as if J = 0 with probability 1-J.  This presents the buyer with a well-defined law of
motion from (J,q) to J’, for any value of J 0 [0,K], and for q 0 {0,1}.  Thus the buyer’s value depends only on the
current values of n and J.  Let V̂L(J) and V̂H(J) denote the buyer’s optimal continuation values when the seller

follows FS(.*,8).  The principle of optimality yields the following functional equation for V̂L(J) and V̂H(J) / 

V̂L(J) + d̂(J):
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The claim is that V̂L(J) = VL, and V̂H(J) = VL + d(J).  It is enough to show that if this is true on the right sides of
the above equations, then it is also true for the left sides (i.e. it is true for next period, then it is also true for this
period).  Then, since the payoffs are bounded, the claim can be proved by backward induction.  Substitute
V̂L(J) = VL and V̂H(J) = VL + d(J) on the right sides of these equations.  Then, for J $ 1, the definition of pL(J)

implies that V̂L(J) is the maximum of two equal numbers, and

where the last equality follows from $ [d(K-1+8) - d(J-1)] # 1 for J $ 1.  Thus, for J $ 1,

For J = 0, the definition of pH implies that V̂H(0) is the maximum of two equal numbers, and

where the last equality follows from $ [d(K*-1+8*) - d(0)] # 1.  Thus 

For 0<J<1, V̂L(J)=JV̂L(1)+(1-J)V̂L(0)=VL and V̂H(J)=J V̂H(1)+(1-J)V̂H(0)  = VL + d(J).  Thus V̂L(J) = VL and

V̂H(J) = VL + d(J), for all J.
It remains only to show that the buyer responds optimally to deviant prices.  Clearly, acceptance of prices

below pL(J) is optimal for J $ 1, and similarly the definition of pL(0) is such that the low buyer’s value at J = 0
satisfies the equation

where the left side is the value of rejection, and the right side is the value of acceptance.  Thus acceptance of any
price below pL(0) is optimal for the low buyer when J = 0.  If the seller offers a price p such that
pGH(s+1) < p # pGH(s), then q = 1 implies J’ = 0, and q = 0 implies J’ = s+8, where 8 is defined by p = pGH(s+8). 
Then the high buyer’s value is

where the left side is the value of rejecting, and the right side is the value of accepting.  The definition of pGH(s) is
such that

Thus the buyer is indifferent between acceptance and rejection, and randomization is optimal.  Finally, if the price
is above pGH(J-1), then q = 0 implies J’ = J-1, and the value of rejection exceeds the value of acceptance.  This
completes the proof.

Corollary: The strategy profile F* satisfies properties A3 and A4.
Proof:

As was shown in the proof of B2, the definitions of pL(J) and pH imply the tight pricing property (A3). 
Property A4 for nt = 0 is included in B2.  For nt = 1, the continuation following qt = 0 is the same for any value of Jt

, and A3 implies that this has value VH(0).

Lemma S2:
According to FB(.*,8*), all prices below pL(Jt) are accepted, and such acceptances are uninformative according

to A*, and thus imply the same stochastic process for future payoffs.  Thus prices below pL(Jt) are dominated by
pL(Jt).  Any price in the interval (pL(Jt),pH] is rejected if nt = 0, and accepted if nt = 1.  Again, these prices imply the
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same future payoffs for the seller, so the prices in this interval are all dominated by pH. Thus the only relevant one-
period deviations involve exchanging pL(J) and pH, or else charging a price above pH.

For any history, the continuation from p = pH is exactly as it would be for a history such that Jt = 0.  That is,
the buyer rejects if nt = 0, with .t+1 = DL and Jt+1 = K-1+8*, and the value of this is UL(0); and the buyer accepts if
nt = 1, with .t+1 = 1-DH and Jt+1 = 0, and the value of this is UL(0) + g(0).  Thus after any history the value of
offering pH is UL(0) + (1-.t)g(0), which is linear in .t, and decreasing.

Recall that for Jt # 1, pL(Jt) does not depend on Jt.  Conditional on nt, the continuation when pL(Jt) is offered
with Jt # 1 is as it would be if Jt = 1: the price pL(Jt) = pL(1) is accepted, with Jt+1 = 0.  The seller’s value is then
UL(1) + (1-.t)g(1), which is linear in .t, and decreasing less rapidly than the value of a screening offer, because
g(1) = g(0)-(b*+r*2).  Lemma T0 showed that the threshold .* is defined by the equation
UL(0)+(1-.*)g(0) =UL(1)+(1-.*)g(1), so for Jt # 1, pH is optimal if .t # .*, and pL(Jt) is optimal if .t $ .*.

By Lemma T2, (a) if .t < .*, then Jt = 0, and (b) if .t > .*, then Jt $ 1.  It follows that if Jt  = 0 then (b) is
ruled out, so .t # .*, and if Jt $ 1 then (a) is ruled out, so .t $ .*, and if 0 < Jt < 1 then both cases are ruled out, so
.t = .*.  Thus pH is optimal if Jt  = 0, and pL(Jt) is optimal if Jt = 1, and randomization is optimal if 0 < Jt < 1, so
the strategy FS(.*,8*) is optimal after any history such that Jt # 1.

It remains only to show that pL(Jt) is optimal for the seller if Jt > 1, meaning that the value UL(0) + (1-.t)g(0)
obtained by offering pH does not exceed UL(Jt) + (1-.t)g(Jt), which is the value of following FS(.*,8*).  To verify
this, note that 

since R(J) $ B(J).  As was noted above, Jt > 1 implies .t $ .*, so this inequality proves that pL(Jt) is optimal if
Jt > 1.
Proposition S3:

Lemma S2 shows that no price below pH yields a higher payoff than the price specified by FS(.*,8*).  Prices
above pGH(Jt-1) are rejected by FB(.*,8*), and such rejections are uninformative according to A*, so these prices are
dominated by pL(Jt), which yields the same future payoffs, plus some current profit (recall that pL(Jt) is positive). 
What must be shown is that no price between pH and pGH(Jt-1) improves the payoff.  Suppose pGH(s+1)<p# pGH(s), for
some integer s, with J-1#s#K-1.  Then the buyer accepts with probability q(s), with continuation from .’ = 1-F
and J’ = 0, and rejects with probability 1-q(s), with .’=.*(s) and J’=s+>, where > is defined by p = pGH(s+>).  The
seller’s current payoff  pGH(s+>) and the continuation value from next period are both linear in >, so if pGH(s+>) is a
profitable deviation, a deviation to either pGH(s) or  pGH(s+1) must also be profitable.  Thus > = 0 can be assumed
without loss of generality.  Next, the probability q(s) that pGH(s) is accepted is such that if the offer is rejected the
belief next time will be .’ = .*(s), so after a rejection and before the transition from n to n’ the seller’s belief is
.*(s+1).  Thus .*(s+1) = .̂/[1-q(s)], and in equilibrium .ˆ  = ..  The price pGH(s) is either accepted by the high buyer,
with continuation value uH

a for the seller, or rejected by the high buyer (uH
r), or rejected by the low buyer (uL

r).  So
the seller’s value is

Take the terms in this expression in reverse order.  Rejection means continuation from J’ = s, and from the seller’s
point of view the difference between n=1 and n=0 in this context is exactly the same as it would be at J = s+1, so
uH

r - uL
r = g(s+1).  Next if the current valuation is high, the difference between acceptance and rejection is just the

difference in the joint continuation values, since the high buyer must be indifferent between acceptance and
rejection.  Acceptance means continuation from J’ = 0 and rejection means J’ = s, so

Now compare the seller’s continuation value from a screening offer with the value of an extended screen:
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Consider the first term.  Since the joint continuation value is always the same when a screening offer is accepted,
this is the difference between extended and one-shot screening offers from the high buyer’s point of view, and for
any screening offer the high buyer’s continuation value is the value of rejecting.  Therefore, 

Note here that 

These results can be summarized as :

Since .*(s) # 1, and B(s) and R(s) are increasing, S(s) is an increasing linear function of ., so if it is positive
when . takes its smallest value (which is 1-DH) then it is always positive.  But the inequality Xs is just S(s)/. $ 0
with . = 1-DH.  This completes the proof.
Proposition E1

The proof of E1 uses the following result.

Lemma E0: If c > 0, 0 < * < 1, and 0 < N < 1, then the function f:U6U defined by  is

quasiconcave.

Proof:
It will be shown that f(s) is increasing for s < s0, and decreasing for s > s0, where s0 is the unique solution of

the equation

The right side increases from Pa to 4, and Ns decreases from 4 to 0, as s increases from -4 to +4, so there is a
unique solution.  Also,

The bracketed expression is decreasing in s, and zero at s = s0, and log(*N) < 0, so f is increasing for s < s0, and
decreasing for s > s0.

In the following proofs, DL, DH and * are fixed, and K* and T(s) are considered as functions of 2, using the
notation K(2) and T(s;2).

Proof of Proposition E1:
The proof of S3 shows that the first part of E1 can be stated as S(s) $ 0, for 1 # s #K*.  This is equivalent to

T(s) $ 0, where

Write .*(s) as : + N-sz0, where z0 = .*-:.  Substituting this in T(s) and rearranging terms yields

where = = -1 + DH /[N(1-DH )].  After substituting for D(s) and B(s), T(s) can be written in the form

where a0 and a* are irrelevant constants, and



29One might ask how K* ever changes, given that it remains fixed in both cases considered above.  This is merely a matter of
notation.  Starting from an equilibrium with .* = D(K), increases in 2 yield equilibria with the same value of .* and increasing
values of 8, until 8 reaches 1.  At this point K* is augmented by one and 8 returns to zero, so that the same screening threshold
now satisfies .* = D(K-1), with .*(K-1) = 1.  Note also that the inequality X6K-1 is equivalent to T(K-1) $ 0 at this point.
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(X1)

The coefficient aN is nonnegative if .  This is implied by X6K-1:

Since a$ is positive, the function T(s)/a$ satisfies the conditions of Lemma E0, so T(s) is quasiconcave.  The next
step is to show that X6K-1 implies T(K*) $ 0 and T(K*-1) $ 0.  Then (given X1) quasiconcavity implies
T(s) $ min[T(1),T(K*-1)] $ 0, for 1 # s # K*-1.

To show that T(K*) $ 0, write T(K*) as 

The bracketed term is nonnegative if X6K-1 holds.  If .* > DL(K*) with 8*=0, the relevant condition is T(K*-1) $ 0. 
This can be written as 

The first term is nonnegative, and the term involving 8 is nonnegative if X6K-1 holds, so it is enough to show that the
remainder is nonnegative.  But DL(K*-1) $ .*, so this is also implied by X6K-1:

This proves the first part of E1.
To prove the second part of E1 it is enough to show that an increase in 2 relaxes X1 and X6K-1.  It is obvious that

X6K-1 is relaxed when 2 increases, because K(2) is increasing.  The definition of the function - shows that there are
two possibilities when 2 increases.  First, if DG(K*-1) # 2/G(K*) < DG(K*), then a (small) increase in 2 reduces .*

without disturbing K* or 8*.  Write X1 as

The first term in brackets is positive, because .*(1) # 1 # R(K+8*); also 1/.*(1) increases when .* decreases, so
the left side of the inequality is increasing in 2.  The other possibility is that G(K*) # 2/DGL(K*) < G(K*+1).  Then a
(small) increase in 2 increases 8* while K* and .* remain unchanged.29  It will be shown that this increases T(1),
implying that an increase in 2 relaxes X1.  Write T(1) as

Then, since .* = DL(K*) when 8* is positive,

The first term here is obviously positive, since .*(s) # 1.  To show that the remainder is positive, divide it by )K,
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and note that 

is positive when X6K-1 holds.  This completes the proof.
Proposition E2

First consider T(1,2) as a function of 2.  As 2 increases, K(2) increases, with K = 4 for 2 > 2
4
.  Also,

Substituting .* = : in this equation shows that (X1
4) is equivalent to T(1,2

4
) > 0, so there is an interval (20,24)

such that T(1,2) > 0 for 2 0 (20,24).  Since X6K-1 necessarily holds for large K*, 20 can be chosen to ensure that X6K-1

holds for 2 0 (20,24).  Then the conditions of Proposition E1 are satisfied for 2 0 (20,24).


