Economics 711

1997 Midterm Answer Key

PART A

Q1 (i) In this question we have a Marshallian demand function with arguments \(C(p, m) = C(p, w, wL) \). We can determine this function from the solution to

\[
\max_{\{C,L\}} \min\{C, L\} \quad \text{s.t.} \quad pC + wL = w\bar{L}.
\]

Clearly, in this problem we have \(u = C = L \). Substituting this into the budget constraint gives, \(pC + wC = w\bar{L} \), and rearranging yields

\[
C(p, w, w\bar{L}) = \frac{w\bar{L}}{p + w}.
\]

(ii) Substituting the Marshallian demand into the utility function yields indirect utility,

\[
v(p, w, w\bar{L}) = \min \left\{ \frac{w\bar{L}}{p + w}, \frac{w\bar{L}}{p + w} \right\} = \frac{w\bar{L}}{p + w}.
\]

(iii) We know from the "basic four" that, in general, \(v(p, m) = v(p, e(p, u)) = u \). So in this case we have \(v(p, w, e(p, w, u)) = u \), or

\[
\frac{e(p, w, u)}{p + w} = u.
\]

Rearranging, we derive the expenditure function,

\[
e(p, w, u) = u(p + w).
\]

(iv) The definition of the money metric indirect utility function is \(\mu(p; q, m) = e(p, v(q, m)) \). In this case we have

\[
\mu((p_2, w_2); (p_1, w_1), w\bar{L}) = e((p_2, w_2), v(p_1, w_1, w_1\bar{L})) = v(p_1, w_1, w_1\bar{L})(p_2 + w_2) = \frac{w_1\bar{L}}{p_1 + w_2}(p_2 + w_2)
\]

Q2 (i) A cost function, \(C(y, w) \), derived from some convex monotonic technology has the following four properties:
(1) hdl in \(\mathbf{w} \).

(2) Nondecreasing in \(\mathbf{w} \), nondecreasing in \(y \).

(3) Concave in \(\mathbf{w} \).

(4) Continuous in \(\mathbf{w} \).

Now (1) says \(C(y, tw) = tC(y, \mathbf{w}) \), so we have

\[
C(y, t(w_1, w_2)) = y[aw_1 + bw_2 + c(tw_3)^{5/8}(tw_4)^{1/4}] = t[y(aw_1 + bw_2 + t^{-1/8}cw_3^{5/8}w_4^{1/4})].
\]

We clearly require \(c = 0 \). So we now have \(C(y, w_1, w_2) = y(aw_1 + bw_2) \). Checking (2) yields

\[
\frac{\partial C(y, w)}{\partial w_1} = ya \geq 0, \quad \frac{\partial C(y, w)}{\partial w_2} = yb \geq 0,
\]

which implies \(a \geq 0, \ b \geq 0 \). Now note that we have a function that is linear in \(w_1 \) and \(w_2 \), so it is both concave and continuous, satisfying (3) and (4) above.

(ii) We have \(C(y, w_1, w_2) = y(\alpha w_1 + \beta w_2) \), so from basic duality theory we know that the underlying technology is Leontief, of the form

\[
f(x_1, x_2) = \min \left\{ \frac{x_1}{\alpha}, \frac{x_2}{\beta} \right\}.
\]

Arguing backwards, and with an example, let \(\alpha = 1 \) and \(\beta = 2 \). We know that \(x_1 = x_2/2 = y \) at any cost minimizing combination of factors. So to produce one unit of \(y \) we need one unit of \(x_1 \) and two units of \(x_2 \). The cost of one unit \(y \) is therefore \(w_1 + 2w_2 \). So we get a linear cost function, \(C(y, w_1, w_2) = y(w_1 + 2w_2) \). It can be seen can see that this argument follows for any \(\alpha \) and \(\beta \).

Q3 (i) The consumer will only accept \(F \) if her expected utility is higher than if she is not insured. That is, \(F \) must satisfy the following inequality,

\[
\log(W - F) \geq p \log(W - h) + (1 - p) \log(W + h).
\]
Since the logarithmic function is monotonically increasing, the largest such F will be the one satisfying the following equality,

$$\log(W - F) = p\log(W - h) + (1 - p)\log(W + h).$$

(ii) From above we know F satisfies

$$\log(W - F) = p\log(W - h_0W) + (1 - p)\log(W + h_0W)$$

$$= p\log(W(1 - h_0)) + (1 - p)\log(W(1 + h_0))$$

$$= p\log(W) + (1 - p)\log(W) + p\log(1 - h_0) + (1 - p)\log(1 + h_0)$$

$$= \log(W) + p\log(1 - h_0) + (1 - p)\log(1 + h_0)$$

Applying the exponential function to both sides and rearranging yields

$$\frac{F}{W} = 1 - (1 - h_0)^p(1 + h_0)^{(1-p)}.$$

Note that F is not exactly “independent” of W. What is true is that F/W is independent of W. The second part of the question asks for the effect of increasing h_0 on F/W. Taking the derivative of the above equation, we have

$$\frac{\partial}{\partial h_0} \left(\frac{F}{W}\right) = p(1 - h_0)^{(p-1)}(1 + h_0)^{(1-p)} - (1 - p)(1 - h_0)^p(1 + h_0)^{-p}.$$

This derivative is positive if

$$p(1 - h_0)^{(p-1)}(1 + h_0)^{(1-p)} - (1 - p)(1 - h_0)^p(1 + h_0)^{-p} \geq 0.$$

Rearranging, we have

$$\frac{p}{1 - p} \left(\frac{(1 - h_0)^{p-1}}{(1 - h_0)^p}\right) \left(\frac{(1 + h_0)^{1-p}}{(1 + h_0)^{-p}}\right) \geq 0, \quad \text{or} \quad \frac{p}{1 - p} \geq \frac{1 - h_0}{1 + h_0}.$$

So whether F/W varies positively with h_0 depends on the value of p. For example, if $p = 1/2$, then F/W increases with h_0. But for a small enough probability of loss we have F/W decreasing with h_0.

3
PART B

Q4 (a) The consumer’s problem is

$$\max_{q} pu(W - L - \pi q + q) + (1 - p) u(W - \pi q).$$

The FOC is

$$p(1 - \pi)u'(W - L - \pi q + q) - (1 - p)\pi u'(W - \pi q) = 0.$$ \hfill (1)

Rearranging, we have

$$\left(\frac{1 - p}{p}\right) \left(\frac{\pi}{1 - \pi}\right) = \frac{u'(W - L - \pi q + q)}{u'(W - \pi q)}.$$ \hfill (1)

Since $\pi = p$, the LHS of (1) is equal to 1. Therefore $u'(W - L - \pi q + q) = u'(W - \pi q)$. We know $u''(\cdot) < 0$, so $u'(\cdot)$ is a strictly decreasing function, and therefore one-to-one. So $W - L - \pi q + q = W - \pi q$, implying $q^* = L$. This, of course, is just the Full Insurance Principle.

(b) We can rearrange the LHS of (1) as $\left(\frac{\pi}{p}\right) \left(\frac{1 - p}{1 - \pi}\right)$. Since $\pi > p$, we have $\frac{\pi}{p} > 1$ and $\frac{1 - p}{1 - \pi} > 1$. This implies the LHS of (1) is greater than 1, so $u'(W - L - \pi q + q) > u'(W - \pi q)$.

Using the fact that $u'(\cdot)$ is a decreasing function, we have

$$W - L - \pi q + q < W - \pi q,$$

implying $q < L$.

So $q^{**} < L = q^*$. This makes sense – when insurance premiums are above actuarially fair rates, risk averse consumers will less than fully insure against potential losses.

Q5 (a) (Note that the proof below that $a(p)$ must be constant is a little subtle. By assuming indirect utility satisfies hdo in (p, m), it is shown that indirect utility cannot satisfy nonincreasing in p unless $a(p)$ is constant. It is not sufficient to simply state that hdo fails – you must show that hdo and nonincreasing in p cannot simultaneously hold.)
In order for $v(p, m) = a(p)$ to satisfy $\text{hd}0$ in (p, m), we must have $a(\lambda p) = a(p)$ for any $\lambda > 0$. Differentiating both sides of this equation wrt λ and evaluating at $\lambda = 1$ gives

$$
\sum_{i=1}^{k} \frac{\partial a(\lambda p)}{\partial (\lambda p_i)} \frac{\partial (\lambda p_i)}{\partial \lambda} = \sum_{i=1}^{k} \frac{\partial a(p)}{\partial p_i} p_i = \sum_{i=1}^{k} \frac{\partial a(p)}{\partial \lambda} = 0.
$$

Since all prices are positive, if $\frac{\partial a(p)}{\partial p_i} < 0$ for any good i, to maintain the above equality there must be at least one good j where $\frac{\partial a(p)}{\partial p_j} > 0$. But this would violate another of the indirect utility function’s properties: nonincreasing in p implies $\frac{\partial a(p)}{\partial p_i} \leq 0$ for all i. So the only possibility is that $\frac{\partial a(p)}{\partial p_i} = 0$ for all i. That is, $a(p)$ is a constant function.

(b) We have $v(p_1, p_2, m) = p_1^\alpha p_2^\beta m$. Since $v(p_1, p_2, m)$ is nonincreasing in (p_1, p_2), we have

$$
\frac{\partial (p_1^\alpha p_2^\beta m)}{\partial p_1} = \alpha p_1^{\alpha-1} p_2^\beta m \leq 0, \quad \text{and} \quad \frac{\partial (p_1^\alpha p_2^\beta m)}{\partial p_2} = \beta p_1^\alpha p_2^{\beta-1} m \leq 0.
$$

This implies $\alpha \leq 0$, $\beta \leq 0$. Now, $v(p_1, p_2, m)$ is $\text{hd}0$ in (p_1, p_2, m). So

$$
(\lambda p_1)^\alpha (\lambda p_2)^\beta (\lambda m) = \lambda^{\alpha+\beta+1} p_1^\alpha p_2^\beta m = p_1^\alpha p_2^\beta m,
$$

implying that $\lambda^{\alpha+\beta+1} = 1$, or $\alpha + \beta = -1$.

(c) We can find the direct utility function by solving $u(x_1, x_2) = \min_{\{p_1, p_2\}} v(p_1, p_2, m)$ such that $p_1x_1 + p_2x_2 = m$. In Lagrangian form this problem is

$$
\min_{\{p_1, p_2, \lambda\}} \mathcal{L} = m p_1^{-1/3} p_2^{-2/3} + \lambda (p_1 x_1 + p_2 x_2 - m).
$$

The FOCs are

$$
\frac{\partial \mathcal{L}}{\partial p_1} : \frac{1}{3} mp_1^{-4/3} p_2^{-2/3} = \lambda x_1, \quad \frac{\partial \mathcal{L}}{\partial p_2} : \frac{2}{3} mp_1^{-1/3} p_2^{-5/3} = \lambda x_2.
$$

Rearranging gives

$$
\frac{1}{3} mp_1^{-1/3} p_2^{-2/3} = \lambda x_1 p_1, \quad \frac{2}{3} mp_1^{-1/3} p_2^{-2/3} = \lambda x_2 p_2.
$$

Adding together and using the budget constraint yields

$$
mp_1^{-1/3} p_2^{-2/3} = \lambda (p_1 x_1 + p_2 x_2) = \lambda m,
$$

5
so \(\lambda = p_1^{-1/3}p_2^{-2/3} \). Substituting this back into the FOCs gives

\[
\frac{1}{3}m p_1^{-1/3} p_2^{-2/3} = p_1^{-1/3} p_2^{-2/3} x_1 p_1, \quad \frac{2}{3}m p_1^{-1/3} p_2^{-2/3} = p_1^{-1/3} p_2^{-2/3} x_2 p_2,
\]

or

\[
p_1 = \frac{1}{3} m, \quad p_2 = \frac{2}{3} m.
\]

Therefore

\[
u(x_1, x_2) = m \left(\frac{1}{3} x_1 \right)^{-1/3} \left(\frac{2}{3} x_2 \right)^{-2/3} = \left(\frac{1}{3} \right)^{-1/3} \left(\frac{2}{3} \right)^{-2/3} x_1^{1/3} x_2^{2/3} = \left(\frac{3}{4^{1/3}} \right) x_1^{1/3} x_2^{2/3}.
\]

From duality theory we know that Cobb-Douglas indirect utility, \(v(p_1, p_2, m) = mp_1^{-a}p_2^{-(1-a)} \) corresponds to Cobb-Douglas direct utility of the form \(u(x_1, x_2) = K x_1^\alpha x_2^{1-\alpha} \), so the parametric form of the direct utility function derived above is what we expect.

Q6 (a) Since \(x(p, m) = 5 - 4p \) is not a function of \(m \), we have \(h(p, u) = 5 - 4p \). Hicksian demand is exactly Marshallian demand.

(b) The integrability equations are

\[
\frac{\partial \mu(p, q, m)}{\partial p} = 5 - 4p, \quad \text{with boundary condition } \mu(q; q, m) = m.
\]

(c)

\[
\mu(p, q, m) = \int_q^p (5 - 4t) dt + \mu(q; q, m) = 5t - 2t^2 \bigg|_{t=q}^{t=p} + m = 5p - 2p^2 + m - 5q + 2q^2.
\]

(d) Since \(\mu(p; q, m) = e(p, v(q, m)) \), a sensible guess for \(v(q, m) \) is

\[
v(q, m) = m - 5q + 2q^2.
\]

We can verify by checking Roy’s identity:

\[
\frac{\partial v(q, m)}{\partial q} = \frac{-5 + 4q}{1} = 5 - 4q = x(q, m).
\]