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Abstract

This supplemental appendix provides some formal definitions, useful lemmas, several addi-
tional results discussed in the main paper, and proofs for all results in the main paper.

A Some formal definitions and useful lemmas

Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be normed vector spaces. Then we use the following definitions.

• A ⊆ X is ‖ · ‖X -bounded if there is a scalar R > 0 such that ‖x‖X ≤ R for all x ∈ A.

Equivalently, if A is contained in a ‖ · ‖X -ball of radius R: A ⊆ {x ∈ X : ‖x‖X ≤ R}.

• A ⊆ X is ‖ · ‖X -relatively compact if its ‖ · ‖X -closure is ‖ · ‖X -compact.

• (X, ‖ · ‖X) is embedded in (Y, ‖ · ‖Y ) if

1. X is a vector subspace of Y , and

2. the identity operator I : X → Y defined by Ix = x for all x ∈ X is continuous.

This is also sometimes called being continuously embedding, since the identity operator is

required to be continuous. Since I is linear, part (2) is equivalent to the existence of a

constant M such that

‖x‖Y ≤M‖x‖X for all x ∈ X.

Write X ↪→ Y to denote that (X, ‖ · ‖X) is embedded in (Y, ‖ · ‖Y ).

• T : X → Y is a compact operator if it maps ‖ · ‖X -bounded sets to ‖ · ‖Y -relatively compact

sets. That is, T (A) is ‖ · ‖Y -relatively compact whenever A is ‖ · ‖X -bounded.

• (X, ‖ · ‖X) is compactly embedded in (Y, ‖ · ‖Y ) if it is embedded and if the identity operator

I is compact.
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• A cone is a set C = C(v, a, h, κ) = {v + x ∈ Rn : 0 ≤ ‖x‖e ≤ h,∠(x, a) ≤ θ}. This cone

is defined by four parameters: The cone’s vertex v ∈ Rn, an axis direction vector a ∈ Rn, a

height h ∈ [0,∞], and an angle parameter θ ∈ (0, 2π]. ∠(x, a) denotes the angle between x

and a (let ∠(x, x) = 0). θ > 0 ensures that the cone has volume. If h <∞ then we say C is

a finite cone.

• A set A satisfies the cone condition if there is some finite cone C such that for every x ∈ A
the cone C can be moved by rigid motions to have x as its vertex; that is, there is a finite

cone Cx with vertex at x which is congruent to C. A sufficient condition for this is that A is

a product of intervals, or that A is a ball.

Lemma 1. If all ‖ · ‖X -balls are ‖ · ‖Y -relatively compact, then (X, ‖ · ‖X) is compactly embedded

in (Y, ‖ · ‖Y ).

Lemma 1 states that, for proving compact embeddedness, it suffices to show that any ‖ ·‖X -ball

is ‖ · ‖Y -relatively compact.

Lemma 2. Let ‖ · ‖X and ‖ · ‖Y be norms on a vector space A. Suppose A is ‖ · ‖X -closed and

‖ · ‖X ≤ C‖ · ‖Y for C <∞. Then A is ‖ · ‖Y -closed.

Corollary 1. Let (Fj , ‖ · ‖j) be Banach spaces for all j ∈ N such that Fj+1 ⊆ Fj and ‖f‖j ≤
Cj‖f‖j+1 for all f ∈ Fj+1, where Cj <∞. Let

Θj = {f ∈ Fj : ‖f‖j ≤ C}.

Assume Θk is ‖ · ‖1-closed. Then Θk is ‖ · ‖j-closed for all 1 ≤ j < k.

Lemma 2 says that closedness in a weaker norm can always be converted to closedness in a

stronger norm. Lemma 3 gives conditions under which the reverse is true: when we can take

closedness in a stronger norm and convert that to closedness in a weaker norm.

Lemma 3. Let (H1, ‖ · ‖1) and (H2, ‖ · ‖2) be reflexive Banach spaces. Suppose (H1, ‖ · ‖1) is

compactly embedded in (H2, ‖ · ‖2). Let B <∞ be a constant. Then the ‖ · ‖1-ball

Ω = {h ∈ H1 : ‖h‖1 ≤ B}

is ‖ · ‖2-closed.

Lemma 3 generalizes lemma A.1 of Santos (2012), which assumed both spaces were separable

Hilbert spaces. We thank Kengo Kato for pointing out this generalization and its proof. Also recall

that all Hilbert spaces are reflexive.

Lemma 4. Let (X, ‖ · ‖X), (Y, ‖ · ‖Y ), and (Z, ‖ · ‖Z) be Banach spaces. Suppose

1. (X, ‖ · ‖X) is compactly embedded in (Z, ‖ · ‖Z).
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2. (Z, ‖ · ‖Z) is embedded in (Y, ‖ · ‖Y ).

Then (X, ‖ · ‖X) is compactly embedded in (Y, ‖ · ‖Y ).

Note that assumption 2 implies

{g : ‖g‖Z <∞} ⊆ {g : ‖g‖Y <∞}.

B Norm inequality lemmas

Lemma 5. Let µ : D → R+ be a nonnegative function. Let m0,m ≥ 0 be integers. Suppose

assumption 4 holds for µ = µs. Then for every compact subset C ⊆ D, there is a constant MC <∞
such that

‖µ1/2f‖m+m0,2,1C ≤MC‖f‖m+m0,2,µ1C

for all f such that these norms are defined. If the stronger assumption 3 holds, then this result

holds for C = D too.

Lemma 5 generalizes lemma A.1 part (a) of Gallant and Nychka (1987) to allow for more general

weight functions, as discussed in section 4.1. Note that Gallant and Nychka’s (1987) lemma A.1

stated supx∈D µ(x) <∞ as an additional assumption. This condition is not used in our proof, nor

was it used in their proof, which is fortunate since it is violated when µ upweights.

Lemma 6. Let µ : D → R+ be a nonnegative function. Let m ≥ 0 be an integer. Suppose

assumption 4 holds for µ = µs. Then for every compact subset C ⊆ D, there is a constant MC <∞
such that

‖f‖m,∞,µ1/21C
≤MC‖µ1/2f‖m,∞,1C .

for all f such that these norms are defined. If the stronger assumption 3 holds, then this result

holds for C = D too.

Lemma 6 generalizes lemma A.1 part (d) of Gallant and Nychka (1987) to allow for the weaker

assumption 4. Lemma 7 below is analogous to lemma 6, except now using the Sobolev L2 norm

instead of the Sobolev sup-norm. One difference, though, is that the norm on the left hand side

now has µ instead of µ1/2.

Lemma 7. Let µ : D → R+ be a nonnegative function. Let m ≥ 0 be an integer. Suppose

assumption 4 holds for µ = µs. Then for every compact subset C ⊆ D, there is a constant MC <∞
such that

‖f‖m,2,µ1C ≤MC‖µ
1/2f‖m,2,1C

for all f such that these norms are defined. If the stronger assumption 3 holds, then this result

holds for C = D too.
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Lemma 8. Let µ : D → R+ be a nonnegative function. Let m ≥ 0 be an integer. Then there is a

constant M <∞ such that

‖µf‖m,∞ ≤M‖f‖m,∞,µ

for all functions f such that these norms are defined.

C Some useful lemmas: Proofs

Proof of lemma 1. Let A ⊆ X be ‖ · ‖X -bounded. Then it is contained in a ‖ · ‖X -ball. That ball

is ‖ · ‖Y -relatively compact by assumption. So A is a subset of a ‖ · ‖Y -relatively compact set.

Containment is preserved by taking closures of both sets, and hence the ‖ · ‖Y -closure of A is a

subset of a ‖ · ‖Y -compact set, and is also ‖ · ‖Y -compact since it is a closed subset of a compact

set.

Proof of lemma 2. Let {an} be a sequence in A. Since A is ‖ · ‖X -closed, any element a such that

‖an − a‖X → 0 must be in A. Let a be such that ‖an − a‖Y → 0. Then ‖an − a‖X → 0 by our

norm inequality. Hence a ∈ A.

Proof of corollary 1. Follows by repeatedly applying lemma 2.

Proof of lemma 3. Let {hn} be a sequence in Ω. Since H1 is reflexive, and by the Banach-Alaoglu

theorem, there is a subsequence {hnk
} that weakly converges to some h ∈ Ω (e.g., by corollary

1.9.16 of Tao 2010). Let I : H1 → H2 denote the identity operator. Since H1 ↪→ H2, I is a

compact operator. Hence it maps weakly convergent sequences to ‖ · ‖2-convergent sequences (e.g.,

proposition 3.3(a) of Conway 1985). That is,

‖Ihnk
− Ih‖2 → 0.

Hence the image IΩ is ‖ · ‖2-sequentially compact. Hence IΩ is ‖ · ‖2-closed (e.g., exercise 1.9.11 of

Tao 2010).

Proof of lemma 4. Since (X, ‖ · ‖X) is embedded in (Z, ‖ · ‖Z), there exists a constant M1 > 0 such

that

‖ · ‖Z ≤M1‖ · ‖X .

Likewise, by assumption 2, there is a constant constant M2 > 0 such that ‖ · ‖Y ≤M2‖ · ‖Z . Hence

‖ · ‖Y ≤M1M2‖ · ‖X .

Thus (X, ‖ · ‖X) is embedded in (Y, ‖ · ‖Y ). Next we need to show that this embedding is compact.

Let A ⊆ X be ‖·‖X -bounded. Let {an} be a sequence in A. By assumption 1 there is a subsequence

{ank
} that ‖ · ‖Z-converges. But by assumption 2, ‖ · ‖Z is a stronger norm than ‖ · ‖Y and hence
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this subsequence ‖ · ‖Y -converges. Thus every sequence in A has a ‖ · ‖Y -convergent subsequence

and so A is ‖ · ‖Y -compact.

D Norm inequality lemmas: Proofs

In the proof of lemma 5 and other lemmas, we use the following: The product rule tells us how to

differentiate functions like h(x)g(x). The generalization of this rule is called Leibniz’s formula or

the General Leibniz rule. For functions u and v that are |α| times continuously differentiable near

x, it is

[∇α(uv)](x) =
∑

{β:β≤α}

[
α

β

]
∇βu(x)∇α−βv(x).

Here β ≤ α is interpreted as being component-wise: β ≤ α if βj ≤ αj for 1 ≤ j ≤ dx, where dx is

the number of components in the multi-indices β and α, and is also equal to the dimension of the

argument x of the functions u and v. Also,[
α

β

]
=

dx∏
j=1

(
αj
βj

)

where (
αj
βj

)
=

αj !

βj !(αj − βj)!

is the binomial coefficient. For a reference on this formula, see Adams and Fournier (2003), page 2.

Proof of lemma 5. Applying Leibniz’s formula to the function µ(x)1/2f(x) we have

∇λ(µ1/2f) =
∑
{β:β≤λ}

[
λ

β

]
(∇βf)(∇λ−βµ1/2),

for |λ| ≤ m+m0. By the triangle inequality, this implies

‖∇λ(µ1/2f)‖0,2,1C ≤
∑
{β:β≤λ}

[
λ

β

]
‖∇λ−βµ1/2∇βf‖0,2,1C .
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Using the bound on the derivatives of µ1/2 we have

‖∇λ−βµ1/2∇βf‖0,2,1C =

(∫
C
[∇λ−βµ1/2(x)∇βf(x)]2 dx

)1/2

=

(∫
C
|∇λ−βµ1/2(x)|2[∇βf(x)]2 dx

)1/2

≤
(∫
C
|KCµ1/2(x)|2[∇βf(x)]2 dx

)1/2

= K2
C

(∫
C
[∇βf(x)]2µ(x) dx

)1/2

= K2
C‖∇βf‖0,2,µ1C

≤ K2
C‖f‖m+m0,2,µ1C ,

where the last line follows since m+m0 ≥ 0. Thus, for |λ| ≤ m+m0,

‖∇λ(µ1/2f)‖0,2,1C ≤

 ∑
{β:β≤λ}

[
λ

β

]K2
C‖f‖m+m0,2,µ1C .

Next,

‖µ1/2f‖2m+m0,2,1C =
∑

0≤|λ|≤m+m0

‖∇λ(µ1/2f)‖20,2,1C

≤
∑

0≤|λ|≤m+m0

 ∑
{β:β≤λ}

[
λ

β

]K2
C‖f‖m+m0,2,µ1C

2

= ‖f‖2m+m0,2,µ1C

K2
C

∑
0≤|λ|≤m+m0

 ∑
{β:β≤λ}

[
λ

β

]2

≡ ‖f‖2m+m0,2,µ1CM
2
C

and hence

‖µ1/2f‖m+m0,2,1C ≤MC‖f‖m+m0,2,µ1C

as desired. When assumption 3 holds, the same proof above applies, but the constants now hold

over all D.
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Proof of lemma 6. We use induction. The inequality holds for m = 0 with MC = 1 since

‖f‖0,∞,µ1/21C
= sup

x∈D
|f(x)|µ1/2(x)1C(x)

= sup
x∈D
|µ1/2(x)f(x)|1C(x)

= ‖µ1/2f‖0,∞,1C .

Suppose the inequality holds for m and let 0 < |λ| ≤ m+ 1. By Leibniz’s formula,

∇λ(µ1/2f) = (∇λf)µ1/2 +
∑

{β:β≤λ,β 6=λ}

[
λ

β

]
(∇λ−βµ1/2)(∇βf),

which implies that

|(∇λf)µ1/2| ≤ |∇λ(µ1/2f)|+

∣∣∣∣∣∣
∑

{β:β≤λ,β 6=λ}

[
λ

β

]
(∇λ−βµ1/2)(∇βf)

∣∣∣∣∣∣
≤ |∇λ(µ1/2f)|+KC

∑
{β:β≤λ,β 6=λ}

[
λ

β

]
µ1/2|∇βf |.

The second line follows by assumption 4, assuming we only evaluate this inequality at x ∈ C. Taking

the supremum over x in C and the maximum over |λ| ≤ m+ 1 gives

‖f‖m+1,∞,µ1/21C
≤ ‖µ1/2f‖m+1,∞,1C +K ′C‖f‖m,∞,µ1/21C

,

by the definition of the norms, and since λ isn’t included in the sum we get only m derivatives in

this last term on the right hand side. Moreover, we picked up an extra ≤ since we moved the max

and supremum inside the summation in the second term, and then were left with the constant

K ′C ≡ KC
∑
|λ|≤m

∑
{β:β≤λ,β 6=λ}

[
λ

β

]
<∞.

By the induction hypothesis there is an M ′C <∞ such that

‖f‖m,∞,µ1/21C
≤M ′C‖µ1/2f‖m,∞,1C .

Moreover,

‖µ1/2f‖m,∞,1C ≤ ‖µ
1/2f‖m+1,∞,1C .

Thus

‖f‖m,∞,µ1/21C
≤M ′C‖µ1/2f‖m+1,∞,1C .
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Plugging this into our expression from earlier yields

‖f‖m+1,∞,µ1/21C
≤ ‖µ1/2f‖m+1,∞,1C +K ′C‖f‖m,∞,µ1/21C

≤ ‖µ1/2f‖m+1,∞,1C +K ′CM
′
C‖µ1/2f‖m+1,∞,1C

= (1 +K ′CM
′
C)‖µ1/2f‖m+1,∞,1C

≡MC‖µ1/2f‖m+1,∞,1C .

When assumption 3 holds, the same proof above applies, but the constants now hold over all D.

Proof of lemma 7. We will modify the proof of lemma 6 as appropriate. As there, we use proof by

induction. For the base case, set m = 0. Then

‖f‖0,2,µ1C =

(∫
C
[f(x)]2µ(x) dx

)1/2

=

(∫
C
[µ1/2(x)f(x)]2 dx

)1/2

= ‖µ1/2f‖0,2,1C .

Thus the result holds for m = 0. Now suppose it holds for m. Let |λ| be such that 0 < |λ| ≤ m+ 1.

Then, as in the proof of lemma 6, we have

∇λ(µ1/2f) = (∇λf)µ1/2 +
∑

{β:β≤λ,β 6=λ}

[
λ

β

]
(∇λ−βµ1/2)(∇βf)

by Leibniz’s formula. As in that proof, applying our bound on the derivative of the weight function,

we get

|∇λf |µ1/2 ≤ |∇λ(µ1/2f)|+KC
∑

{β:β≤λ,β 6=λ}

[
λ

β

]
|∇βf |µ1/2.
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Now we square both sides and integrate over C to obtain∫
C
|∇λf(x)|2µ(x) dx ≤

∫
C
|[∇λ(µ1/2f)](x)|2 dx

+

∫
C
K2
C

∑
{β̃:β̃≤λ,β̃ 6=λ}

∑
{β:β≤λ,β 6=λ}

[
λ

β̃

][
λ

β

]
|∇β̃f(x)| · |∇βf(x)|µ(x) dx

+

∫
C

2|[∇λ(µ1/2f)](x)|KC
∑

{β:β≤λ,β 6=λ}

[
λ

β

]
|∇βf(x)|µ1/2(x) dx

=

∫
C
|[∇λ(µ1/2f)](x)|2 dx

+K2
C

∑
{β̃:β̃≤λ,β̃ 6=λ}

∑
{β:β≤λ,β 6=λ}

[
λ

β̃

][
λ

β

]∫
C
|∇β̃f(x)| · |∇βf(x)|µ(x) dx

+ 2KC
∑

{β:β≤λ,β 6=λ}

[
λ

β

]∫
C
|[∇λ(µ1/2f)](x)| · |∇βf(x)|µ1/2(x) dx

≡ (1) + (2) + (3).

In the third term, we can apply Leibniz’s formula again,

|∇βf |µ1/2 ≤ |∇β(µ1/2f)|+KC
∑

{η:η≤β,η 6=β}

[
β

η

]
|∇ηf |µ1/2

to get

(3) ≡ 2KC
∑

{β:β≤λ,β 6=λ}

[
λ

β

]∫
C
|[∇λ(µ1/2f)](x)| · |∇βf(x)|µ1/2(x) dx

≤ 2KC
∑

{β:β≤λ,β 6=λ}

[
λ

β

](∫
C
|[∇λ(µ1/2f)](x)| · |[∇β(µ1/2f)](x)| dx

+KC
∑

{η:η≤β,η 6=β}

[
β

η

]∫
C
|[∇λ(µ1/2f)](x)| · |∇ηf(x)|µ1/2(x) dx

)
.

We can apply Leibniz’s formula again to eliminate the |∇ηf(x)|µ1/2(x) term. Continuing in this

manner, we get a sum solely of integrals of the form∫
C
|[∇λ(µ1/2f)](x)| · |[∇β(µ1/2f)](x)| dx.

Now replace one of the two absolute value terms in the integrand with whichever one is largest.

9



Suppose its the λ piece. This yields∫
C
|[∇λ(µ1/2f)](x)| · |[∇β(µ1/2f)](x)| dx ≤

∫
C
|[∇λ(µ1/2f)](x)|2 dx.

Thus the third piece is now a sum of terms like this one, where the multi-index in the differential

operator can go as high as |λ|. Summing (3) over |λ| with 0 ≤ |λ| ≤ m + 1 we obtain a sum of

many unweighted integrals over C with integrands of the form |[∇λ(µ1/2f)](x)|2. Now all we have

to do is group all these integrals such that our entire expression (3) is a multiple of

∑
0≤|λ|≤m+1

∫
C
|[∇λ(µ1/2f)](x)|2 dx = ‖µ1/2f‖2m+1,2,1C .

If there are any ‘missing’ integrals, we can just add on the missing ones (which will give us another

inequality, but that’s ok since we only need an upper bound). Thus we see that, after summing

over 0 ≤ |λ| ≤ m+ 1, the term (3) is bounded above by

C3,C‖µ1/2f‖2m+1,2,1C

for some constant C3,C > 0.

Consider now the second piece. It is a sum of integrals of the form∫
C
|∇β̃f(x)| · |∇βf(x)|µ(x) dx.

Basically the same argument from third piece applies. We can replace one of the absolute values

here with whichever is the largest, thus obtaining an integral of the form∫
C
|∇βf(x)|2µ(x) dx.

Now summing these terms over 0 ≤ |λ| ≤ m + 1 we see that after grouping all the integrals and

adding any missing terms, the entire expression (2) is a multiple of

∑
0≤|λ|≤m

∫
C
|∇λf(x)|2 dx = ‖f‖2m,2,1C .

It is important here that the sum only goes up to m, not m+ 1. This is because, in the term (2),

the β and β̃ pieces are always strictly smaller than λ, and λ itself can only go up to m+ 1. Hence

β and β̃ can only go up to m. Thus we see that the term (2) is bounded above by

C2,C‖f‖2m,2,1C

for some constant C2,C > 0. Finally, consider the term (1). This term is easy because when we sum
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over 0 ≤ |λ| ≤ m+ 1 this term exactly equals

‖µ1/2f‖2m+1,2,1C

without having to add any extra terms or mess with the integrands. Combining all these results,

we see (by also summing over the left hand side of our original inequality) that

‖f‖2m+1,2,µ1C ≤ (1 + C3,C)‖µ1/2f‖2m+1,2,1C + C2,C‖f‖2m,2,1C .

Now apply the induction hypothesis to the last term to get

‖f‖2m+1,2,µ1C ≤ (1 + C3,C)‖µ1/2f‖2m+1,2,1C + C2,C‖µ1/2f‖2m+1,2,1C

= (1 + C3,C + C2,C)‖µ1/2f‖2m+1,2,1C .

Finally, take the square root of both sides to get

‖f‖m+1,2,µ1C ≤ (1 + C3,C + C2,C)
1/2‖µ1/2f‖m+1,2,1C

as desired. When assumption 3 holds, the same proof above applies, but the constants now hold

over all D.

Proof of lemma 8. As in the proof of lemma 6, we have

∇λ(µ1/2f) = (∇λf)µ1/2 +
∑

{β:β≤λ,β 6=λ}

[
λ

β

]
(∇λ−βµ1/2)(∇βf).

Hence

|∇λ(µ1/2f)| ≤ |(∇λf)µ1/2|+
∑

{β:β≤λ,β 6=λ}

[
λ

β

]
|(∇βf)µ1/2|.

Take the sup over x and the max over |λ| ≤ m+ 1 to get

‖µ1/2f‖m+1,∞ ≤ ‖f‖m+1,∞,µ1/2 +K ′‖f‖m,∞,µ1/2 .

Since ‖f‖m,∞,µ1/2 ≤ ‖f‖m+1,∞,µ1/2 we get

‖µ1/2f‖m+1,∞ ≤ (1 +K ′)‖f‖m+1,∞,µ1/2 .

The result follows by evaluating this inequality with the weight µ2.
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E Proof of the compact embedding theorems 1 and 3

In this section we prove theorems 1 and 3. The general outline of the proof of theorem 3 follows

the proof of Gallant and Nychka’s (1987) lemma A.4, which is a proof of theorem 3 case (1) under

the stronger assumption 3.

Proof of theorem 1 (Compact embedding).

1. This follows by the Rellich-Kondrachov theorem (Adams and Fournier (2003) theorem 6.3

part II, equation 5), since m0 is a positive integer, and since m0 > dx/2 and D satisfies the

cone condition. In applying the theorem, their j is our m. Their m is our m0. Moreover, in

their notation, we set p = 2 and k = n = dx.

2. This follows by the Rellich-Kondrachov theorem (Adams and Fournier (2003) theorem 6.3,

part II, equation 6), since m0 is a positive integer, and since m0 > dx/2 and D satisfies the

cone condition. In applying the theorem, as in the previous part above, their j is our m and

their m is our m0. We set also q = p = 2 and k = n = dx.

3. This follows by Adams and Fournier (2003) theorem 1.34 equation 3, and their subsequent

remark at the end of that theorem statement.

4. This follows since ‖ · ‖m+m0,2 ≤ M‖ · ‖m+m0,∞ for some constant 0 < M < ∞ and hence

‖·‖m+m0,∞ bounded sets are also ‖·‖m+m0,2 bounded sets. Then apply part (2), which shows

that these bounded sets are ‖ · ‖m,2-relatively compact.

5. This follows by applying the Ascoli-Arzela theorem; see Adams and Fournier (2003) theorem

1.34 equation 4.

Proof of theorem 3 (Compact embedding for unbounded domains with equal weighting). We split the

proof into several steps. For each of the cases, define the norms ‖ · ‖s and ‖ · ‖c as in table 1.

‖ · ‖s ‖ · ‖c
(1) ‖ · ‖m+m0,2,µs ‖ · ‖

m,∞,µ1/2
c

(2) ‖ · ‖m+m0,2,µs ‖ · ‖m,2,µc
(3) ‖ · ‖m+m0,∞,µs ‖ · ‖m,∞,µc
(4) ‖ · ‖m+m0,∞,µs ‖ · ‖m,2,µc

Table 1

1. Only look at balls. By lemma 1, it suffices to show that for any B > 0, the ‖ · ‖s-ball Θ of

radius B is ‖ · ‖c-relatively compact.

(Cases 1 and 2.) Θ = {f ∈ Wm+m0,2,µs(D) : ‖f‖m+m0,2,µs ≤ B}.
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(Cases 3 and 4.) Θ = {f ∈ Cm+m0,∞,µs(D) : ‖f‖m+m0,∞,µs ≤ B}.

2. Stop worrying about the closure. We need to show that the ‖ · ‖c-closure of Θ is ‖ · ‖c-
compact. Let {f̄n}∞n=1 be a sequence from the ‖ · ‖c-closure of Θ. It suffices to show that {f̄n}
has a convergent subsequence. By the definition of the closure, there exists a sequence {fn}
from Θ with

lim
n→∞

‖fn − f̄n‖c = 0.

By the triangle inequality it suffices to show that {fn} has a convergent subsequence. The

space

(Case 1.) C
m,∞,µ1/2

c

(Cases 2 and 4.) Wm,2,µc

(Case 3.) Cm,∞,µc

is complete, so it suffices to show that {fn} has a Cauchy subsequence. The proof of com-

pleteness of these spaces is as follows. Recall that a function f : D → R on the Euclidean

domain D ⊆ Rdx is locally integrable if for every compact subset C ⊆ D,
∫
C |f(x)| dx < ∞.

Assumption 6 implies that both µ
−1/2
c (as needed in cases 1, 2, and 4) and µ−1

c (as needed in

case 3) are locally integrable on the support of µc. Next:

(Case 1) Follows by local integrability of µ
−1/2
c and applying theorem 5.1 of Rodŕıguez,

Álvarez, Romera, and Pestana (2004). To see this, using their notation, assumption 6

ensures that Ω1 = · · · = Ωk = R (defined in definition 4 on their page 277) and Ω(0) = R
(defined on their page 280), and hence by their remark on page 303, the conditions of

theorem 5.1 hold. This result is not specific to the one dimensional domain case; for

example, see Brown and Opic (1992). The reason we use the power −1/2 of µc is by the

p =∞ case in definition 2 on page 277 of Rodŕıguez et al. (2004).

(Cases 2 and 4.) Follows by local integrability of µ
−1/2
c , and theorem 1.11 of Kufner

and Opic (1984) and their remark 4.10 (which extends their theorem to allow for higher

order derivatives). The reason we use the power −1/2 of µc is by the p = 2 < ∞ case

in definition 2 on page 277 of Rodŕıguez et al. (2004), or equivalently, equation (1.5) on

page 538 of Kufner and Opic (1984).

(Case 3.) Follows by local integrability of µ−1
c and then the same argument as case 1.

The reason we use the power −1 of µc is by the p =∞ case in definition 2 on page 277

of Rodŕıguez et al. (2004).

This step is important because functions in the closure may not be differentiable, in which

case their norm might not be defined. Even when their norm is defined, functions in the

closure do not necessarily satisfy the norm bound. Also, note that if µc does not have full

support, such as µc(x) = 1(‖x‖e ≤M) for some constant M > 0, then we simply restrict the

domain to D ∩ {x ∈ Rdx : ‖x‖e ≤M} and then proceed as in the bounded support case.
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3. Truncate the domain. The key idea to deal with the unbounded domain is to partition

Rdx into the open Euclidean ball about the origin

ΩJ = {x ∈ Rdx : x′x < J} = {x ∈ Rdx : ‖x‖ < J2}

and its complement Ωc
J . As we show in step 9 below, the norm on Rdx can be split into two

pieces: one on ΩJ and another on its complement. We will then show that each of these

pieces is small. Restricting ourselves to ΩJ , we will apply existing embedding theorems for

bounded domains. We then eventually pick J large enough so that the truncation error is

small, which is possible because our weight functions get small as ‖x‖ gets large.

Let 1ΩJ
(x) = 1 if x ∈ ΩJ and equal zero otherwise.

4. Switch to the unweighted norm so that we can apply an existing compact embedding

result for unweighted norms (on bounded domains). Since the fn are in Θ, we know their

weighted norm ‖ · ‖s is bounded by B. We show that a modified version of the sequence is

bounded in an unweighted norm.

(Cases 1 and 2.) The unweighted norm we work with here is ‖ · ‖m+m0,2,1ΩJ
. For all n,

‖µ1/2
s fn‖m+m0,2,1ΩJ

≤MJ‖fn‖m+m0,2,µs1ΩJ

≤MJ‖fn‖m+m0,2,µs

≤MJB.

The first inequality follows by lemma 5, which can be applied by using our assumed

bound

|∇λµ1/2
s (x)| ≤ KCµ1/2

s (x)

for all x ∈ C, where C is any compact subset of Rdx . Here and below we let MJ

denote the constant from lemma 5 corresponding to the compact set ΩJ . The third

inequality follows since fn ∈ Θ and by the definition of Θ. Thus, for each J , {µ1/2
s fn} is

‖ ·‖m+m0,2,1ΩJ
-bounded. Notice that in this step we picked up a power 1/2 of the weight

function.

(Case 3.) The unweighted norm we work with here is ‖ · ‖m+m0,∞,1ΩJ
. For all n,

‖µsfn‖m+m0,∞,1ΩJ
≤M‖fn‖m+m0,∞,µs1ΩJ

≤M‖fn‖m+m0,∞,µs

≤MB.

The first inequality follows by lemma 8. The third inequality follows since fn ∈ Θ and

by the definition of Θ. Thus, for each J , {µsfn} is ‖ · ‖m+m0,∞,1ΩJ
-bounded.
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(Case 4.) The unweighted norm we work with here is ‖ · ‖m+m0,∞,1ΩJ
. For all n,

‖µ1/2
s fn‖m+m0,∞,1ΩJ

≤M‖fn‖m+m0,∞,µ1/2
s 1ΩJ

= M max
0≤|λ|≤m+m0

sup
x∈D
|∇λfn(x)|µ1/2

s (x)1ΩJ
(x)

= M max
0≤|λ|≤m+m0

sup
x∈D
|∇λfn(x)|µs(x)µ−1/2

s (x)1ΩJ
(x)

≤M
(

max
0≤|λ|≤m+m0

sup
x∈D
|∇λfn(x)|µs(x)

)
sup

‖x‖e>J2

µ−1/2
s (x)

= M‖fn‖m+m0,∞,µ1/2
s

sup
‖x‖e>J2

µ−1/2
s (x)

≤MBKJ .

The first inequality follows by lemma 8. The final inequality follows since fn ∈ Θ and

by the definition of Θ, as well as by assumption that µs is bounded away from zero for

any compact subset of Rdx . Thus, for each J , {µ1/2
s fn} is ‖ · ‖m+m0,∞,1ΩJ

-bounded.

5. Apply an embedding theorem for bounded domains.

(Case 1.) By theorem 1 part 1, Wm+m0,2,1ΩJ
is compactly embedded in Cm,∞,1ΩJ

. Thus,

since {µ1/2
s fn} is ‖ · ‖m+m0,2,1ΩJ

-bounded, it is relatively compact in Cm,∞,1ΩJ
.

(Case 2.) By theorem 1 part 2, Wm+m0,2,1ΩJ
is compactly embedded in Wm,2,1ΩJ

. Thus,

since {µ1/2
s fn} is ‖ · ‖m+m0,2,1ΩJ

-bounded, it is relatively compact in Wm,2,1ΩJ
.

(Case 3.) By theorem 1 part 3, Cm+m0,∞,1ΩJ
is compactly embedded in Cm,∞,1ΩJ

. Thus,

since {µsfn} is ‖ · ‖m+m0,∞,1ΩJ
-bounded, it is relatively compact in Cm,∞,1ΩJ

.

(Case 4.) By theorem 1 part 4, Cm+m0,∞,1ΩJ
is compactly embedded in Wm,2,1ΩJ

. Thus,

since {µ1/2
s fn} is ‖ · ‖m+m0,∞,1ΩJ

-bounded, it is relatively compact in Wm,2,1ΩJ
.

In cases 1, 2, and 4 we used that m0 > dx/2, and note that ΩJ satisfies the cone condition.

In case 3 we used that ΩJ is convex and m0 ≥ 1.

6. Extract a subsequence. Set J = 1. By the previous step, there is a subsequence

(Case 1.) {µ1/2
s f

(1)
j }∞j=1 and a ψ1 in Cm,∞,1Ω1

such that

lim
j→∞

‖µ1/2
s f

(1)
j − ψ1‖m,∞,1Ω1

= 0.
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(Cases 2 and 4.) {µ1/2
s f

(1)
j }∞j=1 and a ψ1 in Wm,2,1Ω1

such that

lim
j→∞

‖µ1/2
s f

(1)
j − ψ1‖m,2,1Ω1

= 0.

(Case 3.) {µsf (1)
j }∞j=1 and a ψ1 in Cm,∞,1Ω1

such that

lim
j→∞

‖µsf (1)
j − ψ1‖m,∞,1Ω1

= 0.

7. Do it for all J . Repeating this argument for all J , we have a bunch of nested subsequences

(Cases 1, 2, and 4.)

{µ1/2
s fn} ⊃ {µ1/2

s f
(1)
j } ⊃ {µ

1/2
s f

(2)
j } ⊃ · · ·

each with

(Case 1.)

lim
j→∞

‖µ1/2
s f

(J)
j − ψJ‖m,∞,1ΩJ

= 0.

(Cases 2 and 4.)

lim
j→∞

‖µ1/2
s f

(J)
j − ψJ‖m,2,1ΩJ

= 0.

(Case 3.)

{µsfn} ⊃ {µsf (1)
j } ⊃ {µsf

(2)
j } ⊃ · · ·

each with

lim
j→∞

‖µsf (J)
j − ψJ‖m,∞,1ΩJ

= 0.

The reason we have to extract a further subsequence from

(Cases 1, 2, and 4.) {µ1/2
s f

(1)
1 } is that {µ1/2

s f
(1)
1 }

(Case 3.) {µsf (1)
1 } is that {µsf (1)

1 }

only converges in the norm with J = 1; it may not converge in the norm with J = 2. So we

extract a further subsequence which does converge in the norm with J = 2, and so on.

8. Define the main subsequence. Set fj = f
(j)
j . Then {fj} is a subsequence of {fn}. Our

goal is to show that {fj} is ‖·‖c-Cauchy. Let ε > 0 be given. This is a kind of diagonalization

argument.

9. Split the consistency norm into two pieces.
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(Cases 1 and 3.) For any weight µc and any set Ω, we have

‖f‖m,∞,µc ≡ max
0≤|λ|≤m

sup
x∈Rdx

|∇λf(x)|µc(x)
(
1Ω(x) + 1Ωc(x)

)
= max

0≤|λ|≤m
sup
x∈Rdx

(
|∇λf(x)|µc(x)1Ω(x) + |∇λf(x)|µc(x)1Ωc(x)

)
≤ max

0≤|λ|≤m
sup
x∈Rdx

|∇λf(x)|µc(x)1Ω(x) + max
0≤|λ|≤m

sup
x∈Rdx

|∇λf(x)|µc(x)1Ωc(x)

= ‖f‖m,∞,µc1Ω + ‖f‖m,∞,µc1Ωc ,

where Ωc is the complement of Ω. Hence, for any J , and for any fj and fk in our main

subsequence {fj} we have

(Case 1.)

‖fj − fk‖m,∞,µ1/2
c
≤ ‖fj − fk‖m,∞,µ1/2

c 1ΩJ

+ ‖fj − fk‖m,∞,µ1/2
c 1Ωc

J

.

(Case 3.)

‖fj − fk‖m,∞,µc ≤ ‖fj − fk‖m,∞,µc1ΩJ
+ ‖fj − fk‖m,∞,µc1Ωc

J
.

(Cases 2 and 4.) We want to show that

‖f‖m,2,µc ≤ ‖f‖m,2,µc1ΩJ
+ ‖f‖m,2,µc1Ωc

J
.

We have

‖f‖2m,2,µc =
∑

0≤|λ|≤m

∫
[∇λf(x)]2µc(x) dx

=
∑

0≤|λ|≤m

[∫
[∇λf(x)]2µc(x)1ΩJ

(x) dx+

∫
[∇λf(x)]2µc(x)1Ωc

J
(x) dx

]

=
∑

0≤|λ|≤m

∫
[∇λf(x)]2µc(x)1ΩJ

(x) dx+
∑

0≤|λ|≤m

∫
[∇λf(x)]2µc(x)1Ωc

J
(x) dx

= ‖f‖2m,2,µc1ΩJ
+ ‖f‖2m,2,µc1Ωc

J

.

Hence

‖f‖m,2,µc =
√
‖f‖2m,2,µc1ΩJ

+ ‖f‖2m,2,µc1Ωc
J

≤ ‖f‖m,2,µc1ΩJ
+ ‖f‖m,2,µc1Ωc

J
,

where the last line follows by
√
a2 + b2 ≤ a + b for a, b ≥ 0. Hence, for any J , and for
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any fj and fk in our main subsequence {fj} we have

‖fj − fk‖m,2,µc ≤ ‖fj − fk‖m,2,µc1ΩJ
+ ‖fj − fk‖m,2,µc1Ωc

J
,

where recall that Ωc
J is the complement of ΩJ .

Now we just need to show that if j, k are sufficiently far out in the sequence, and J is large

enough, that both of these pieces on the right hand side are small.

10. Outside truncation piece is small.

(Case 1.) Since fj ∈ Θ for all j, ‖fj‖m+m0,2,µs ≤ B for all j. This combined with

assumption 5 let us apply lemma 9 to find a large enough J such that

‖fj‖m,∞,µ1/2
c 1Ωc

J

<
ε

4

for all j. By the triangle inequality,

‖fj − fk‖m,∞,µ1/2
c 1Ωc

J

< 2
ε

4
=
ε

2
.

(Case 2.) For this case,

‖fj‖m,2,µs1Ωc
J
≤ ‖fj‖m,2,µs

≤ ‖fj‖m+m0,2,µs

≤ B,

where the last line follows since fj ∈ Θ. Next, by assumption 1,

µc(x)

µs(x)
→ 0 as x′x→∞.

So we can choose J large enough that(
µc(x)

µs(x)

)1/2

<
ε2

42B2
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for all x′x > J ; i.e., for all x ∈ Ωc
J . Next, we have

‖fj‖2m,2,µc1Ωc
J

=
∑

0≤|λ|≤m

∫
Ωc

J

|∇λfj(x)|2µc(x) dx

=
∑

0≤|λ|≤m

∫
Ωc

J

|∇λfj(x)|2µs(x)
µc(x)

µs(x)
dx

≤
∑

0≤|λ|≤m

∫
Ωc

J

|∇λfj(x)|2µs(x)
ε2

42M
dx

=
ε2

42B2

∑
0≤|λ|≤m

∫
Ωc

J

|∇λfj(x)|2µs(x) dx

=
ε2

42B2
‖fj‖2m,2,µs1Ωc

J

≤ ε

42B2
B2

=
ε2

42
.

(Case 4.) For this case,

‖fj‖2m,2,µc1Ωc
J

=
∑

0≤|λ|≤m

∫
Ωc

J

|∇λfj(x)|2µc(x) dx

=
∑

0≤|λ|≤m

∫
Ωc

J

|∇λfj(x)|2µ2
s(x)

µc(x)

µ2
s(x)

dx

≤ C‖f‖2m,∞,µs
∫

Ωc
J

µc(x)

µ2
s(x)

dx

≤ CB2

∫
Ωc

J

µc(x)

µ2
s(x)

dx

≤ ε2

42
,

where in the last step we choose J large enough so that1

∫
Ωc

J

µc(x)

µ2
s(x)

dx ≤ ε2

42CB2
.

This is possible by our assumption that the integral on the left hand side is finite for

at least some J . That implies, by the monotone convergence theorem for sequences of

pointwise decreasing functions (e.g., Folland (1999) exercise 15 on page 52), that the

integral converges to zero as J →∞.

1Here we see that we could weaken our assumption on the integral to merely that
∫

Ωc
J
µc(x)/µs(x) dx < ∞ for

some J if we switched to using the weight µ
1/2
s instead of µs in defining the parameter space.

19



(Cases 2 and 4). Take the square root of both sides to get

‖fj‖m,2,µc1Ωc
J
≤ ε

4
.

By the triangle inequality,

‖fj − fk‖m,2,µc1Ωc
J
< 2

ε

4
=
ε

2
.

(Case 3.) We have

‖fj‖m,∞,µc1c
ΩJ

= max
0≤|λ|≤m

sup
x∈D
|∇λfj(x)|µc(x)1Ωc

J
(x)

= max
0≤|λ|≤m

sup
x∈D
|∇λfj(x)|µs(x)

µc(x)

µs(x)
1Ωc

J
(x)

≤
(

max
0≤|λ|≤m

sup
x∈D
|∇λfj(x)|µs(x)

)
sup

‖x‖e≥J2

µc(x)

µs(x)

= ‖fj‖m,∞,µs sup
‖x‖e≥J2

µc(x)

µs(x)

≤ ‖fj‖m+m0,∞,µs sup
‖x‖e≥J2

µc(x)

µs(x)

≤ B sup
‖x‖e≥J2

µc(x)

µs(x)

≤ B ε

4B

=
ε

4
.

The second to last line follows by choosing J large enough, and using assumption 1. By

the triangle inequality,

‖fj − fk‖m,∞,µc1Ωc
J
< 2

ε

4
=
ε

2
.

11. Inside truncation piece is small. In the previous step we chose a specific value of J ,

so here we take J as fixed. {fj}∞j=J = {f (j)
j }∞j=J (equality follows by definition of fj) is a

subsequence from {f (J)
j }. This follows since the subsequences are nested:

(Cases 1, 2, and 4.) {µ1/2
s fn} ⊃ {µ1/2

s f
(1)
j } ⊃ {µ

1/2
s f

(2)
j } ⊃ · · · .

(Case 3.) {µsfn} ⊃ {µsf (1)
j } ⊃ {µsf

(2)
j } ⊃ · · · .

(Case 1.) Since {µ1/2
s f

(J)
j } converges in the norm ‖ · ‖m,∞,1ΩJ

it is also Cauchy in that

norm. Thus there is some K large enough (take K > J) such that

‖µ1/2
s (fj − fk)‖m,∞,1ΩJ

<
ε

2M
1/2
5 M ′J
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for all k, j > K. Here M ′J is the constant from applying lemma 6 to C = ΩJ . Notice

that this constant is different from MJ , which comes from applying lemma 5.

Hence

‖fj − fk‖m,∞,µ1/2
c 1ΩJ

≤M1/2
5 ‖fj − fk‖m,∞,µ1/2

s 1ΩJ

≤M1/2
5 M ′J‖µ1/2

s (fj − fk)‖m,∞,1ΩJ
by lemma 6

< M
1/2
5 M ′J

ε

2M
1/2
5 M ′J

=
ε

2
.

Applying lemma 6 uses assumption 4. The first line follows since

‖f‖
m,∞,µ1/2

c 1ΩJ

= max
0≤|λ|≤m

sup
x∈Rdx

|∇λf(x)|µ1/2
c (x)1ΩJ

(x)

= max
0≤|λ|≤m

sup
x∈Rdx

|∇λf(x)|µ1/2
s (x)

(
µc(x)

µs(x)

)1/2

1ΩJ
(x)

≤ max
0≤|λ|≤m

sup
x∈Rdx

|∇λf(x)|µ1/2
s (x)M

1/2
5 1ΩJ

(x)

= M
1/2
5 ‖f‖

m,∞,µ1/2
s 1ΩJ

,

where we used our assumption 2 that

µc(x)

µs(x)
≤M5

for all x ∈ Rdx .

(Cases 2 and 4.) Since {µ1/2
s f

(J)
j } converges in the norm ‖ · ‖m,2,1ΩJ

it is also Cauchy in

that norm. Thus there is a K large enough (take K > J) such that

‖µ1/2
s (fj − fk)‖m,2,1ΩJ

<
ε

2M
1/2
5 M ′J

for all j, k > K. Here M ′J is the constant from applying lemma 7 to C = ΩJ . Applying

this lemma uses assumption 4. We need to show that this implies

‖fj − fk‖m,2,µc1ΩJ
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is small (≤ ε/2) for all j, k > K. We have

‖f‖m,2,µc1ΩJ
=

 ∑
0≤|λ|≤m

∫
D

[∇λf(x)]2µc(x)1ΩJ
(x) dx

1/2

=

 ∑
0≤|λ|≤m

∫
D

[∇λf(x)]2µs(x)
µc(x)

µs(x)
1ΩJ

(x) dx

1/2

≤

 sup
x∈Rdx

µc(x)

µs(x)

∑
0≤|λ|≤m

∫
D

[∇λf(x)]2µs(x)1ΩJ
(x) dx

1/2

≤M1/2
5

 ∑
0≤|λ|≤m

∫
D

[∇λf(x)]2µs(x)1ΩJ
(x) dx

1/2

= M
1/2
5 ‖f‖m,2,µs1ΩJ

,

where the fourth line follows by assumption 2, which said that

µc(x)

µs(x)
≤M5

for all x ∈ Rdx . This shows us how to switch from weighting with µc to weighting with

µs. By lemma 7,

‖f‖m,2,µs1ΩJ
≤M ′J‖µ1/2

s f‖m,2,1ΩJ
.

Thus we are done since

‖fj − fk‖m,2,µc1ΩJ
≤M1/2

5 ‖fj − fk‖m,2,µs1ΩJ

≤M1/2
5 M ′J‖µ1/2

s (fj − fk)‖m,2,1ΩJ

≤M1/2
5 M ′J

ε

2M
1/2
5 M ′J

=
ε

2
.

(Case 3.) Since {µsf (J)
j } converges in the norm ‖ · ‖m,∞,1ΩJ

it is also Cauchy in that

norm. Thus there is some K large enough (take K > J) such that

‖µs(fj − fk)‖m,∞,1ΩJ
<

ε

2M5M ′J

for all k, j > K. Here M ′J is the constant from applying lemma 6 to C = ΩJ . Notice

that this constant is different from MJ , which comes from applying lemma 5.
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Hence

‖fj − fk‖m,∞,µc1ΩJ
≤M5‖fj − fk‖m,∞,µs1ΩJ

≤M5M
′
J‖µs(fj − fk)‖m,∞,1ΩJ

by lemma 6 applied with µ = µ2
s

< M5M
′
J

ε

2M5M ′J

=
ε

2
.

Applying lemma 6 uses assumption 4. The first line follows since

‖f‖m,∞,µc1ΩJ
= max

0≤|λ|≤m
sup
x∈D
|∇λf(x)|µc(x)1ΩJ

(x)

= max
0≤|λ|≤m

sup
x∈D
|∇λf(x)|µs(x)

µc(x)

µs(x)
1ΩJ

(x)

≤ max
0≤|λ|≤m

sup
x∈D
|∇λf(x)|µs(x)M51ΩJ

(x)

= M5‖f‖m,∞,µs1ΩJ
,

where the third line follows by assumption 2.

12. Put previous two steps together. We now have

‖fj − fk‖c ≤
ε

2
+
ε

2
= ε

for all k, j > K. The constants only depend on the choice of weight functions, not J or any

other variable that changes along the sequence. Thus we have shown that {fj} is ‖·‖c-Cauchy.

Lemma 9. Let µc, µs : D → R+ be nonnegative functions. Let m,m0 ≥ 0 be integers. Let ΩJ be

defined as in the proof of either theorem 3 or 5. Suppose assumption 5 holds and ‖f‖m+m0,2,µs ≤ B.

Then there is a function K(J) such that

‖f‖
m,∞,µ1/2

c 1Ωc
J

≤ K(J)

where K(J)→ 0 as J →∞.
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Proof of lemma 9. For all 0 ≤ |λ| ≤ m,

‖∇λf‖
0,∞,µ1/2

c 1Ωc
J

= sup
x∈Ωc

J

|∇λf(x)|µ1/2
c (x)

= sup
x∈Ωc

J

|∇λf(x)|µ̃1/2
c (x)

1

g(x)

≤ sup
x∈Ωc

J

|∇λf(x)|µ̃1/2
c (x) sup

x∈Ωc
J

1

g(x)

= ‖µ̃1/2
c ∇λf‖0,∞,1Ωc

J
sup
x∈Ωc

J

1

g(x)

≤ ‖µ̃1/2
c ∇λf‖0,∞ sup

x∈Ωc
J

1

g(x)
.

By the Sobolev embedding theorem (Adams and Fournier 2003, theorem 4.12, part 1, case A,

equation 1) there is a constant M2 <∞ such that

‖g‖0,∞ ≤M2‖g‖m0,2

for all g in Wm0,2 where m0 > dx/2. This inequality implies

‖µ̃1/2
c ∇λf‖0,∞ ≤M2‖µ̃1/2

c ∇λf‖m0,2

≤M2M‖∇λf‖m0,2,µs

≡M3‖∇λf‖m0,2,µs .

The second line follows by using assumption 5 in arguments as in the proof of lemma 5. Hence

‖∇λf‖
0,∞,µ1/2

c 1Ωc
J

≤M3‖∇λf‖m0,2,µs sup
x∈Ωc

J

1

g(x)

≤M3

 ∑
0≤|η|≤|λ|+m0

‖∇ηf‖0,2,µs

 sup
x∈Ωc

J

1

g(x)

≤M3

 ∑
0≤|η|≤|λ|+m0

‖f‖m+m0,2,µs

 sup
x∈Ωc

J

1

g(x)

≤M3

 ∑
0≤|η|≤|λ|+m0

B

 sup
x∈Ωc

J

1

g(x)

≤M3

 ∑
0≤|η|≤m+m0

B

 sup
x∈Ωc

J

1

g(x)

≡ K(J).

The second line uses
√
a2

1 + · · ·+ a2
n ≤ a1 + · · ·+an and the definition of the Sobolev L2 norm. The
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third line uses |ai| ≤
√
a2

1 + · · ·+ a2
n for i = 1, . . . , n. By the definition of ΩJ , and since g(x)→∞

as ‖x‖e →∞ (for D = Rdx) or as x approaches Bd(D) (for bounded D),

sup
x∈Ωc

J

1

g(x)
→ 0.

Hence K(J)→ 0 as J →∞. Finally,

‖f‖
m,∞,µ1/2

c 1Ωc
J

= max
0≤|λ|≤m

‖∇λf‖
0,∞,µ1/2

c 1Ωc
J

≤ K(J).

F Proofs of the compact embedding theorems 5 and 7

Proof of theorem 5 (Compact embedding for unbounded domains with product weighting). For cases

1–3, we apply lemma S1 below, which allows us to convert our previous compact embedding and

closedness results for equal weighting to results for product weighting. For case 4, we do not have

such a prior result because it’s not clear how to define equal weighted Hölder norms, as discussed in

the main paper. Hence for this case we instead modify the proof of the previous compact embedding

and closedness results.

Cases 1–3: Theorem 3 (case 1: part 1 with the s weight equal to the constant 1 and the c

weight equal to µ̃2) (case 2: part 2 with the s weight equal to 1 and the c weight equal to µ̃)

(case 3: part 3, with weights chosen as in case 2) implies that (cases 1 and 2: Wm+m0,2,1) (case

3: Cm+m0,∞,1) is compactly embedded in (cases 1 and 3: Cm,∞,µ̃) (case 2: Wm,2,µ̃). Note that

both the constant weight function, µ̃, and µ̃2 satisfy the local integrability assumption 6 as well as

assumption 3.

By proposition 6, (cases 1 and 3: ‖ ·‖m,∞,µ̃) (case 2: ‖ ·‖m,2,µ̃) and (cases 1 and 3: ‖ ·‖m,∞,µ̃,alt)

(case 2: ‖ · ‖m,2,µ̃,alt) are equivalent norms. Therefore (cases 1 and 2: Wm+m0,2,1 = Wm+m0,2,1,alt)

(case 3: Cm+m0,∞,1,alt) is compactly embedded in (cases 1 and 3: Cm,∞,µ̃,alt) (case 2: Wm,2,µ̃,alt).

Lemma S1 part 1 now implies that (cases 1 and 2: Wm+m0,2,µs,alt) (case 3: Cm+m0,∞,µs,alt) is

compactly embedded in (cases 1 and 3: Cm,∞,µc,alt) (case 2: Wm,2,µc,alt).

Case 4: The proof is similar to the proof of theorem 3. Since we have already given a detailed

proof of that theorem, here we only comment on the nontrivial modifications to that proof. The

numbers here refer to the steps in that proof.

1. Θ = {f ∈ Cm+m0,∞,µs,ν : ‖µsf‖m+m0,∞,1,ν ≤ B}.

2. Completeness of the function spaces under product weighting follows by completeness of the

unweighted spaces.
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4. This step is not necessary since, by definition of the product weighted norms, fn ∈ Θ for all

n implies

{µsfn} is ‖ · ‖m+m0,∞,1,ν-bounded. In particular, this implies it is ‖ · ‖m+m0,∞,1ΩJ
,ν-

bounded for each J , where here

‖g‖m+m0,∞,1ΩJ
,ν = ‖g‖m+m0,∞,1ΩJ

+ max
|λ|=m+m0

sup
x,y∈ΩJ ,x 6=y

|∇λf(x)−∇λf(y)|
‖x− y‖νe

.

Generally, in this proof indicators in the weight function placeholder denote the set over

which integration or suprema are taken.

5. Apply theorem 1 part 5. Since {µsfn} is ‖ · ‖m+m0,∞,1ΩJ
,ν-bounded, it is ‖ · ‖m,∞,1ΩJ

-

relatively compact.

9. By identical calculations as before, we have

‖fj − fk‖m,∞,µc,alt ≤ ‖fj − fk‖m,∞,µc1ΩJ
,alt + ‖fj − fk‖m,∞,µc1Ωc

J
,alt.

10. For fj ∈ Θ we have

‖fj‖m,∞,µc1Ωc
J
,alt = ‖µcfj‖m,∞,1Ωc

J

= ‖µsµ̃fj‖m,∞,1Ωc
J

≤M‖µsfj‖m,∞,µ̃1Ωc
J

= M max
0≤|λ|≤m

sup
x∈Ωc

J

|∇λ(µs(x)fj(x))|µ̃(x)

≤M max
0≤|λ|≤m

sup
x∈Rdx

|∇λ(µs(x)fj(x))| sup
x∈Ωc

J

µ̃(x)

≤M‖µsfj‖m+m0,∞,1,ν sup
x∈Ωc

J

µ̃(x)

≤MB sup
x∈Ωc

J

µ̃(x).

The third line follows by lemma 8. The last line follows since fj ∈ Θ. Now since µ̃(x) =

(1 + x′x)−δ, δ > 0, converges to zero in the tails, we can choose J large enough such that

sup
x∈Ωc

J

µ̃(x) <
ε

4MB
.

Hence, by the triangle inequality,

‖fj − fk‖m,∞,µc1Ωc
J
<
ε

2
.
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11. Since {µsf (J)
j } converges in the norm ‖ · ‖m,∞,1ΩJ

it is also Cauchy in that norm. Thus there

is some K large enough (take K > J) such that

‖µs(fj − fk)‖m,∞,1ΩJ
<

ε

2M

for all k, j > K, where M is a constant given below. Hence

‖fj − fk‖m,∞,µc1ΩJ
,alt = ‖µc(fj − fk)‖m,∞,1ΩJ

= ‖µsµ̃(fj − fk)‖m,∞,1ΩJ

≤M‖µs(fj − fk)‖m,∞,µ̃1ΩJ

≤M‖µs(fj − fk)‖m,∞,1ΩJ

< M
ε

2M

=
ε

2
.

The third line follows by lemma 8. The fourth line follows since µ̃(x) = (1 + x′x)−δ ≤ 1 for

all x.

Lemma S1. Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be Banach spaces where ‖f‖X <∞ for all f ∈ X and

‖f‖Y <∞ for all f ∈ Y . Moreover, suppose that for all f ∈ X

‖f‖X = ‖f‖s

and for all f ∈ Y
‖f‖Y = ‖fµ̃‖c

where ‖·‖s and ‖·‖c are norms and µ̃ is a weight function. Let (X̃, ‖·‖X̃) and (Ỹ , ‖·‖Ỹ ) be Banach

spaces where ‖f‖X̃ <∞ for all f ∈ X̃ and ‖f‖Ỹ <∞ for all f ∈ Ỹ . Moreover, suppose that for all

f ∈ X̃
‖f‖X̃ = ‖fµs‖s

and for all f ∈ Ỹ
‖f‖Ỹ = ‖fµsµ̃‖c

for some weight function µs.

1. (Compact embedding) Suppose (X, ‖ · ‖X) is compactly embedded in (Y, ‖ · ‖Y ). Then (X̃, ‖ ·
‖X̃) is compactly embedded in (Ỹ , ‖ · ‖Ỹ ).

2. (Closedness) Suppose

Ω = {f ∈ X : ‖f‖X ≤ B}
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is ‖ · ‖Y -closed. Then

Ω̃ = {f ∈ X̃ : ‖f‖X̃ ≤ B}

is ‖ · ‖Ỹ -closed.

Proof of lemma S1.

1. Let f ∈ X̃. By definition, ‖f‖X̃ = ‖fµs‖s <∞. Define h = fµs and notice that h ∈ X. Since

(X, ‖·‖X) is compactly embedded in (Y, ‖·‖Y ), X ⊆ Y and there exists a constant C such that

‖h‖Y ≤ C‖h‖X . First note that h ∈ X implies ‖h‖Y <∞ and hence ‖hµ̃‖c = ‖fµsµ̃‖c <∞.

So f ∈ Ỹ and thus X̃ ⊆ Ỹ . Next, note that

‖h‖Y ≤ C‖h‖X ⇔ ‖hµ̃‖c ≤ C‖h‖s
⇔ ‖fµsµ̃‖c ≤ C‖fµs‖s
⇔ ‖f‖Ỹ ≤ C‖f‖X̃ .

Next let {fn} be a sequence in the ‖ · ‖Ỹ -closure of

Ω̃ = {f ∈ X̃ : ‖f‖X̃ ≤ B} = {f ∈ X̃ : ‖fµs‖s ≤ B}.

Let hn = fnµs. Then by definition of the norms, hn is a sequence in the ‖ · ‖Y -closure of

Ω = {h ∈ X : ‖h‖X ≤ B}.

Since (X, ‖ ·‖X) is compactly embedded in (Y, ‖ ·‖Y ), there exists a subsequence hnj = fnjµs,

which is ‖ · ‖Y -Cauchy. That is, for any ε > 0, there exists an N such that ‖hnj − hnk
‖Y ≤ ε

for all j, k > N . But

‖hnj − hnk
‖Y = ‖(hnj − hnk

)µ̃‖c = ‖(fnj − fnk
)µsµ̃‖c = ‖fnj − fnk

‖Ỹ .

Therefore, fnj is a subsequence of fn which is ‖ · ‖Ỹ -Cauchy. Since (Ỹ , ‖ · ‖Ỹ ) is Banach, fj

converges to a point in Ỹ . Hence (X̃, ‖ · ‖X̃) is compactly embedded in (Ỹ , ‖ · ‖X̃).

2. Let fn be a sequence in Ω̃ such that for some f ∈ X̃, ‖fn− f‖Ỹ → 0 as n→∞. Since fn ∈ Ω̃

we have ‖fnµs‖s = ‖f‖X̃ ≤ B. Let hn = fnµs and h = fµs. Since

‖hn‖X = ‖hn‖s = ‖fnµs‖s = ‖f‖X̃ ≤ B

we have hn ∈ Ω. Moreover,

‖hn − h‖Y = ‖(hn − h)µ̃‖c = ‖fn − f‖Ỹ → 0.
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Since Ω = {f ∈ X : ‖f‖X ≤ B} is ‖ · ‖Y -closed, h ∈ Ω. That is, fµs ∈ Ω, which implies that

‖f‖X̃ = ‖fµs‖X ≤ B.

Hence f ∈ Ω̃. So Ω̃ is ‖ · ‖Ỹ -closed.

Proof of theorem 7 (Compact embedding for weighted norms on bounded domains). The proof is sim-

ilar to the proof of theorem 3. Since we have already given a detailed proof of that theorem, here

we only comment on the nontrivial modifications to that proof. The numbers here refer to the

steps in that proof.

2. For case 1, Ω1 = · · · = Ωk = D and Ω(0) = D when applying Rodŕıguez et al. (2004).

3. We use the following more general domain truncation: Let {ΩJ} be a sequence of open subsets

of D such that

(a) ΩJ ⊆ ΩJ+1 for any J ,

(b)
⋃∞
J=1 ΩJ = D, and

(c) The closure of ΩJ does not contain the boundary of the closure of D for any J . That is,

Boundary(D) ∩ ΩJ = ∅ for all J .

Roughly speaking, the sets ΩJ are converging to D from the inside. They do this in such a

way that for any J , the boundary points of D are well separated from ΩJ .

The rest of the steps go through with very minor modifications.

G Proofs of closedness theorems

Proof of theorem 2 (Closedness for bounded domains). For this proof we let dx = 1 to simplify the

notation. All arguments generalize to dx > 1.

1. We want to show that the ‖ · ‖s = ‖ · ‖m+m0,2-ball Θ is ‖ · ‖c = ‖ · ‖m,∞-closed. (Wm+m0,2, ‖ ·
‖m+m0,2) is compactly embedded in (Wm,2, ‖ · ‖m,2) by part 2 of theorem 1, which applies

since we assumed D satisfies the cone condition and m0 > dx/2. Lemma A.1 in Santos (2012)

(reproduced in the main paper’s appendix on page 2 for convenience) then implies that that

the ‖ · ‖m+m0,2-ball Θ is ‖ · ‖m,2-closed, because the Sobolev L2 spaces are separable Hilbert

spaces (theorem 3.6 of Adams and Fournier 2003). Finally, since ‖ · ‖m,2 ≤ ‖ · ‖m,∞ corollary

1 implies that Θ is ‖ · ‖m,∞-closed.

2. We want to show that the ‖ · ‖s = ‖ · ‖m+m0,2-ball Θ is ‖ · ‖c = ‖ · ‖m,2-closed. We already

showed this in the proof of part 1.
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3. We want to show that the ‖ · ‖s = ‖ · ‖m+m0,∞-ball Θ is not ‖ · ‖c = ‖ · ‖m,∞-closed. Consider

the case m = 0 and m0 = 1, so that Θ is the set of continuously differentiable functions whose

levels and first derivatives are uniformly bounded by B. We will show that this set is not

closed in the ordinary sup-norm ‖ · ‖0,∞.

Suppose D = (−1, 1). Define

gk(x) =
√
x2 + 1/k.

for integers k ≥ 1. These are smooth approximations to the absolute value function: For each

x ∈ D, gk(x)→
√
x2 = |x| as k →∞. gk is continuous and differentiable, with first derivative

g′k(x) =
1

2
(x2 + 1/k)−1/2 · 2x

=
x√

x2 + 1/k
.

So

|g′k(x)| ≤ |x|√
x2 + 1/k

≤ |x|√
x2

= 1

for all k. Also,

|gk(x)| =
√
x2 + 1/k ≤

√
1 + 1/k ≤

√
1 + 1 =

√
2

for all k. Hence gk ∈ Θ = {f ∈ C1(D) : ‖f‖1,∞ ≤ B} for each k, where B = 1 +
√

2. But,

letting f(x) = |x|,
‖gk − f‖0,∞ = sup

x∈D
|gk(x)− f(x)| → 0

as k →∞. Since f is not differentiable at 0, f /∈ Θ. This implies that Θ is not closed under

‖ · ‖0,∞.

4. We want to show that the ‖ · ‖s = ‖ · ‖m+m0,∞-ball Θ is not ‖ · ‖c = ‖ · ‖m,2-closed. The

same counterexample from part 4 applies here as well. Letting m = 0 and m0 = 1, we will

show that the ‖ · ‖1,∞-ball Θ is not closed in the ordinary L2 norm ‖ · ‖0,2. From part 4, we

constructed a sequence gk in Θ such that

‖gk − f‖0,∞ → 0

as k →∞, for f /∈ Θ. Convergence in ‖ · ‖0,∞ implies convergence in ‖ · ‖0,2 and hence

‖gk − f‖0,2 → 0

as k →∞. Therefore Θ is not closed under ‖f‖0,2.

5. We want to show that ‖ ·‖m+m0,∞,1,ν-balls are ‖ ·‖m,∞-closed, where m0 ≥ 0. Since ‖ ·‖0,∞ ≤
‖ · ‖m,∞, corollary 1 shows that it is sufficient to prove the result for m = 0. That is, it is
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sufficient to prove that the ‖ · ‖m0,∞,1,ν-ball

Θm0 ≡ {f ∈ Cm0,∞,1,ν : ‖f‖m0,∞,1,ν ≤ B}

is ‖ · ‖0,∞-closed, for all m0 ≥ 0. We proceed by induction on m0.

Step 1 (Base Case): Let m0 = 0. We want to show that Θ0 is ‖ · ‖0,∞-closed, so we will

show that its complement Θc
0 = C0,∞ \ Θ0 is ‖ · ‖0,∞-open. That is, for any f ∈ Θc

0 there

exists an ε > 0 such that

{g ∈ C0,∞ : ‖f − g‖0,∞ ≤ ε} ⊆ Θc
0.

So take an arbitrary f ∈ Θc
0. Since f is outside the Hölder ball Θ0, its Hölder norm is larger

than B,

sup
x∈D
|f(x)|+ sup

x1,x2∈D,x1 6=x2

|f(x1)− f(x2)|
|x1 − x2|ν

> B.

Hence there exist points x̄, x̄1, x̄2 in the Euclidean closure of D with x̄1 6= x̄2 such that

|f(x̄)|+ |f(x̄1)− f(x̄2)|
|x̄1 − x̄2|ν

> B.

Define

δ = |f(x̄)|+ |f(x̄1)− f(x̄2)|
|x̄1 − x̄2|ν

−B > 0.

Our goal is find a ‖ · ‖0,∞-ball around f with some positive radius ε such that all functions g

in that ball are also not in the Hölder ball Θ0. So we need these functions g to have a large

Hölder norm (larger than B). Let’s examine that. For all g ∈ C0,∞,

‖g‖0,∞,1,ν = sup
x∈D
|g(x)|+ sup

x1,x2∈D,x1 6=x2

|g(x1)− g(x2)|
|x1 − x2|ν

≥ |g(x̄)|+ |g(x̄1)− g(x̄2)|
|x̄1 − x̄2|ν

≥ |f(x̄)| − |f(x̄)− g(x̄)|+ |g(x̄1)− g(x̄2)|
|x̄1 − x̄2|ν

= |f(x̄)| − |f(x̄)− g(x̄)|

+
|f(x̄1)− f(x̄2)|
|x̄1 − x̄2|ν

− |f(x̄1)− f(x̄2)|
|x̄1 − x̄2|ν

+
|g(x̄1)− g(x̄2)|
|x̄1 − x̄2|ν

≥ |f(x̄)| − |f(x̄)− g(x̄)|

+
|f(x̄1)− f(x̄2)|
|x̄1 − x̄2|ν

− | (f(x̄1)− g(x̄1))− (f(x̄2)− g(x̄2)) |
|x̄1 − x̄2|ν

= B + δ −
(
|f(x̄)− g(x̄)|+ | (f(x̄1)− g(x̄1))− (f(x̄2)− g(x̄2)) |

|x̄1 − x̄2|ν

)
.

The third and fifth lines follow by the reverse triangle inequality. The last line follows by the
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definition of δ. If we can make this last piece in parentheses small enough, we’ll be done. For

any ε > 0,

g ∈ {g ∈ C0,∞ : ‖f − g‖0,∞ ≤ ε}

implies

|f(x̄)− g(x̄)|+ |(f(x̄1)− g(x̄1))− (f(x̄2)− g(x̄2))|
|x̄1 − x̄2|ν

≤ ε+
2ε

|x̄1 − x̄2|ν

by the triangle inequality. So suppose we choose ε so that

ε+
2ε

|x̄1 − x̄2|ν
≤ δ

2
.

Note that this choice of ε depends on the particular f ∈ Θc
0 chosen at the beginning, via δ

and x̄1 and x̄2. Then for all g ∈ C0,∞ with ‖f − g‖0,∞ ≤ ε we have

‖g‖0,∞,1,ν ≥ B + δ − δ

2

= B +
δ

2

> B.

Hence g ∈ Θc
0 for all such g. Thus Θc

0 is ‖ · ‖0,∞-open and hence Θ0 is ‖ · ‖0,∞-closed.

Step 2 (Induction Step): Next we suppose that Θm0 is ‖ · ‖0,∞-closed for some integer

m0 ≥ 0. We will show that this implies Θm0+1 is ‖ · ‖0,∞-closed.

Since Θm0 is ‖ · ‖0,∞-closed, we have that for all f in Θc
m0

= C0,∞ \Θm0 there exists an ε > 0

such that for all g ∈ C0,∞ with

‖f − g‖0,∞ ≤ ε,

it holds that g ∈ Θc
m0

. As in the base case, we will show that Θc
m0+1 is ‖ · ‖0,∞-open. So take

an arbitrary f ∈ Θc
m0+1. We will show that there exists an ε > 0 such that for all g ∈ C0,∞

with ‖f − g‖0,∞ ≤ ε we have g ∈ Θc
m0+1. We have to consider several cases, depending on

the properties of the f we’re given. First, Θm0+1 ( Θm0 implies

Θc
m0

( Θc
m0+1.

So it might be the case that f ∈ Θc
m0

. This is case (a) below. Moreover, it is possible

that f ∈ Θc
m0+1 but f /∈ Θc

m0
. This case could occur for several reasons. It might be that

f ∈ Cm0+1,∞,1,ν , so ‖f‖m0+1,∞,1,ν ≤ D for some constant D <∞, but that this norm, while

finite, is still too big:

‖f‖m0+1,∞,1,ν > B.

This is case (b) below. Another possibility is that f /∈ Cm0+1,∞,1,ν . But f /∈ Θc
m0

, f ∈ Θm0

and hence its m0’th derivative exists and is Hölder continuous. So there are three reasons
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why f /∈ Cm0+1,∞,1,ν could occur: Either the (m0 + 1)’th derivative does not exist (case (c)

below), the (m0 + 1)’th derivative exists but is not ‖ · ‖0,∞-bounded (i.e., the first piece of the

Hölder norm ‖f‖m0+1,∞,1,ν is infinite) (case (d) below), or the (m0 + 1)’th derivative exists

and is ‖ · ‖0,∞-bounded, but is not Hölder continuous (i.e., the first piece of the Hölder norm

‖f‖m0+1,∞,1,ν is finite, but the second piece is infinite) (case (e) below).

(a) Suppose f ∈ Θc
m0

. But we already know from the induction assumption that Θc
m0

is

open. Hence there exists an ε > 0 such that for all g ∈ C0,∞ with ‖f − g‖0,∞ ≤ ε it

holds that g ∈ Θc
m0

( Θc
m0+1.

(b) Suppose f /∈ Θc
m0

and f ∈ Cm0+1,∞,1,ν with

B < ‖f‖m0+1,∞,1,ν ≤ D

for some constant D <∞. Since f /∈ Θc
m0

, f ∈ Θm0 and hence

‖f‖m0,∞,1,ν ≤ B.

Let g ∈ C0,∞ be such that ‖f − g‖0,∞ ≤ ε. Remember that our goal is to find an ε > 0

such that all of these g are in Θc
m0+1. Regardless of the value of ε, if g /∈ Cm0+1,∞,1,ν

(in which case g /∈ Θm0+1 and so g ∈ Θc
m0+1) or if ‖g‖m0+1,∞,1,ν ≥ C for some finite

constant C > B, then g ∈ Θc
m0+1. So suppose that g ∈ Cm0+1,∞,1,ν and

‖g‖m0+1,∞,1,ν ≤ C.

We will show that although this norm is smaller than C, it is still larger than B. For

each x ∈ D and δ > 0 with x+ δ ∈ D,2 the mean value theorem implies that there exists

an xg ∈ [x, x+ δ] such that

g′(xg) =
g(x+ δ)− g(x)

δ

and hence

g′(x) = g′(xg) + (g′(x)− g′(xg))

=
g(x+ δ)− g(x)

δ
+ (g′(x)− g′(xg)).

Note that g is differentiable because g ∈ Cm0+1,∞,1,ν . Likewise, there exists an xf ∈
[x, x+ δ] such that

f ′(x) =
f(x+ δ)− f(x)

δ
+ (f ′(x)− f ′(xf )).

2The cone condition implies that there exists a single δ > 0 such that, for all x ∈ D, at least one of x+ δ ∈ D or
x− δ ∈ D holds.
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It follows that

‖f ′ − g′‖0,∞
= sup

x∈D
|f ′(x)− g′(x)|

= sup
x∈D

∣∣∣∣(f(x+ δ)− f(x)

δ
+ (f ′(x)− f ′(xf ))

)
−
(
g(x+ δ)− g(x)

δ
+ (g′(x)− g′(xg))

)∣∣∣∣
= sup

x∈D

∣∣∣∣f(x+ δ)− g(x+ δ)

δ
− f(x)− g(x)

δ
+ (f ′(x)− f ′(xf )) + (g′(x)− g′(xg))

∣∣∣∣
≤ sup

x∈D

(
|f(x+ δ)− g(x+ δ)|

δ
+
|f(x)− g(x)|

δ
+ |f ′(x)− f ′(xf )|+ |g′(x)− g′(xg)|

)
≤ 2ε

δ
+Dδν + Cδν

The fourth line follows by the triangle inequality. The last line by ‖f − g‖0,∞ ≤ ε,

xf ∈ [x, x + δ], xg ∈ [x, x + δ], and since f ′ and g′ are both Hölder continuous with

Hölder constants D and C, respectively (which follows because ‖f‖m0+1,∞,1,ν ≤ D and

‖g‖m0+1,∞,1,ν ≤ C).

Let ε1 > 0 be arbitrary. Choose δ > 0 such that Dδν ≤ ε1/3 and Cδν ≤ ε1/3. After

choosing δ, choose ε such that 2ε/δ ≤ ε1/3. Thus

‖f ′ − g′‖0,∞ ≤ ε1.

We have shown that if the first derivatives of f and g are Hölder continuous, we can

make the derivatives for all g with ‖f − g‖0,∞ ≤ ε arbitrarily close to the derivative of f

by choosing ε small enough. An analogous argument shows that if ‖f ′−g′‖0,∞ ≤ ε1 and

if the second derivatives are Hölder continuous, then we can make the second derivatives

arbitrarily close. Applying this argument recursively to higher order derivative shows

that for any εm0+1 > 0, we can pick an ε > 0 such that for all g with ‖g‖m0+1,∞,1,ν ≤ C
and ‖f − g‖0,∞ ≤ ε,

‖∇m0+1f −∇m0+1g‖0,∞ ≤ εm0+1.

Our argument from the base case (step 1) now implies that if εm0+1 is small enough,

then ‖g‖m0+1,∞,1,ν > B for all g ∈ C0,∞ with ‖f − g‖0,∞ ≤ ε. Hence g ∈ Θc
m0+1. Note

that we use ‖f‖m0+1,∞,1,ν > B when applying the base case argument.

(c) Suppose that for some x̄ ∈ D, ∇m0+1f(x̄) does not exist. Then f /∈ Cm0+1,∞,1,ν . But

since f /∈ Θc
m0

, we know that the m0’th derivative of f exists and is Hölder continuous.

As in case (b), take g ∈ C0,∞ such that ‖f−g‖0,∞ ≤ ε and suppose that g ∈ Cm0+1,∞,1,ν

‖g‖m0+1,∞,1,ν ≤ C for C > B (remember from part (b) that otherwise we know g ∈
Θc
m0+1 already). Since the m0’th derivative of f exists and is Hölder continuous, we

know that the only way for the derivative ∇m0+1f(x̄) to not exist is if it has a kink—its

right hand side derivative does not exist, its left hand side derivative does not exist, or
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both exist but are not equal. So we consider each of these three cases separately.

i. Suppose the right hand side derivative of ∇m0f at x̄ does not exist. That is,

lim
h↘0

∇m0f(x̄+ h)−∇m0f(x̄)

h

does not exist. Then there exists a δ > 0 such that for any η > 0 we can find an h

with 0 < h < η and∣∣∣∣∇m0f(x̄+ h)−∇m0f(x̄)

h
−∇m0+1g(x̄)

∣∣∣∣ > δ.

If such a δ did not exists, then

lim
h↘0

∇m0f(x̄+ h)−∇m0f(x̄)

h
= ∇m0+1g(x̄)

by definition of the limit. For such a fixed h, we have

δ <

∣∣∣∣∇m0f(x̄+ h)−∇m0f(x̄)

h
−∇m0+1g(x̄)

∣∣∣∣
≤
∣∣∣∣∇m0f(x̄+ h)−∇m0g(x̄+ h) +∇m0g(x̄)−∇m0f(x̄)

h

∣∣∣∣
+

∣∣∣∣∇m0g(x̄+ h)−∇m0g(x̄)

h
−∇m0+1g(x̄)

∣∣∣∣
≤
∣∣∣∣∇m0f(x̄+ h)−∇m0g(x̄+ h) +∇m0g(x̄)−∇m0f(x̄)

h

∣∣∣∣
+
∣∣∇m0+1g(x̃)−∇m0+1g(x̄)

∣∣
≤
∣∣∣∣∇m0f(x̄+ h)−∇m0g(x̄+ h) +∇m0g(x̄)−∇m0f(x̄)

h

∣∣∣∣+ Chν .

The second line follows by the triangle inequality. The third line by the mean value

theorem, since ∇m0g is differentiable, and here x̃ ∈ [x̄, x̄+h]. The fourth line follows

since ∇m0+1g is Hölder continuous with constant C, and since x̃ ∈ [x̄, x̄+h] so that

‖x̃ − x̄‖ ≤ h. Now choose h small enough such that Chν ≤ δ/2. For this fixed h,

pick ε small enough such that

‖∇m0f −∇m0g‖0,∞ ≤
δh

4
.

Then

δ <

∣∣∣∣∇m0f(x̄+ h)−∇m0f(x̄)

h
−∇m0+1g(x̄)

∣∣∣∣ ≤ δ,
a contraction.
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ii. Suppose the left hand side derivative of ∇m0f at x̄ does not exist. That is,

lim
h↘0

∇m0f(x̄)−∇m0f(x̄− h)

h

does not exist. This case proceeds analogously to the previous case.

iii. Both the left hand and right hand side derivatives of ∇m0f at x̄ exist, but they are

not equal:

lim
h↘0

∇m0f(x̄+ h)−∇m0f(x̄)

h
6= lim

h↘0

∇m0f(x̄)−∇m0f(x̄− h)

h
.

Considering the distance between the right hand side and left hand side secant lines,

for any h > 0 such that [x̄− h, x̄+ h] ⊆ D, we obtain∣∣∣∣(∇m0f(x̄+ h)−∇m0f(x̄)

h

)
−
(
∇m0f(x̄)−∇m0f(x̄− h)

h

)∣∣∣∣
≤ 4

εm0

h
+

∣∣∣∣(∇m0g(x̄+ h)−∇m0g(x̄)

h

)
−
(
∇m0g(x̄)−∇m0g(x̄− h)

h

)∣∣∣∣
= 4

εm0

h
+
∣∣(∇m0+1g(x̃1)−∇m0+1g(x̃2)

)∣∣
≤ 4

εm0

h
+ C(2h)ν .

For the first line, we used the triangle inequality plus the fact that for any εm0 > 0,

there exists an ε > 0 not depending on g such that ‖f − g‖0,∞ ≤ ε implies

‖∇m0f −∇m0g‖0,∞ ≤ εm0 .

This follows from our argument in part (b), since ∇m0f and ∇m0g are Hölder

continuous.

In the second line, we used the mean value theorem, since g ∈ Cm0+1,∞,1,ν , where

x̃1 ∈ [x̄, x̄ + h] and x̃2 ∈ [x̄ − h, x̄]. In the third line we used Hölder continuity of

∇m0+1g since ‖g‖m0+1,∞,1,ν ≤ C, plus the fact that |x̃1 − x̃2| ≤ 2h.

Since

lim
h↘0

∇m0f(x̄+ h)−∇m0f(x̄)

h
6= lim

h↘0

∇m0f(x̄)−∇m0f(x̄− h)

h

there exists a δ > 0 such that for an arbitrarily small h∣∣∣∣(∇m0f(x̄+ h)−∇m0f(x̄)

h

)
−
(
∇m0f(x̄)−∇m0f(x̄− h)

h

)∣∣∣∣ > δ.

Choose h such that C(2h)ν ≤ δ/2. Then for this fixed h, pick ε small enough such
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that 4εm0/h ≤ δ/2. Then

δ <

∣∣∣∣(∇m0f(x̄+ h)−∇m0f(x̄)

h

)
−
(
∇m0f(x̄)−∇m0f(x̄− h)

h

)∣∣∣∣ ≤ δ,
a contraction.

In all three cases where ∇m0+1f(x̄) does not exist, we have derived a contradiction.

Hence there does not exist a g ∈ C0,∞ with ‖g‖m0+1,∞,1,ν ≤ C and ‖f − g‖0,∞ ≤ ε. This

implies that for all g ∈ C0,∞ with ‖f − g‖0,∞ ≤ ε it holds that g ∈ Θc
m0+1.

(d) Suppose ∇m0+1f(x) exists for all x ∈ D but

sup
x∈D
|∇m0+1f(x)| =∞.

For example, this happens with f(x) =
√
x when D = (0, 1) and m0 = 0. Then there

exists a x̄ ∈ D such that

C < |∇m0+1f(x̄)| <∞

for some constant C > B. Thus, for all ‖g‖m0+1,∞,1,ν ≤ C,

|∇m0+1g(x̄)| ≥ |∇m0+1f(x̄)| −
∣∣∇m0+1g(x̄)−∇m0+1f(x̄)

∣∣
= |∇m0+1f(x̄)| −

∣∣∣∣ limh→0

∇m0g(x̄+ h)−∇m0g(x̄)

h
− lim
h→0

∇m0f(x̄+ h)−∇m0f(x̄)

h

∣∣∣∣
= |∇m0+1f(x̄)| − lim

h→0

∣∣∣∣∇m0g(x̄+ h)−∇m0f(x̄+ h)

h
− ∇

m0g(x̄)−∇m0f(x̄)

h

∣∣∣∣ .
The first line follows by the reverse triangle inequality. Since the limit in the last line

exists and is finite, for any δ > 0, we can find an h̄ > 0 with [x̄, x̄ + h̄] ⊆ D such that

the difference between the limit and the term we’re taking the limit of evaluated at h̄ is

smaller than δ. Hence

|∇m0+1g(x̄)| ≥ |∇m0+1f(x̄)| −
∣∣∣∣∇m0g(x̄+ h̄)−∇m0f(x̄+ h̄)

h̄
− ∇

m0g(x̄)−∇m0f(x̄)

h̄

∣∣∣∣− δ
≥ C − δ −

∣∣∣∣∇m0g(x̄+ h̄)−∇m0f(x̄+ h̄)

h̄
− ∇

m0g(x̄)−∇m0f(x̄)

h̄

∣∣∣∣ .
As in part (b), for any εm0 > 0, there is an ε > 0 such that ‖f − g‖0,∞ ≤ ε implies

‖∇m0f −∇m0g‖0,∞ ≤ εm0 .

Let εm0 such that∣∣∣∣∇m0g(x̄+ h̄)−∇m0f(x̄+ h̄)

h̄
− ∇

m0g(x̄)−∇m0f(x̄)

h̄

∣∣∣∣ ≤ δ.
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Then

|∇m0+1g(x̄)| ≥ C − 2δ

> B

where the last line follows if we choose δ > 0 such that C−2δ > B, that is, δ < (C−B)/2,

which is possible since C > B. We have shown that the first piece of the Hölder norm

‖g‖m0+1,∞,1,ν is larger than B, and so the entire norm is larger than B and hence

g ∈ Θc
m0+1.

(e) Finally, suppose

sup
x∈D
|∇m0+1f(x)| ≤ D <∞

but ∇m0+1f is not Hölder continuous:

sup
x1,x2∈D,x1 6=x2

|∇m0+1f(x1)−∇m0+1f(x2)|
|x1 − x2|ν

=∞.

Again take g ∈ C0,∞ such that ‖f − g‖0,∞ ≤ ε and suppose that ‖g‖m0+1,∞,1,ν ≤ C for

C > B. Since ∇m0+1f is not Hölder continuous, there exist x1 and x2 in D, x1 6= x2,

such that ∣∣∣∣∇m0+1f(x1)−∇m0+1f(x2)

|x1 − x2|ν

∣∣∣∣ > B + C.

Moreover, by the triangle inequality,∣∣∣∣∇m0+1f(x1)−∇m0+1f(x2)

|x1 − x2|ν

∣∣∣∣
≤
∣∣∣∣∇m0+1g(x1)−∇m0+1g(x2)

|x1 − x2|ν

∣∣∣∣+
+ lim
h→0

∣∣∣∣∣(∇m0g(x1 + h)−∇m0g(x1))− (∇m0f(x1 + h)−∇m0f(x1))

h

/
|x1 − x2|ν

∣∣∣∣∣
+ lim
h→0

∣∣∣∣∣(∇m0g(x2 + h)−∇m0g(x2))− (∇m0f(x2 + h)−∇m0f(x2))

h

/
|x1 − x2|ν

∣∣∣∣∣ .
As in part (b), for any εm0 > 0, there is an ε > 0 such that ‖f − g‖0,∞ ≤ ε implies

‖∇m0f −∇m0g‖0,∞ ≤ εm0 .

Returning to our previous inequality, we see that since the limits on the right hand side

are finite and since ∇m0+1g is Hölder continuous, for any δ > 0 there is an h̄ > 0 which
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does not depend on g such that∣∣∣∣∇m0+1f(x1)−∇m0+1f(x2)

|x1 − x2|ν

∣∣∣∣
≤
∣∣∣∣∇m0+1g(x1)−∇m0+1g(x2)

|x1 − x2|ν

∣∣∣∣
+

∣∣∣∣∣
(
∇m0g(x1 + h̄)−∇m0g(x1)

)
−
(
∇m0f(x1 + h̄)−∇m0f(x1)

)
h̄

/
|x1 − x2|ν

∣∣∣∣∣
+

∣∣∣∣∣
(
∇m0g(x2 + h̄)−∇m0g(x2)

)
−
(
∇m0f(x2 + h̄)−∇m0f(x2)

)
h̄

/
|x1 − x2|ν

∣∣∣∣∣+ δ

≤ C +
4εm0

h̄|x1 − x2|ν
+ δ.

This is the same argument we used in part (d). In the last line we used ‖g‖m0+1,∞,1,ν ≤
C, the triangle inequality, and ‖∇m0f − ∇m0g‖0,∞ ≤ εm0 . Choose δ = B/2. Then

choose εm0 small enough so that

4ε0

h̄|x1 − x2|ν
<
B

2
.

Combining our results, we have shown

C +B <

∣∣∣∣∇m0+1f(x1)−∇m0+1f(x2)

|x1 − x2|ν

∣∣∣∣ ≤ C +B,

a contradiction.

Proof of theorem 4 (Closedness under equal weightings).

1. We want to show that the ‖ · ‖s = ‖ · ‖m+m0,2,µs-ball Θ is ‖ · ‖c = ‖ · ‖
m,∞,µ1/2

c
-closed. Part 1

of our compact embedding result theorem 3 says that Wm+m0,2,µs is compactly embedded in

C
m,∞,µ1/2

c
. Now consider the space (Wm,2,µa , ‖ · ‖m,2,µa) where µa is such that

∫
Rdx

µa(x)

µc(x)
dx ≤ C1.
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Then for any f ∈ C
m,∞,µ1/2

c
,

‖f‖2m,2,µa =
∑

0≤|λ|≤m

∫
Rdx

|∇λf(x)|2µa(x) dx

=
∑

0≤|λ|≤m

∫
Rdx

|∇λf(x)|2µc(x)
µa(x)

µc(x)
dx

≤ C‖f‖2
m,∞,µ1/2

c

∫
Rdx

µa(x)

µc(x)
dx

≤ CC1‖f‖m,∞,µ1/2
c
.

Hence

C
m,∞,µ1/2

c
⊆ Wm,2,µa .

But we also know that Wm+m0,2,µs is compactly embedding in C
m,∞,µ1/2

c
. Therefore, by

lemma 4, Wm+m0,2,µs is compactly embedded in Wm,2,µa . Both of these are separable Hilbert

spaces by arguments as in the proof of theorem 3.6 in Kufner (1980), which is analogous to

Adams and Fournier (2003) theorem 3.6. Hence lemma A.1 of Santos (2012) implies that Θ

is ‖ · ‖m,2,µa-closed. But now lemma 2 and the inequality ‖ · ‖m,2,µa ≤ (CC1)1/2‖ · ‖
m,∞,µ1/2

c

imply that Θ is ‖ · ‖
m,∞,µ1/2

c
-closed.

2. We want to show that the ‖ · ‖s = ‖ · ‖m+m0,2,µs-ball Θ is ‖ · ‖c = ‖ · ‖m,2,µc-closed. Part 2

of our compact embedding result theorem 3 says that Wm+m0,2,µs is compactly embedded in

Wm,2,µc . Both of these are separable Hilbert spaces, as discussed in the previous part. Hence

lemma A.1. of Santos (2012) implies that Θ is ‖ · ‖m,2,µc-closed.

3. We want to show that the ‖ · ‖s = ‖ · ‖m+m0,∞,µs-ball Θ is not ‖ · ‖c = ‖ · ‖m,∞,µc-closed. The

same counterexample from the proof of part 3 of theorem 2 can be adapted here as well, by

smoothly extending its domain definition to D = R.

4. We want to show that the ‖ · ‖s = ‖ · ‖m+m0,∞,µs-ball Θ is not ‖ · ‖c = ‖ · ‖m,2,µc-closed. As in

the previous part, this can be shown by extending the same counterexample from theorem 2.

Proof of theorem 6 (Closedness under product weightings). Cases 1 and 2. This follows exactly

as in the proof of theorem 5, except we apply theorem 4 and then lemma S1 part 2

Case 3. As in theorem 4, we can adapt the counterexample from theorem 2 by smoothly

extending its domain to D = R.

Case 4. Assume dx = 1 for simplicity. This proof is a close modification to the corresponding

proof of theorem 2 for bounded domains. As in that proof, it suffices to prove the result for m = 0.

For any g ∈ Cm0,∞,µs,ν define gs(x) = µs(x)g(x) and gc(x) = µc(x)g(x). We want to prove that

Θm0 ≡ {g ∈ Cm0,∞,µs,ν : ‖g‖m0,∞,µs,ν ≤ B}
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is ‖ · ‖m0,∞,µc-closed, for all m0 ≥ 0. We proceed by induction on m0.

Step 1 (Base Case): Let m0 = 0. We want to show that Θ0 is ‖ · ‖0,∞,µc-closed, so we will

show that its complement Θc
0 = C0,∞,µc \ Θ0 is ‖ · ‖0,∞,µc-open. So take an arbitrary f ∈ Θc

0. We

will show that there exists an ε > 0 such that

{g ∈ C0,∞,µc : ‖f − g‖0,∞,µc ≤ ε} ⊆ Θc
0.

Since f is outside the weighted Hölder ball Θ0, its weighted Hölder norm is larger than B,

sup
x∈R
|fs(x)|+ sup

x1,x2∈R

|fs(x1)− fs(x2)|
|x1 − x2|ν

> B.

Hence there exist points x̄, x̄1, x̄2 ∈ R with x̄1 6= x̄2 such that

|fs(x̄)|+ |fs(x̄1)− fs(x̄2)|
|x̄1 − x̄2|ν

> B.

Define

δ = |fs(x̄)|+ |fs(x̄1)− fs(x̄2)|
|x̄1 − x̄2|ν

−B > 0.

Next, for all g ∈ C0,∞,µc ,

‖g‖0,∞,µs,ν ≥ |gs(x̄)|+ |gs(x̄1)− gs(x̄2)|
|x̄1 − x̄2|ν

≥ |fs(x̄)| − |fs(x̄)− gs(x̄)|

+
|fs(x̄1)− fs(x̄2)|
|x̄1 − x̄2|ν

− |(fs(x̄1)− gs(x̄1))− (fs(x̄2)− gs(x̄2))|
|x̄1 − x̄2|ν

= B + δ −
(
|fs(x̄)− gs(x̄)|+ |(fs(x̄1)− gs(x̄1))− (fs(x̄2)− gs(x̄2))|

|x̄1 − x̄2|ν

)

= B + δ −

|fc(x̄)− gc(x̄)|µs(x̄)

µc(x̄)
+

∣∣∣(fc(x̄1)− gc(x̄1))µs(x̄1)
µc(x̄1) − (fc(x̄2)− gc(x̄2))µs(x̄2)

µc(x̄2)

∣∣∣
|x̄1 − x̄2|ν

 .

For all g ∈ C0,∞,µc with

‖f − g‖0,∞,µc = ‖fc − gc‖0,∞ ≤ ε

we have

|fc(x̄)−gc(x̄)|µs(x̄)

µc(x̄)
+

∣∣∣(fc(x̄1)− gc(x̄1))µs(x̄1)
µc(x̄1) − (fc(x̄2)− gc(x̄2))µs(x̄2)

µc(x̄2)

∣∣∣
|x̄1 − x̄2|ν

≤ εµs(x̄)

µc(x̄)
+
εµs(x̄1)
µc(x̄1) + εµs(x̄2)

µc(x̄2)

|x̄1 − x̄2|ν

by the triangle inequality. So suppose we choose ε small enough that the right hand side is ≤ δ/2.
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Then for all g ∈ C0,∞,µc with ‖f − g‖0,∞,µc ≤ ε we have

‖g‖0,∞,µs,ν ≥ B + δ − δ

2

> B.

Hence g ∈ Θc
0 for all such g. Thus Θc

0 is ‖ · ‖0,m,µc-open and hence Θ0 is ‖ · ‖0,m,µc-closed.

Step 2 (Induction Step): This step follows the same arguments as those with bounded

support. As in step 1, the main idea is simply to replace g with either gc or gs, as appropriate.

Proof of theorem 8 (Closedness for weighted norms on bounded domains). This proof is identical

to the proof of theorem 6, except that now we use the compact embedding results of theorem

7 when necessary.

H Proofs of propositions from section 4

Proof of proposition 1. This proof is straightforward and we therefore omit it.

Proof of proposition 2. This proof is straightforward and we therefore omit it.

Proof of proposition 3. This proof is given in Gallant and Nychka (1987) as lemma A.2, and hence

we omit it.

Proof of proposition 4. This proof is similar to the proof of proposition 3, which was shown in

lemma A.2 of Gallant and Nychka (1987). Let C ⊆ D be compact. We prove the proposition by

induction on m (letting m0 = 0, since it is irrelevant for the present result). For the base case,

m = 0, the result holds trivially by letting KC = 1. Next suppose it holds for m − 1. Choose λ

such that |λ| = m and let ∇λ = ∇β∇α where |α| = 1 and |β| = m− 1. The result holds trivially if

δs = 0, so let δs 6= 0. Then

∇λ[µ1/2
s (x)] = ∇λ

[
exp

(
δs
2

(x′x)

)]
= ∇β

(
∇α
[
exp

(
δs
2

(x′x)

)])
= ∇β

(
δs
2

exp

(
δs
2

(x′x)

)
· ∇α(x′x)

)
=
δs
2

∑
γ≤β

[
β

γ

]
∇γ
[
exp

(
δs
2

(x′x)

)]
∇α+β−γ(x′x)

=
δs
2

∑
γ≤β

[
β

γ

]
[∇γµ1/2

s (x)]∇α+β−γ(x′x).
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In the fourth line we used Leibniz’s formula. Next,

|∇α+β−γ(x′x)| ≤
dx∑
i=1

(x2
i + 2|xi|+ 2)

≤ 4(1 + x′x).

Hence

|∇λ[µ1/2
s (x)]| ≤ |δs|

2

∑
γ≤β

[
β

γ

]
|∇γµ1/2

s (x)| · |4(1 + x′x)|

≤ 2|δs|
∑
γ≤β

[
β

γ

]
KC,m−1µ

1/2
s (x) · |1 + x′x|

≤ 2|δs|
∑
γ≤β

[
β

γ

]
KC,m−1µ

1/2
s (x) ·MC

= µ1/2
s (x)

2|δs|
∑
γ≤β

[
β

γ

]
KC,m−1 ·MC

 .

Here MC = supx∈C |1 + x′x|, which is finite since C is compact. The second line follows by the

induction hypothesis.

Proof of proposition 5. Pick g(x) = 1 + x′x. Notice that g(x) → ∞ as ‖x‖e → ∞. We prove the

result by showing that for any 0 ≤ |λ| ≤ m0,

∇λµ̃1/2
c (x) = exp

[
δc
2

(x′x)

]
· pλ(x) (∗)

for some polynomial pλ(x). Consequently, dividing by µ
1/2
s (x) yields

∇λµ̃1/2
c (x)

µ
1/2
s (x)

= exp

[
δc − δs

2
(x′x)

]
· pλ(x).

Since δc < δs, ∣∣∣∣∣∇λµ̃1/2
c (x)

µ
1/2
s (x)

∣∣∣∣∣
converges to zero as ‖x‖e → ∞. This implies there is a J such that for all x with ‖x‖e > J , this

ratio is smaller than M1. For all x with ‖x‖e ≤ J , this ratio is a continuous function (the product

of an exponential and a polynomial) on a compact set, and hence achieves a maximum M2. Let

M = max{M1,M2}. Thus the ratio is bounded by M for all x ∈ Rdx .
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So it suffices to show equation (∗). We proceed by induction. For the base case, |λ| = 0,

∇0µ̃1/2
c (x) = exp[δc(x

′x)/2] · g(x)

= exp[δc(x
′x)/2] · (1 + x2).

So the base case holds with p0(x) = g(x) = 1 + x2. Next, suppose it holds for |λ| = m− 1. Choose

λ such that |λ| = m and let ∇λ = ∇β∇α where |α| = 1 and |β| = m− 1. Then

∇λ[µ̃1/2
c (x)] = ∇α[∇βµ̃1/2

c (x)]

= ∇α[exp[δc(x
′x)/2] · pβ(x)]

= exp[δc(x
′x/2)](δc/2)pβ(x)∇α(x′x) + exp[δc(x

′x)/2]∇αpβ(x)

= exp[δc(x
′x)/2]

(
(δc/2)pβ(x)∇α(x′x) +∇αpβ(x)

)
.

Since the derivative of a polynomial is a polynomial, we’re done.

Proof of proposition 6.

1. This follows immediately from lemmas 5 and 7:

‖µ1/2f‖m,2 ≤M1‖f‖m,2,µ ≤M1M‖µ1/2f‖m,2.

2. This follows immediately from lemmas 6 and 8.

I Proofs of propositions from section 5

Proof of proposition 7. Suppose such a function µ existed. Define g : (0, 1)→ R by g(x) = log µ(x).

Then (1) implies that g(x)→ −∞ as x→ 0. (2) implies that

g′(x) =
1

µ(x)
µ′(x) ≤ K.

Hence |g′(x)| ≤ K for all x ∈ (0, 1). This is a contradiction to g(x)→ −∞ as x→ 0.

Proof of proposition 8. First consider the polynomial weight case, µs(x) = [x(1− x)]δs . The proof

is similar to the proof of propositions 3. We proceed by induction. For the base case m = 0, the

result holds trivially by letting KC = 1. Next suppose it holds for m− 1. If δs = 0 the result holds
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trivially, so let δs 6= 0. We have

∇m[µ1/2
s (x)] = ∇m

(
[x(1− x)]δs/2

)
= ∇m−1∇1

(
[x(1− x)]δs/2

)
= ∇m−1

(
δs
2

[x(1− x)]δs/2−1∇1[x(1− x)]

)
=
δs
2

∑
γ≤m−1

[
m− 1

γ

]
∇γ
(

[x(1− x)]δs/2−1
)
∇1+(m−1)−γ [x(1− x)]

=
δs
2

∑
γ≤m−1

[
m− 1

γ

]
∇γ
(
µ

1/2

s,δ̃
(x)
)
∇m−γ [x(1− x)].

Here δ̃ = δs − 1/2. ∇n[x(1 − x)] is either x − x2 for n = 0, 1 − 2x for n = 1, −2 for n = 2, and 0

for n > 2. Hence

MC ≡ sup
x∈C
|∇m−γ [x(1− x)]|

<∞

since D is bounded. So for all x ∈ C,

|∇m[µ1/2
s (x)]| ≤ |δs|

2

∑
γ≤m−1

[
m− 1

γ

]
|∇γ [µ

1/2

s,δ̃
(x)]| · |∇m−γ [x(1− x)]|

≤ |δs|
2

∑
γ≤m−1

[
m− 1

γ

]
KC,m−1µ

1/2

s,δ̃
(x) ·MC

= µ
1/2

s,δ̃
(x)

 |δs|
2

∑
γ≤m−1

[
m− 1

γ

]
KC,m−1MC


= [x(1− x)]δs/2−1

 |δs|
2

∑
γ≤m−1

[
m− 1

γ

]
KC,m−1MC


= µ1/2

s (x)
1

x(1− x)

 |δs|
2

∑
γ≤m−1

[
m− 1

γ

]
KC,m−1MC


≤ µ1/2

s (x)M ′C

 |δs|
2

∑
γ≤m−1

[
m− 1

γ

]
KC,m−1MC

 .

The second line follows by our MC bound from above, and by the induction hypothesis with constant

KC,m−1. The last line follows since C ⊆ (0, 1) is compact, and hence x is bounded away from zero

and one. So

M ′C ≡ sup
x∈C

1

x(1− x)
<∞.
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Next consider the exponential weight case, µs(x) = exp[δsx
−1(1− x)−1]. The proof for this case is

similar to the proofs of propositions 3 and 4. Let C ⊆ D be compact. We prove the proposition

by induction on m (letting m0 = 0, since it is irrelevant for the present result). For the base case,

m = 0, the result holds trivially by letting KC = 1. Next suppose it holds for m − 1. The result

holds trivially if δs = 0, so let δs 6= 0. Then

∇m[µ1/2
s (x)] = ∇m

[
exp

(
δs
2

1

x(1− x)

)]
= ∇m−1

(
∇1

[
exp

(
δs
2

1

x(1− x)

)])
= ∇m−1

(
δs
2

exp

(
δs
2

1

x(1− x)

)
· ∇1

(
1

x(1− x)

))
=
δs
2

∑
γ≤m−1

[
m− 1

γ

]
∇γ
[
exp

(
δs
2

1

x(1− x)

)]
∇1+(m−1)−γ

(
1

x(1− x)

)

=
δs
2

∑
γ≤m−1

[
m− 1

γ

]
[∇γµ1/2

s (x)]∇m−γ
(

1

x(1− x)

)
.

In the fourth line we used Leibniz’s formula. Next, for any natural number n,

∇n
(

1

x(1− x)

)
= n!

n∑
j=0

(−1)n−j

(1− x)j+1xn+1−j .

Hence

|∇m[µ1/2
s (x)]| ≤ |δs|

2

∑
γ≤m−1

[
m− 1

γ

]
|∇γµ1/2

s (x)| ·

∣∣∣∣∣∣n!
n∑
j=0

(−1)n−j

(1− x)j+1xn+1−j

∣∣∣∣∣∣
≤ |δs|

2

∑
γ≤m−1

[
m− 1

γ

]
|∇γµ1/2

s (x)| ·MC

≤ |δs|
2

∑
γ≤m−1

[
m− 1

γ

]
KC,m−1µ

1/2
s (x) ·MC

= µ1/2
s (x)

 |δs|
2

∑
γ≤m−1

[
m− 1

γ

]
KC,m−1 ·MC

 .

Here

MC = sup
x∈C

∣∣∣∣∣∣n!
n∑
j=0

(−1)n−j

(1− x)j+1xn+1−j

∣∣∣∣∣∣ ,
which is finite since C ⊆ (0, 1) is compact, and hence x is bounded away from zero and one. The

third line follows by the induction hypothesis.

Proof of proposition 9. Let g(x) = x−1(1 − x)−1. Then g(x) → ∞ as x → 0 or x → 1. Note that
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Bd(D) = {0, 1}. The rest of the proof is similar to that of proposition 5. It suffices to show that

for any 0 ≤ |λ| ≤ m0,

∇λµ̃1/2
c (x) = µc(x) · rλ(x) (∗)

for some rational function rλ. Dividing (∗) by µ
1/2
s (x) yields

∇λµ̃1/2
c (x)

µ
1/2
s (x)

= exp[(δc − δs)g(x)] · rλ(x).

Since δc < δs, the absolute value of this expression converges to zero as x→ 0 or 1. This proves part

2 of assumption 5. The proof of equation (∗) is as in the proof of 5: The base case holds immediately

with r0(x) = g(x). The induction step follows since the derivative of a rational function is still

rational.

J Completeness of Sobolev spaces

When switching from the Sobolev sup-norm to the Sobolev Lp norm, a natural first space to consider

is

{f ∈ Cm(D) : ‖f‖m,p,µ <∞}.

This space equipped with the norm ‖·‖m,p,µ is unfortunately not ‖·‖m,p,µ-complete. For unweighted

spaces, µ(x) ≡ 1, we can instead consider the completion of this space, denoted by Hm,p,1(D). An

important result from functional analysis3 known as the ‘H=W theorem’ states that this completion

equals the Sobolev space

Wm,p(D) = {f ∈ Wm(D) : ‖f‖m,p,1 <∞}.

Hence the way to complete the initial space is simply to allow for weakly differentiable functions,

in addition to functions which are classically differentiable.

For weighted spaces, the H=W theorem does not necessarily hold; see Zhikov (1998).4 For this

reason, we follow the literature by defining the weighted Sobolev space

Wm,p,µ(D) = {f ∈ Wm(D) : ‖f‖m,p,µ <∞}.

As mentioned in section 2, this space is ‖ · ‖m,p,µ-complete.

3See theorem 3.17 in Adams and Fournier (2003).
4Similar results sometimes obtain, however. For example, see Kufner and Opic (1984) remark 4.8 and also the

discussion in Zhikov (1998). Also see remark 4.1 of Kufner and Opic (1984).
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K Discussion of assumption 5

To get some intuition for assumption 5, consider the one dimensional case dx = 1. In this case, we

can usually take m0 = 1, since m0 > dx/2 is then satisfied (see theorem 3 below). Then

|∇0µ̃
1/2
c (x)|

µ
1/2
s (x)

=

∣∣∣∣∣∇0[µ
1/2
c (x)g(x)]

µ
1/2
s (x)

∣∣∣∣∣
≤
(
µc(x)

µs(x)

)1/2

|g(x)|

and

|∇1µ̃
1/2
c (x)|

µ
1/2
s (x)

=

∣∣∣∣∣∇1[µ
1/2
c (x)g(x)]

µ
1/2
s (x)

∣∣∣∣∣
=

∣∣∣∣∣∇1µ
1/2
c (x)

µ
1/2
s (x)

g(x) +
µ

1/2
c (x)

µ
1/2
s (x)

∇1g(x)

∣∣∣∣∣
≤ |∇

1µ
1/2
c (x)|

µ
1/2
s (x)

|g(x)|+
(
µc(x)

µs(x)

)1/2

|∇1g(x)|.

So when dx = 1 with m0 = 1, a sufficient condition for 5 is that there is a function g that diverges

to infinity in the tails, but whose levels diverge slow enough that

|g(x)| = o

([
µc(x)

µs(x)

]−1/2
)

and |g(x)| = o

[ |∇1µ
1/2
c (x)|

µ
1/2
s (x)

]−1


and whose first derivative also satisfies

|∇1g(x)| = o

([
µc(x)

µs(x)

]−1/2
)
.

For further intuition, suppose assumption 3 held for µc. Then for all x ∈ Rdx and any 0 ≤ |λ| ≤ m0,

|∇λµ1/2
c (x)| ≤ Kµ1/2

c (x)

= K

(
µc(x)

µs(x)

)1/2

µ1/2
s (x)

and hence
|∇λµ1/2

c (x)|
µ

1/2
s (x)

≤ K
(
µc(x)

µs(x)

)1/2

Now suppose assumption 1 holds. Then the right hand side converges to zero as ‖x‖e →∞. Thus,

in this special case, a sufficient condition for assumption 5 is that |g(x)| and its derivative |∇1g(x)|
do not diverge faster than

√
µc(x)/µs(x) converges to zero.
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L Closure of differentiable functions

The following lemma shows that the Sobolev sup-norm closure of a Sobolev sup-norm (with more

derivatives) ball is a Hölder space with exponent 1. We assume dx = 1 for notational simplicity,

but the result can be extended to dx > 1.

Lemma S2. Let D be a convex open subset of R. Let m,m0 ≥ 0 be integers. Define

ΘD = {f ∈ Cm+m0+1(D) : ‖f‖m+m0+1,∞ ≤ B}

and

ΘL = {f ∈ Cm+m0(D) : ‖f‖m+m0,∞,1,1 ≤ B}.

Let Θ̄D be the ‖ · ‖m,∞-closure of ΘD. Then Θ̄D = ΘL.

Proof. We prove equality by showing that Θ̄D ⊆ ΘL and ΘL ⊆ Θ̄D.

1. (Θ̄D ⊆ ΘL). Let f ∈ Θ̄D. We will show that f ∈ ΘL. By the definition of the ‖·‖m,∞-closure,

there exists a sequence fn ∈ ΘD such that

‖fn − f‖m,∞ → 0.

Since fn ∈ ΘD,

‖fn‖m+m0+1,∞ = max
0≤|λ|≤m+m0+1

sup
x∈D
|∇λfn(x)| ≤ B.

Also notice that for all x, y ∈ D,

|∇m+m0fn(x)−∇m+m0fn(y)|
|x− y|

≤ |∇m+m0+1fn(x̃)| ≤ sup
x∈D
|∇m+m0+1fn(x)|

where x̃ is between x and y, by the mean value theorem and convexity of D. It follows that

max
|λ|≤m+m0

sup
x∈D
|∇λfn(x)|+ max

|λ|=m+m0

sup
x,y∈D,x 6=y

|∇λfn(x)−∇λfn(y)|
|x− y|

≤ ‖fn‖m+m0+1,∞ ≤ B

and therefore fn ∈ ΘL. But from part 5 of Theorem 2 we know that ΘL is ‖ · ‖m,∞-closed

and since ‖fn − f‖m,∞ → 0 it follows that f ∈ ΘL.

2. (ΘL ⊆ Θ̄D) Let f ∈ ΘL. We will show that f ∈ Θ̄D. Specifically, we will show how to

‖ · ‖m,∞-approximate f by a sequence of functions f̃n in ΘD. Define

M1 = max
|λ|≤m+m0

sup
x,y∈D,x 6=y

|∇λf(x)−∇λf(y)|
|x− y|

<∞

and

M2 = sup
x,y∈D,x 6=y

|∇m+m0f(x)−∇m+m0f(y)|
|x− y|

<∞.

49



If D 6= R, then since ∇m+m0f is Lipschitz, the Kirszbraun theorem (e.g., theorem 6.1.1 on

page 189 of Dudley 2002) allows us to extend∇m+m0f to a function “∇m+m0F” on R with the

same Lipschitz constant. Define F to be the m+m0 times antiderivative of ∇m+m0F . Then

F is (m+m0)-times differentiable, ∇m+m0F is Lipschitz with constant M2, and F |D = f . In

particular, for this extension F ,

max
|λ|≤m+m0

sup
x,y∈R,x 6=y

|∇λF (x)−∇λF (y)|
|x− y|

= M1

and

sup
x,y∈R,x 6=y

|∇m+m0F (x)−∇m+m0F (y)|
|x− y|

= M2.

From here on we let f(x) = F (x) denote the value of this extension of f if x /∈ D. The main

issue is that f is only (m+m0)-times differentiable, but we want to approximate it by functions

that are just a little bit smoother—functions that are (m+m0 + 1)-times differentiable. To

do this, we convolve f with a smoother function:

fn(x) = [f ∗ ψεn ](x) =

∫
R
f(x+ εny)ψ(y) dy.

Here ∗ denotes convolution. εn is a sequence with εn → 0 as n→∞. ψεn is an approximation

to the identity: a function ψεn(u) = ψ(u/εn)/εn where ψ : R → R is a (m + m0 + 1)-times

continuously differentiable function such that ψ(y) ≥ 0 for all y ∈ R, ψ(y) = 0 if |y| ≥ 1, and∫ 1
−1 ψ(y) dy = 1. For example,

ψ(y) = Bk(1− y2)k1(|y| ≤ 1).

where k > m + m0 + 1 and Bk is such that the function integrates to 1. Note that fn is

(m+m0 + 1)-times differentiable.

For all λ ≤ m+m0,

[∇λfn](x) = [∇λf ∗ ψεn ](x)

=

∫
R

[∇λf ](x− z) 1

εn
ψ

(
z

εn

)
dz

=

∫ 1

−1
[∇λf ](x− εny)ψ(y) dy.
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The last line follows by a change of variables and since ψ is zero outside [−1, 1]. Hence

|∇λfn(x)−∇λf(x)| ≤
∫ 1

−1
|∇λf(x− εny)−∇λf(x)|ψ(y) dy

≤
∫ 1

−1
|M1εny|ψ(y) dy

= εnM1

∫ 1

−1
|y|ψ(y) dy

≡ δn

for all λ ≤ m+m0. The first line follows since ψ integrates to 1. Since δn → 0, it follows that

‖fn − f‖m+m0,∞ → 0.

Moreover,

|∇m+m0fn(x1)−∇m+m0fn(x2)| ≤
∫
|∇m+m0f(x1 − εny)−∇m+m0f(x2 − εny)|ψ(y) dy

≤M2|x1 − x2|.

Since fn is (m+m0 + 1)-times continuously differentiable,

|∇m+m0+1fn(x)| = lim
h→0

|∇m+m0fn(x+ h)−∇m+m0fn(x)|
h

≤M2

for each x ∈ R. Recall that

M2 = sup
x,y∈D,x 6=y

|∇m+m0f(x)−∇m+m0f(y)|
|x− y|

.

This implies that

‖fn‖m+m0+1,∞ ≤ ‖fn‖m+m0,∞ + sup
x∈D
|∇m+m0+1fn(x)|

≤ ‖f‖m+m0,∞ + ‖fn − f‖m+m0,∞ + sup
x∈D
|∇m+m0+1fn(x)|

≤ ‖f‖m+m0,∞ + δn + sup
x∈D
|∇m+m0+1fn(x)|

≤

(
‖f‖m+m0,∞ + sup

x,y∈D,x 6=y

|∇m+m0f(x)−∇m+m0f(y)|
|x− y|

)
+ δn

≤ B + δn.

The last line follows since f ∈ ΘL. Thus fn is almost in ΘD, but not quite. But we can just
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rescale fn to put it inside ΘD: Let

f̃n(x) =
B

B + δn
fn(x).

Then ‖f̃n‖m+m0+1,∞ ≤ B and so f̃n ∈ ΘD. Moreover,

‖f̃n − f‖m,∞ ≤ ‖f̃n − f‖m+m0,∞

≤ ‖f̃n − fn‖m+m0,∞ + ‖fn − f‖m+m0,∞

= max
0≤|λ|≤m+m0

sup
x∈D

∣∣∣∣∇λ( B

B + δn
fn(x)

)
−∇λfn(x)

∣∣∣∣+ ‖fn − f‖m+m0,∞

=

∣∣∣∣ B

B + δn
− 1

∣∣∣∣ ‖fn‖m+m0,∞ + ‖fn − f‖m+m0,∞

=
δn

B + δn
‖fn‖m+m0,∞ + ‖fn − f‖m+m0,∞.

Since ‖fn‖m+m0,∞ ≤ ‖fn‖m+m0+1,∞ ≤ B + δn,

δn
B + δn

‖fn‖m+m0,∞ → 0.

We also know that ‖fn − f‖m+m0,∞ → 0. It follows that

‖f̃n − f‖m,∞ → 0.

But remember that f̃n ∈ ΘD. So, by definition of the ‖ · ‖m,∞-closure, f ∈ Θ̄D.

M Sup-norm convergence over closed domains D

Throughout the paper we have focused on functions with open domains D. In practice we may also

be interested in functions with closed domains D. First, note that convergence of a sequence of

functions in a Sobolev Lp norm where the integral is taken over the interior of D implies convergence

in the Sobolev Lp norm where the integral is taken over the entire D. This follows since D is a

subset of Rdx and hence its boundary has measure zero. So the value of the integral is not affected

by its values on the boundary. For Sobolev sup-norms, however, convergence over the interior of D
does not automatically imply convergence over all of D. In the following lemma, we illustrate how

to do this extension for sequences from a Hölder ball which are known to converge in the ordinary

sup-norm over the interior. Similar results can be obtained with different parameter spaces and for

convergence in general Sobolev sup-norms.

Lemma S3. Let D ⊆ Rdx be closed and convex. Let fn : D → R be a sequence of functions in

Θ = {f ∈ C0(D) : ‖f‖0,∞,1,ν ≤ B}.
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Suppose

sup
x∈intD

|fn(x)− f(x)| → 0.

for some function f . Suppose f is continuous at each boundary point in D. Then

sup
x∈D
|fn(x)− f(x)| → 0.

Proof of lemma S3. We want to show that for any ε > 0, there is an N such that

|fn(x)− f(x)| ≤ ε

for all n ≥ N , for all x ∈ D. For each x ∈ D, choose an element zx ∈ intD such that ‖x − zx‖νe ≤
ε/(3B) and

|f(x)− f(zx)| ≤ ε

3
.

This is possible since f is continuous on all of D, including at boundary points, and by convexity

of D. By the triangle inequality,

|fn(x)− f(x)| = |fn(x)− f(x)− fn(zx) + fn(zx)− f(zx) + f(z)|

≤ |fn(x)− fn(zx)|+ |f(x)− f(zx)|+ |fn(zx)− f(zx)|.

By the definition of this parameter space we have

sup
x∈D
|fn(x)− fn(zx)| ≤ B‖x− zx‖νe ≤

ε

3
.

By uniform convergence of fn to f on the interior of D, there is an N such that

|fn(zx)− f(zx)| ≤ ε

3

for all n ≥ N . Thus we’re done.

N Proofs for section 6

Proof of proposition 10. We omit this proof because it is almost identical to the proof of lemma

A1 in Newey and Powell (2003).

Proof of proposition 11. We verify the conditions of proposition 10.

1. The parameter space is ‖ · ‖c-compact by part 1 of theorems 3 and 4. Since the sieve space is

a ‖ · ‖c-closed subset of the ‖ · ‖c-compact set Θ, it is also ‖ · ‖c-compact.
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2. Define Q(g) = −E((Y − g(X))2). Then for g1, g2 ∈ Θ,

|Q(g1)−Q(g2)|

=
∣∣E(g2(X)2 − g1(X)2) + E(2Y (g1(X)− g2(X)))

∣∣
≤
∣∣E(g2(X)2 − g1(X)2)

∣∣+ |E(2Y (g1(X)− g2(X)))|

= |E(g2(X)− g1(X))(g2(X) + g1(X))|+ 2 |E(Y (g1(X)− g2(X)))|

≤
√
E ((g2(X)− g1(X))2)E ((g2(X) + g1(X))2) + 2

√
E (Y 2)E ((g1(X)− g2(X))2)

≤
√
E ((g2(X)− g1(X))2)E (2g2(X)2 + 2g1(X)2) + 2

√
E (Y 2)E ((g1(X)− g2(X))2).

The fourth line follows from the Cauchy-Schwarz inequality and the last line from (a+ b)2 ≤
2a2 + 2b2 for any a, b,∈ R. Next,

E((g1(X)− g2(X))2) ≤
(

sup
x∈R
|g1(x)− g2(x)|µc(x)

)2

E(µc(X)−2) = ‖g1 − g2‖2c · E(µc(X)−2).

Moreover, for all g ∈ Θ,

E(g(X)2) = E(g(X)2µc(X)2µc(X)−2)

≤ ‖g‖2c · E(µc(X)−2)

≤ C2‖g‖2s · E(µc(X)−2)

≤ C2B2E(µc(X)−2).

The third line follows since W1,2,µs is embedded in C0,∞,µc , by part 1 of theorem 3. Therefore

|Q(g1)−Q(g2)| ≤ 2
(
BCE(µc(X)−2) +

√
E (Y 2)E (µc(X)−2)

)
‖g1 − g2‖c.

Since E(Y 2) < ∞ and E(µc(X)−2) < ∞, Q is ‖ · ‖c-continuous. Similarly, let Q̂n(g) =

− 1
n

∑n
i=1(Yi − g(Xi))

2. Identical arguments imply that

|Q̂n(g1)− Q̂n(g2)| ≤ 2

BC 1

n

n∑
i=1

µc(Xi)
−2 +

√√√√( 1

n

n∑
i=1

Y 2
i

)(
1

n

n∑
i=1

µc(Xi)−2

) ‖g1 − g2‖c.

Hence Q̂ is ‖ · ‖c-continuous.

3. Suppose Q(g) = Q(g0). Then E((Y − g(X))2) = E((Y − g0(X))2), which implies that g(X) =

g0(X) almost everywhere. If g(x̄) 6= g0(x̄) for some x̄, then g(x̄) 6= g0(x̄) in a neighborhood

of x̄ by continuity of g0, a contradiction. Hence g(x) = g0(x) for all x ∈ R. Thus ‖g− g0‖c =

supx∈R |g(x)− g0(x)|µc(x) = 0. Moreover,

Q(g0) = −E((Y − g0(X))2) > −E(2Y 2 + 2g0(X)2) > −∞.
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4. For any gk ∈ Θk

‖gk − g0‖c ≤ sup
|x|≤M

|gk(x)− g(x)| sup
|x|≤M

µc(x) + sup
|x|≥M

|(gk(x)− g(x))µs(x)| sup
|x|≥M

µc(x)

µs(x)
.

Let ε > 0. Since gk and g0 are in Θ,

sup
|x|≥M

|(gk(x)− g(x))µs(x)| ≤ ‖gk − g‖s ≤ 2B.

Thus, since µc and µs satisfy assumption 1, we can choose M such that

sup
|x|≥M

|(gk(x)− g(x))µs(x)| sup
|x|≥M

µc(x)

µs(x)
≤ ε

2
.

By assumption, for a fixed M , we can pick k large enough to make sup|x|≤M |gk(x) − g(x)|
arbitrarily small. By µ2

c satisfying the integrability assumption 6 and continuity of µc,

sup|x|≤M µc(x) <∞. Hence we can pick k large enough so that

sup
|x|≤M

|gk(x)− g(x)| sup
|x|≤M

µc(x) ≤ ε

2
.

Thus ‖gk − g0‖c ≤ ε. Hence we have shown that ‖gk − g0‖c → 0 as k → 0.

5. For all g ∈ Θkn ⊆ Θ,

(Y − g(X))2 ≤ 2Y 2 + g(X)2 ≤ 2Y 2 + 2B2C2µc(X)−2.

Since E(Y 2) <∞ and E(µc(X)−2) <∞ we have

E

(
sup
g∈Θ

(Y − g(X))2

)
<∞.

This domination condition combined with ‖·‖c-compactness of Θ allows us to apply Jennrich’s

uniform law of large numbers to get

sup
g∈Θkn

|Q̂n(g)−Q(g)| p−→ 0

as n→∞.

Proof of proposition 12. The proof is similar to the one of proposition 11 and verifies the conditions

of proposition 10.

1. This step is identical to the corresponding step in the proof of proposition 11.
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2. Define Q(g) = −E((Y − g(X))2µc(X)2). Then for g1, g2 ∈ Θ,

|Q(g1)−Q(g2)| =
∣∣E ((g2(X)2 − g1(X)2)µc(X)2

)
+ E

(
2Y (g1(X)− g2(X))µc(X)2

)∣∣
≤
√
E ((g2(X)− g1(X))2µc(X)2)E ((g2(X) + g1(X))2µc(X)2)

+ 2
√
E (Y 2µc(X)2)E ((g1(X)− g2(X))2µc(X)2)

≤
√
E ((g2(X)− g1(X))2µc(X)2)E (2g2(X)2µc(X)2 + 2g1(X)2µc(X)2)

+ 2
√
E (Y 2µc(X)2)E ((g1(X)− g2(X))2µc(X)2).

Next,

E
(
(g1(X)− g2(X))2µc(X)2

)
≤ ‖g1 − g2‖2c .

Moreover, for all g ∈ Θ,

E
(
g(X)2µc(X)2

)
≤ B2M2

5 .

Therefore

|Q(g1)−Q(g2)| ≤ 2
(
BM5 +

√
E (Y 2µc(X)2)

)
‖g1 − g2‖c.

Since E
(
Y 2µc(X)2

)
<∞, Q is continuous. Similarly, let Q̂n(g) = − 1

n

∑n
i=1(Yi−g(Xi))

2µc(Xi)
2.

Identical arguments imply that

|Q̂n(g1)− Q̂n(g2)| ≤ 2

BM5 +

√√√√ 1

n

n∑
i=1

Y 2
i µc(Xi)2

 ‖g1 − g2‖c.

Hence Q̂ is continuous.

3. As before, E((Y−g(X))2µc(X)2) = E((Y−g0(X))2µc(X)2) implies g(X)µc(X) = g0(X)µc(X)

almost everywhere. If g(x̄) 6= g0(x̄) for some x̄, then g(x̄) 6= g0(x̄) in a neighborhood of x̄

by continuity of g0. Moreover if µc(x̄) > 0, then µc(x) > 0 with positive probability in a

neighborhood of x̄, which contradicts that g(X)µc(X) = g0(X)µc(X) almost everywhere.

Thus, g(x̄) 6= g0(x̄) implies µc(x̄) = 0. Therefore ‖g − g0‖c = 0. Moreover,

Q(g0) = −E((Y − g0(X))2µc(X)2) > −E(2Y 2µc(X)2 + 2g0(X)2µc(X)2) > −∞.

4. This step is identical to the corresponding step in the proof of proposition 11.

5. For all g ∈ Θkn ⊆ Θ,

(Y − g(X))2µc(X)2 ≤ 2Y 2µc(X)2 + 2g(X)2µc(X)2 ≤ 2Y 2µc(X)2 + 2B2M2
5 .

This combined with E(Y 2µc(X)2) <∞ let us apply Jennrich’s uniform law of large numbers,

which gives

sup
θ∈Θkn

|Q̂n(θ)−Q(θ)| p−→ 0.
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Proof of proposition 13. Let gkn ∈ Θ̃kn such that ‖gkn − g0‖c → 0. Then ‖gkn‖c ≤ ‖g0‖c + 1 for n

large enough. Moreover, ‖g0‖c ≤ C‖g0‖s <∞. From the proof of proposition 12 we know that

|Q(gkn)−Q(g0)| ≤ 2
(
M5(‖g0‖c + 1) +

√
E (Y 2µc(X)2)

)
‖gkn − g0‖c

and

|Q̂n(gkn)− Q̂n(g0)| ≤ 2

M5(‖g0‖c + 1) +

√√√√ 1

n

n∑
i=1

Y 2
i µc(Xi)2

 ‖gkn − g0‖c.

Now write

Q̂n(gkn)−Q(gkn) =
(
Q̂n(gkn)− Q̂n(g0)

)
+
(
Q̂n(g0)−Q(g0)

)
+
(
Q(g0)−Q(gkn)

)
.

Q̂n(g0)−Q(g0) = Op(1/
√
n) by the central limit theorem, which applies since E((Y −g0(X))4) <∞

and µc is uniformly bounded above. Thus,

Q̂n(gkn)−Q(gkn) = Op(‖gkn − g0‖c + 1/
√
n).

Since max{1/
√
n, ‖gkn − g0‖c} = O(λn), lemma A.3 in Chen and Pouzo (2012) implies that for

some M0 > 0 it holds that ‖g0‖s ≤M0 and

g̃w ∈ {g ∈ W1,2,µs : ‖g‖1,2,µs ≤M0}

with probability arbitrarily close to 1 for all large n. Hence it suffices to prove that ‖ḡw−g0‖c
p−→ 0,

where

ḡw(x) = argmax
g∈Θ̃

M0
kn

−

(
1

n

n∑
i=1

(Yi − g(Xi))
2µc(Xi)

2 + λn‖g‖s

)

and Θ̃M0
kn

= {g ∈ Θ̃kn : ‖g‖s ≤M0}.
Consistency now follows from proposition 12 under two additional arguments:

1. First, sup
g∈Θ̃

M0
kn

λn‖g‖s ≤ λnM0 → 0 and therefore the sample objective function (including

the penalty) still converges to Q uniformly over g ∈ Θ̃M0
kn

.

2. Second, since Θ̃M0
kn

is finite dimensional, for any g1, g2 ∈ Θ̃M0
kn

there exists D > 0 such that

|‖g1‖s − ‖g2‖s| ≤ D|‖g1‖c − ‖g2‖c| ≤ D‖g1 − g2‖c. Hence the sample objective function

(including the penalty) is still continuous on Θ̃M0
kn

.

All other assumptions of proposition 10 hold using the same arguments as those in the proof of

proposition 12. Thus ‖ḡw − g0‖c
p−→ 0 and hence ‖g̃w − g0‖c

p−→ 0.

Proof of proposition 14. The proof is adapted from the proof of theorem 4.3 in Newey and Powell

(2003). Again we verify the conditions of proposition 10.
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1. This step is identical to the corresponding step in the proof of proposition 11.

2a. Define Q(g) = −E(E(Y − g(X) | Z)2). For g1, g2 ∈ Θ,

|E(Y − g1(X) | Z)2 − E(Y − g2(X) | Z)2|

= |E(2Y | Z)E(g2(X)− g1(X) | Z) + E(g2(X)− g1(X) | Z)E(g2(X) + g1(X) | Z)|

≤ |E(2Y + g2(X) + g1(X) | Z)| · |E(g2(X)− g1(X) | Z)|

= |E((2g0(X) + g2(X) + g1(X))µc(X)µc(X)−1 | Z)| · |E((g2(X)− g1(X))µc(X)µc(X)−1 | Z)|

≤ 4BM5|E(µc(X)−1 | Z)| ·M5‖g1 − g2‖c · |E(µc(X)−1 | Z)|

= 4BM2
5E(µc(X)−1 | Z)2‖g1 − g2‖c

≤ 4BM2
5E(µc(X)−2 | Z)‖g1 − g2‖c.

The fourth line uses E(U | Z) = 0 and the last uses Jensen’s inequality. Therefore

|Q(g1)−Q(g2)| ≤ E
(
|E(Y − g1(X) | Z)2 − E(Y − g2(X) | Z)2|

)
≤ 4BM2

5E(µc(X)−2)‖g1 − g2‖c.

Hence, Q is continuous.

2b. Let

Θkn =

g ∈ Θ : g =

kn∑
j=1

bjpj(x) for some b1, . . . , bkn ∈ R

 .

Define PZ as the n× kn matrix with (i, j)th element pj(Xi). Let QZ = PZ(P ′ZPZ)−P ′Z where

(P ′ZPZ)− denotes the Moore-Penrose generalized inverse of (P ′ZPZ). Let Y and g(X) be the

n×1 vectors with elements Yi and g(Xi), respectively. Define Q̂n(g) = − 1
n‖QZ(Y − g(X))‖2.

Then for g1, g2 ∈ Θ,

|Q̂n(g1)− Q̂n(g2)|

=

∣∣∣∣ 1n‖QZ(Y − g1(X))‖2 − 1

n
‖QZ(Y − g2(X))‖2

∣∣∣∣
≤ 1

n
‖QZ(g1(X)− g2(X))‖ · ‖QZ(2Y − g1(X)− g2(X))‖

≤ 1

n
‖g1(X)− g2(X)‖ · ‖2Y − g1(X)− g2(X)‖

=

√√√√ 1

n

n∑
i=1

(g1(Xi)− g2(Xi))2µc(Xi)2µc(Xi)−2

√√√√ 1

n

n∑
i=1

(2Yi − g1(Xi)− g2(Xi))2

≤

√√√√ 1

n

n∑
i=1

µc(Xi)−2

√√√√ 1

n

n∑
i=1

4Y 2
i + 4B2M2

5µc(Xi)−2

 ‖g1 − g2‖c.

58



The second line follows because, by the Cauchy-Schwarz inequality,

|(a′a)− (b′b)| = |(a− b)′(a+ b)| ≤
√

(a− b)′(a− b)
√

(a+ b)′(a+ b)

for all a, b ∈ Rn. The third line follows because QZ is idempotent and thus ‖QZb‖ ≤ ‖b‖ for

all b ∈ Rn. Hence Q̂n is continuous.

3. By completeness, Q(g) = −E(E(Y − g(X) | Z)2) = 0 implies that g(x) = g0(x) almost

everywhere. Identical arguments as those in the proof of proposition 11 then imply that

‖g − g0‖c = 0, by continuity of g0. Moreover,

Q(g0) = −E(E(U | Z)2) = 0 > −∞.

4. Assumption 4 of proposition 10 holds using identical arguments as those in the proof of

proposition 11.

5. Assumption 5 of proposition 10 requires convergence of Q̂n to Q uniformly over the sieve

spaces. We show this by applying corollary 2.2 in Newey (1991). Θ is ‖ · ‖c-compact, which

is Newey’s assumption 1. Q is ‖ · ‖c-continuous, which is Newey’s equicontinuity assumption.

Next, define

Bn =

√√√√ 1

n

n∑
i=1

µc(Xi)−2

√√√√ 1

n

n∑
i=1

4Y 2
i + 4B2M2

5µc(Xi)−2


and recall that

|Q̂n(g1)− Q̂n(g2)| ≤ Bn‖g1 − g2‖c.

By Kolmogorov’s strong law of large numbers and the existence of the relevant moments,

Bn = Op(1). Hence Newey’s assumption 3A holds. All that remains is to show Newey’s

assumption 2, pointwise convergence: |Q̂(g)−Q(g)| = op(1) for all g ∈ Θ. First write

|Q̂(g)−Q(g)| = 1

n

n∑
i=1

E(Y − g(X) | Z = Zi)
2 − E

(
E(Y − g(X) | Z)2

)
+

1

n

n∑
i=1

(
Ê(Y − g(X) | Z = Zi)

2 − E(Y − g(X) | Z = Zi)
2
)
,

where Ê(Y − g(X) | Z = Zi) is the series estimator of the conditional expectation evaluated

59



at Zi. For the first part notice that E(Y − g(X) | Z = Zi)
2 is iid and

E
(
E(Y − g(X) | Z)2

)
≤ E

(
E((Y − g(X))2 | Z)

)
≤ E(2Y 2 + 2g(X)2)

≤ 2E(Y 2) + 2E(µc(X)−1)‖g‖2c
<∞.

It follows from Kolmogorov’s strong law of large numbers that

1

n

n∑
i=1

E(Y − g(X) | Z = Zi)
2 − E

(
E(Y − g(X) | Z)2

) p−→ 0.

Next, following Newey (1991), define ρ as the n× 1 vector containing Yi− g(Xi) and h as the

n× 1 vector containing E(Y − g(X) | Z = Zi). Then∣∣∣∣∣ 1n
n∑
i=1

(
Ê(Y − g(X) | Z = Zi)

2 − E(Y − g(X) | Z = Zi)
2
)∣∣∣∣∣ =

∣∣‖QZρ‖2 − ‖h‖2∣∣ /n.
Since for all a, b ∈ Rn it holds that a′a− b′b = (a− b)′(a− b) + 2b′(a− b),

∣∣‖QZρ‖2 − ‖h‖2∣∣ /n ≤ (‖QZρ− h‖2 + 2‖h‖ · ‖QZρ− h‖
)
/n.

Since

‖h‖2/n =
1

n

n∑
i=1

E(Y − g(X) | Z = Zi)
2,

the previous arguments imply that ‖h‖2/n = Op(1). It therefore suffices to prove that ‖QZρ−
h‖2/n = op(1), which by Markov’s inequality is implied by

E
(
‖QZρ− h‖2

)
/n→ 0.

as n→ 0. Newey (1991) shows

E
(
‖QZρ− h‖2

)
/n ≤ E (trace(QZ var(h | Z))) /n+ o(1).
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Therefore,

E
(
‖QZρ− h‖2

)
/n ≤ E

(
n∑
i=1

(QZ)ii var(Yi − g(Xi) | Zi)

)
/n+ o(1)

≤ E

√√√√ 1

n

n∑
i=1

(QZ)2
ii

1

n

n∑
i=1

var(Yi − g(Xi) | Zi)2

+ o(1)

≤ E

√√√√ 1

n
trace(Q′ZQZ)

1

n

n∑
i=1

var(Yi − g(Xi) | Zi)2

+ o(1)

= E

√√√√ 1

n
trace(QZ)

1

n

n∑
i=1

var(Yi − g(Xi) | Zi)2

+ o(1)

≤
√
kn
n
E

√√√√ 1

n

n∑
i=1

var(Yi − g(Xi) | Zi)2

+ o(1)

≤
√
kn
n

√
E (var(Yi − g(Xi) | Zi)2) + o(1).

The second line follows from the Cauchy-Schwarz inequality. The third line from the definition

of the trace. The fourth line because QZ is idempotent. The fifth line because trace(QZ) ≤ kn.

The last line by Jensen’s inequality. Since E
(

(var(Yi − g(Xi) | Zi))2
)
<∞ and kn/n→ 0, it

follows that

E
(
‖QZρ− h‖2

)
/n→ 0.
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