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Abstract

This supplemental appendix provides some formal definitions, useful lemmas, several addi-
tional results discussed in the main paper, and proofs for all results in the main paper.

A Some formal definitions and useful lemmas

Let (X, | - ||x) and (Y,]| - |[y) be normed vector spaces. Then we use the following definitions.

o A C X is | - | x-bounded if there is a scalar R > 0 such that ||z||x < R for all x € A.
Equivalently, if A is contained in a || - || x-ball of radius R: A C {z € X : ||z||x < R}.

o AC X is | - | x-relatively compact if its || - || x-closure is || - || x-compact.
o (X,||-|lx) is embedded in (Y,| - ||y) if

1. X is a vector subspace of Y, and

2. the identity operator I : X — Y defined by Ix = x for all x € X is continuous.

This is also sometimes called being continuously embedding, since the identity operator is
required to be continuous. Since I is linear, part (2) is equivalent to the existence of a
constant M such that

llzlly < M||z||x for all z € X.

Write X < Y to denote that (X, | - |x) is embedded in (Y, || - [|y).

e T': X =Y is a compact operator if it maps || - || x-bounded sets to || - [|y-relatively compact

sets. That is, T'(A) is || - ||y-relatively compact whenever A is || - || x-bounded.

o (X,|-|lx) is compactly embedded in (Y,| - ||y) if it is embedded and if the identity operator

I is compact.
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e A coneisaset C =C(v,a,hk)={v+zeR":0<|z|e < h,Z(x,a) <0} This cone
is defined by four parameters: The cone’s vertex v € R", an axis direction vector a € R", a
height h € [0, 00], and an angle parameter 6 € (0,27]. Z(x,a) denotes the angle between x
and a (let Z(x,z) = 0). # > 0 ensures that the cone has volume. If h < oo then we say C' is

a finite cone.

e A set A satisfies the cone condition if there is some finite cone C' such that for every z € A
the cone C' can be moved by rigid motions to have x as its vertex; that is, there is a finite
cone C, with vertex at x which is congruent to C. A sufficient condition for this is that A is

a product of intervals, or that A is a ball.

Lemma 1. If all || - || x-balls are || - [|y-relatively compact, then (X, | - ||x) is compactly embedded
in (Y, [ [ly)-

Lemma states that, for proving compact embeddedness, it suffices to show that any || - || x-ball

is || - ||y-relatively compact.

Lemma 2. Let || - ||x and || - ||y be norms on a vector space A. Suppose A is || - || x-closed and
|- |x <C| ||y for C < oo. Then A is || - ||y-closed.

Corollary 1. Let (%}, - ||;) be Banach spaces for all j € N such that .#;1; C .%; and || f]|; <
Cjl| fllj+1 for all f € Fj41, where C;j < co. Let

0, ={feZ|fll; <C}.

Assume Oy, is || - ||1-closed. Then Oy is || - ||;-closed for all 1 < j < k.

Lemma |2] says that closedness in a weaker norm can always be converted to closedness in a
stronger norm. Lemma [3] gives conditions under which the reverse is true: when we can take

closedness in a stronger norm and convert that to closedness in a weaker norm.

Lemma 3. Let (Hy,|| - |1) and (Ha,| - ||2) be reflexive Banach spaces. Suppose (Hy, | - ||1) is
compactly embedded in (Ha,| -||2). Let B < co be a constant. Then the || - ||;1-ball

O ={heH |l < B}

is || - ||2-closed.

Lemma [3| generalizes lemma A.1 of Santos| (2012), which assumed both spaces were separable
Hilbert spaces. We thank Kengo Kato for pointing out this generalization and its proof. Also recall

that all Hilbert spaces are reflexive.
Lemma 4. Let (X, | - ||x), (Y] - llv), and (Z, || - ||z) be Banach spaces. Suppose

1. (X, - llx) is compactly embedded in (Z, || - ||2).



2. (Z,|| - ||z) is embedded in (Y, - ||y)-
Then (X, || - ||x) is compactly embedded in (Y, || - ||y).

Note that assumption 2 implies

{9:lgllz < oo} C{g: llglly < oo}

B Norm inequality lemmas

Lemma 5. Let g : D — R4 be a nonnegative function. Let mg,m > 0 be integers. Suppose
assumption [4] holds for g = pus. Then for every compact subset C C D, there is a constant Mg < oo
such that

172 Fll o 226 < MellF o 21

for all f such that these norms are defined. If the stronger assumption [3| holds, then this result
holds for C = D too.

Lemma 5| generalizes lemma A.1 part (a) of|Gallant and Nychka) (1987) to allow for more general
weight functions, as discussed in section Note that Gallant and Nychka’s (1987) lemma A.1
stated sup,cp p1(x) < 0o as an additional assumption. This condition is not used in our proof, nor

was it used in their proof, which is fortunate since it is violated when p upweights.

Lemma 6. Let 4 : D — Ry be a nonnegative function. Let m > 0 be an integer. Suppose
assumption [4| holds for g = us. Then for every compact subset C C D, there is a constant M¢e < oo
such that

1 o210 < Ml fllmoo, e

for all f such that these norms are defined. If the stronger assumption [3| holds, then this result
holds for C = D too.

Lemma [f] generalizes lemma A.1 part (d) of [Gallant and Nychkal (1987) to allow for the weaker
assumption Lemma [7] below is analogous to lemma [0, except now using the Sobolev Ly norm
instead of the Sobolev sup-norm. One difference, though, is that the norm on the left hand side

now has y instead of p!/2.

Lemma 7. Let ¢ : D — Ry be a nonnegative function. Let m > 0 be an integer. Suppose
assumption [4 holds for u = us. Then for every compact subset C C D, there is a constant My < oo
such that

1F 21 < Mellu"? fllm,2,1c

for all f such that these norms are defined. If the stronger assumption [3] holds, then this result
holds for C = D too.



Lemma 8. Let p: D — R4 be a nonnegative function. Let m > 0 be an integer. Then there is a

constant M < oo such that
£ fllm00 < M| f |00

for all functions f such that these norms are defined.

C Some useful lemmas: Proofs

Proof of lemma[ll Let A C X be || - || x-bounded. Then it is contained in a | - || x-ball. That ball
is || - ||y-relatively compact by assumption. So A is a subset of a || - ||y-relatively compact set.
Containment is preserved by taking closures of both sets, and hence the || - ||y-closure of A is a
subset of a || - ||y-compact set, and is also || - ||y-compact since it is a closed subset of a compact
set. O

Proof of lemma[Z Let {a,} be a sequence in A. Since A is || - || x-closed, any element a such that
|lan, — allx — 0 must be in A. Let a be such that ||a, — a||y — 0. Then ||a, — al]|x — 0 by our

norm inequality. Hence a € A. O
Proof of corollary [l Follows by repeatedly applying lemma O

Proof of lemma[3 Let {h,} be a sequence in 2. Since H; is reflexive, and by the Banach-Alaoglu
theorem, there is a subsequence {hy, } that weakly converges to some h €  (e.g., by corollary
1.9.16 of Tao|[2010). Let I : Hy — Hs denote the identity operator. Since H; — Ha, I is a
compact operator. Hence it maps weakly convergent sequences to || - [|2-convergent sequences (e.g.,

proposition 3.3(a) of Conway|/1985). That is,
| Ihy, — Ih|l2 — 0.

Hence the image I€) is || - ||2-sequentially compact. Hence I is || - [[2-closed (e.g., exercise 1.9.11 of
Tao|2010). O]

Proof of lemmal] Since (X,]-|/x) is embedded in (Z, || - ||z), there exists a constant M; > 0 such
that
I-llz < My - [|x-

Likewise, by assumption 2, there is a constant constant My > 0 such that || - ||y < Ma|| - ||z. Hence
- lly < MMl - |x.

Thus (X, || - ||x) is embedded in (Y, || - ||y). Next we need to show that this embedding is compact.
Let A C X be ||-||x-bounded. Let {ay} be a sequence in A. By assumption 1 there is a subsequence

{an, } that || - || z-converges. But by assumption 2, || - ||z is a stronger norm than || - ||y and hence



this subsequence || - ||y-converges. Thus every sequence in A has a || - ||y-convergent subsequence

and so A is || - ||y-compact. O

D Norm inequality lemmas: Proofs

In the proof of lemma [5| and other lemmas, we use the following: The product rule tells us how to
differentiate functions like h(x)g(z). The generalization of this rule is called Leibniz’s formula or
the General Leibniz rule. For functions u and v that are || times continuously differentiable near
x, it is

Q

Ve (uo)l(z) = > VAu(z)VePo(z).

{B:8<a}

Here 8 < « is interpreted as being component-wise: 8 < « if 8; < o for 1 < j < d,, where d, is
the number of components in the multi-indices 8 and «, and is also equal to the dimension of the

argument x of the functions u and v. Also,
! de /oy
_ J
[B] E (6;‘)

(Oéj) o Oéj!
Bi)  Billey — B;)!

is the binomial coefficient. For a reference on this formula, see |Adams and Fournier| (2003), page 2.

where

Proof of lemma[5 Applying Leibniz’s formula to the function ()2 f(z) we have

A

5 (VINVoul??),

VA= )]
{B:B<A}

for |A\| < m + mg. By the triangle inequality, this implies

A

IV 2 Pllozae <Y VA28 f o210

{B:B<A}




Using the bound on the derivatives of ;'/2 we have

base = ( [I9 70 09 o dx>1/2
— (/C|V/\—BM1/2(;C)|2[Vﬁf(x)]2 dx)
= (/c Ko (@) P[V7 f ()] d:n) :

- 2 [IV°5)(o) o) 1/2

= K2|V? fllo2ute

< KngHm—l-mo,Zullcv

|92t 208

1/2

where the last line follows since m + mg > 0. Thus, for |A| < m + mo,

A
HVA(Nl/Qf)‘O,Z]lcS Z [ﬁ] K(%Hme-i-mO,Z#ﬂC‘
{B:8<A}
Next,
||M1/2fH3n+m0,2,llc = Z ”V/\(Ml/zf) 3,2,%
0<|IA|[<m+mg
2
A
-y s H K3 oz
0<|A|<mA4mo {B:8<A}
2
A
e |2 Y [ 2 H
0<IN[Sm+mo \{B:8<A} p
= {1 £ a0t mo 2,10 MG
and hence

1272 Fllnt oo 2,10 < Mellfllmsmo.2gene

as desired. When assumption [3| holds, the same proof above applies, but the constants now hold
over all D. O



Proof of lemma[6 We use induction. The inequality holds for m = 0 with M¢ = 1 since

[ #llo.oor21¢ = sup |f (@) |2 (2) Le ()

= sup [/ (2) f ()| Te(x)
€D

= 116" fllo00.1¢-
Suppose the inequality holds for m and let 0 < |A\| < m + 1. By Leibniz’s formula,

A

VAN = (Ve Y

{B:B<X,B#N}

] (VAP (VP ),

which implies that

(VAP < VA P+ D0 [A (VAU (VP f)
{B:B<N,B#N} B

A
< IVMEPHI+Ke ) 5 W 2Ve ).
{B:B<X,8#X} L

The second line follows by assumption[4] assuming we only evaluate this inequality at « € C. Taking

the supremum over x in C and the maximum over |\| < m + 1 gives

1 llons1,00,1210 < 112 fllma1,00,10 + Kl f 00,0121

by the definition of the norms, and since A isn’t included in the sum we get only m derivatives in
this last term on the right hand side. Moreover, we picked up an extra < since we moved the max

and supremum inside the summation in the second term, and then were left with the constant
, A
AI<m {B:8<X,B#A} g

By the induction hypothesis there is an M/, < oo such that

||f||m7oo,u1/2]lc S M(/Z||M1/2f||m7007]16‘
Moreover,
11172 Fllmco1e < 1112 Fllma1,00,1c-

Thus

1l oirne < MENE2F llme1,o0,1c-



Plugging this into our expression from earlier yields

1t 10017200 < N2 Fllmitioone + KN F oo 121,
<1 Flmt 1006 + KMl Fllmt,001e
= (1+ K M) 116 Fllmt 1,001
= MC||M1/2me+1,oo,]1(;.

When assumption [3| holds, the same proof above applies, but the constants now hold over all D. [

Proof of lemma[7. We will modify the proof of lemma [6] as appropriate. As there, we use proof by

induction. For the base case, set m = 0. Then

oaue = ( [IF@Puto) do) v

- ([ ) v

= |2 fllo2,1c-

I1f

Thus the result holds for m = 0. Now suppose it holds for m. Let |A| be such that 0 < |\ < m+ 1.

Then, as in the proof of lemma [f] we have

A

5 (VAP (VP 1)

VAR = (VAP Y
{B:8<X,B#7}

by Leibniz’s formula. As in that proof, applying our bound on the derivative of the weight function,

we get,
A

VP flut2.
B

VAt < VAP + Ee Y
{B:B<N,B#A}




Now we square both sides and integrate over C to obtain
L9 @) Pute) do < [0l dr

+ /c Y % H H VP ()] - VP (@) ule) da

{B:B<N,B#N) {B:BNB#N} gl 1B
A
+/2|[V)‘(M1/2f)](:1j)|Kc Z 5 ‘Vﬁf($)|,ul/2(:1j) da
‘ {B:B<X,B#X}

= [ 62 i) ar
) A] A
TR v ]

{B:B<\,B#N} {B:BSNBF#N}

/c VP F(@)] - VP f (@) |u(e) de

+2Ke Y H /\[V*(ulﬂf)](w)!~\V6f(w)!u1/2(w> dx
(spnaeny LP1C

=1+ +06)
In the third term, we can apply Leibniz’s formula again,

VO < VP PO+ Ke Y H IV f |2
{nm<Bm#B} "

to get

3)=2Kc >

A SR G2 @) (99 @)t e o
(s LB] /e

k

B

<2K¢ Z

{8:8<7,B#x) L]

( /C (VA2 0)) ()] - 198 (02 ) ()] de

+ K¢ Z [B

{nm<Bn#6} U

/c VW2 H)@)] - V7 f ()| () d:v)-

We can apply Leibniz’s formula again to eliminate the |V f(z)|u/?(z) term. Continuing in this

manner, we get a sum solely of integrals of the form

/CHVA(WQf)]@)I V(2 ))()| de.

Now replace one of the two absolute value terms in the integrand with whichever one is largest.



Suppose its the A piece. This yields

/ VA2 0))(@)| - [VP (2 )](2)] da < / VA2 )]()? da.
C C

Thus the third piece is now a sum of terms like this one, where the multi-index in the differential
operator can go as high as |A|. Summing (3) over |A| with 0 < |A\| < m + 1 we obtain a sum of
many unweighted integrals over C with integrands of the form |[[V*(u!/2f)](x)%. Now all we have

to do is group all these integrals such that our entire expression (3) is a multiple of

3 /C [V (U2 1)) (@)[2 die = (2 2

0<|A|[<m+1

If there are any ‘missing’ integrals, we can just add on the missing ones (which will give us another
inequality, but that’s ok since we only need an upper bound). Thus we see that, after summing
over 0 < |[A| < m+ 1, the term (3) is bounded above by

C3,C||M1/2fH12n+1,2,ﬂc

for some constant C3c > 0.

Consider now the second piece. It is a sum of integrals of the form

/C V(@) VP (@) ) .

Basically the same argument from third piece applies. We can replace one of the absolute values

here with whichever is the largest, thus obtaining an integral of the form

/C 1V (o) Ppuz) d.

Now summing these terms over 0 < |A\| < m + 1 we see that after grouping all the integrals and

adding any missing terms, the entire expression (2) is a multiple of

>[I do = e

0<A|<m

It is important here that the sum only goes up to m, not m + 1. This is because, in the term (2),
the 8 and 3 pieces are always strictly smaller than A, and X itself can only go up to m + 1. Hence
B and § can only go up to m. Thus we see that the term (2) is bounded above by

Cocllfllzane

for some constant Cy ¢ > 0. Finally, consider the term (1). This term is easy because when we sum

10



over 0 < |[A] < m + 1 this term exactly equals

||M1/2f||gn+1,2,11c

without having to add any extra terms or mess with the integrands. Combining all these results,

we see (by also summing over the left hand side of our original inequality) that

Hf”?n+1,2,,u,]lc <(1+ C3,C)HM1/2fH3n+1,2,ch + C2,CHfH%1,2,nc-

Now apply the induction hypothesis to the last term to get

1A 12 12 pme < (14 Ca) W2 121200 + Coclli 124 1.2.0,
= (14 Csc + Co) 2 121 2.1,

Finally, take the square root of both sides to get

I flmt121e < (14 Cae + Coe) 2|12 fllmtr2,1c

as desired. When assumption |3| holds, the same proof above applies, but the constants now hold
over all D. O

Proof of lemma[8 As in the proof of lemma [6] we have

VA2 = (VAP Y H (V2297 )).
{B:B<A,B#A} g

Hence

VA PO < (VAR Y (VP F)ut/?).

{B:B<XN,B#N}

B

Take the sup over z and the max over |A| < m + 1 to get
HM1/2me+LOO < Hme—l—l,oo,ul/Q + Kl”f”m,oo,,ul/z'
Since HfHTrL,oo“LLl/2 < HfHWLJrl,oo“u,l/2 we get
177 Fllmt 1,00 < (1A KO F 1,00 /2

The result follows by evaluating this inequality with the weight 1. O

11



E Proof of the compact embedding theorems 1] and

In this section we prove theorems [I] and [3] The general outline of the proof of theorem [3] follows
the proof of Gallant and Nychka’s (1987) lemma A.4, which is a proof of theorem [3| case (1) under
the stronger assumption

Proof of theorem[1] (Compact embedding).

1. This follows by the Rellich-Kondrachov theorem (Adams and Fournier| (2003) theorem 6.3
part II, equation 5), since mg is a positive integer, and since my > d, /2 and D satisfies the
cone condition. In applying the theorem, their j is our m. Their m is our mg. Moreover, in

their notation, we set p =2 and k = n = d,.

2. This follows by the Rellich-Kondrachov theorem (Adams and Fournier| (2003) theorem 6.3,
part II, equation 6), since mg is a positive integer, and since my > d, /2 and D satisfies the
cone condition. In applying the theorem, as in the previous part above, their j is our m and

their m is our mg. We set also g =p =2 and k = n = d,.

3. This follows by /Adams and Fournier| (2003)) theorem 1.34 equation 3, and their subsequent

remark at the end of that theorem statement.

4. This follows since || - [lm+mo,2 < M| - ||m4mo,00 for some constant 0 < M < oo and hence
|| - |l mmo,00 bounded sets are also || - ||;m4mg,2 bounded sets. Then apply part (2), which shows

that these bounded sets are || - ||, 2-relatively compact.

5. This follows by applying the Ascoli-Arzela theorem; see Adams and Fournier| (2003) theorem
1.34 equation 4.

O]

Proof of theorem@ (Compact embedding for unbounded domains with equal weighting). We split the

proof into several steps. For each of the cases, define the norms || - || and || - || as in table
I Ils - lle
D 1 loemem 11,0
@) lmamo2me N M2,
3) - Hm+mo,00,us I Hm,oo,uc
@) lm+mocopme N llm2,ue
Table 1

1. Only look at balls. By lemmal[l} it suffices to show that for any B > 0, the || - ||s-ball © of

radius B is || - ||-relatively compact.

(Cases 1 and 2.) © = {f € #intmo 2., (D) : || fllm+mo2.us < B}

12



(Cases 3 and 4.) © = {f € Cgm+mo,oo,us (D) : ”f”m+mo,oo,us < B}~

2. Stop worrying about the closure. We need to show that the || - ||.-closure of © is || - ||.-
compact. Let {f,}°%; be a sequence from the || - ||.-closure of ©. It suffices to show that {f,}
has a convergent subsequence. By the definition of the closure, there exists a sequence {f,}

from © with

lim || f, — anc =0.

n—oo
By the triangle inequality it suffices to show that {f,} has a convergent subsequence. The
space

(Case 1.) € 172

ste

(Cases 2 and 4.) #5024,
(Case 3.) Cm,oo,ue

is complete, so it suffices to show that {f,,} has a Cauchy subsequence. The proof of com-
pleteness of these spaces is as follows. Recall that a function f : D — R on the Euclidean
domain D C R% is locally integrable if for every compact subset C C D, Jo If(z)] do < oo.
/2

Assumption @ implies that both i ' (as needed in cases 1, 2, and 4) and p_ ! (as needed in

case 3) are locally integrable on the support of p.. Next:

/2 and applying theorem 5.1 of Rodriguez,

(Case 1) Follows by local integrability of p. !
Alvarez, Romera, and Pestana, (2004). To see this, using their notation, assumption |§I
ensures that Q) = --- = Q;, = R (defined in definition 4 on their page 277) and Q) = R
(defined on their page 280), and hence by their remark on page 303, the conditions of
theorem 5.1 hold. This result is not specific to the one dimensional domain case; for
example, see [Brown and Opic| (1992). The reason we use the power —1/2 of u. is by the

p = oo case in definition 2 on page 277 of [Rodriguez et al. (2004).

(Cases 2 and 4.) Follows by local integrability of p. 1/2
and Opic| (1984) and their remark 4.10 (which extends their theorem to allow for higher

order derivatives). The reason we use the power —1/2 of . is by the p = 2 < oo case

, and theorem 1.11 of [Kufner

in definition 2 on page 277 of |Rodriguez et al. (2004), or equivalently, equation (1.5) on
page 538 of Kufner and Opic| (1984)).

(Case 3.) Follows by local integrability of u_ ! and then the same argument as case 1.
The reason we use the power —1 of y. is by the p = oo case in definition 2 on page 277
of Rodriguez et al.| (2004]).

This step is important because functions in the closure may not be differentiable, in which
case their norm might not be defined. Even when their norm is defined, functions in the
closure do not necessarily satisfy the norm bound. Also, note that if p. does not have full
support, such as p.(z) = 1(||z||e < M) for some constant M > 0, then we simply restrict the
domain to DN {x € R% : ||z||. < M} and then proceed as in the bounded support case.

13



3. Truncate the domain. The key idea to deal with the unbounded domain is to partition

R% into the open Euclidean ball about the origin
Qr={zecR&:2'z < J} ={zecR& : |z|| < J?}

and its complement 9. As we show in step 9 below, the norm on R% can be split into two
pieces: one on €y and another on its complement. We will then show that each of these
pieces is small. Restricting ourselves to €27, we will apply existing embedding theorems for
bounded domains. We then eventually pick J large enough so that the truncation error is

small, which is possible because our weight functions get small as ||z|| gets large.

Let 1o, (x) =1 if x € Q7 and equal zero otherwise.

4. Switch to the unweighted norm so that we can apply an existing compact embedding
result for unweighted norms (on bounded domains). Since the f, are in ©, we know their
weighted norm || - |5 is bounded by B. We show that a modified version of the sequence is

bounded in an unweighted norm.

(Cases 1 and 2.) The unweighted norm we work with here is || - [|m+mq 2,1, For all n,

HM;/an”m—i—mo,?,]an < MJan”m—l—mo,Q,l!»s]lQJ

< MJanHm-I-mo,?,ﬂs

< M;B.

The first inequality follows by lemma [5, which can be applied by using our assumed
bound
VA (@)] < Kepy?(x)

for all z € C, where C is any compact subset of R%. Here and below we let M;
denote the constant from lemma [5| corresponding to the compact set €2y. The third
inequality follows since f,, € © and by the definition of ©. Thus, for each J, {,ui/ 2 fn}is
IE Hm+m0,2,11QJ—b0unded. Notice that in this step we picked up a power 1/2 of the weight

function.

(Case 3.) The unweighted norm we work with here is || - [[;m+mq,00,10,- For all n,

H,UanHm+Tno,OOJQJ < ManHmemo,OO’MleQJ

< M| frllmame,co,mus

< MB.

The first inequality follows by lemma [§. The third inequality follows since f, € © and
by the definition of ©. Thus, for each J, {5 fn} 18 [ * |lmt-mo,00,10 , -Pounded.

14



(Case 4.) The unweighted norm we work with here is || - [|m+mq,00,10,- For all n,

Hﬂiﬂanm-i-mo,oo,]lﬂJ < M| fall

- M v YV2(z)1
Oﬁlkﬁ%%i{+moascl€1g| Fn(@lus™ (@)1, (@)

=M VA fo (@) s () g P () 1
ogu@ﬁmig' Jn(@)|ps(@)ps 7 =(2) 1o, (v)

gM( max sup\V)‘fn(x)],us(x)) sup /1,8_1/2(3:)
0<|A[<mA4mo zeD [

1/2
mAmo,00,us Lo,

—1/2
/2 SUpP [y (x)
m—+mg,00, (s llz]le>J2

= M| fn]]

< MBKj.

The first inequality follows by lemma [8| The final inequality follows since f, € © and
by the definition of O, as well as by assumption that us is bounded away from zero for

any compact subset of R%. Thus, for each .J, {,uiﬂfn} is [ llm+mo,00,1q ,-bounded.

5. Apply an embedding theorem for bounded domains.

(Case 1.) By theorempart 1, Wm+m072,]19] is compactly embedded in Cfm,oo,]ng- Thus,

since {,u;/an} is || - ||m+m072,]19J—bounded, it is relatively compact in ‘Km,oo,]lﬂJ.

(Case 2.) By theorem (1| part 2, WermO’g,]lQJ is compactly embedded in Wm,giﬂf Thus,

since {u;/an} is || - |]m+m072,19J—bounded, it is relatively compact in ng,]lﬂ'].

(Case 3.) By theorem |l|part 3, ‘Kmﬂno,OOJQJ is compactly embedded in %m,oo,]m]. Thus,

since {psfn} is | - \\m+m0,oo,]19J—bounded, it is relatively compact in Cgm,oo,]lQJ-

(Case 4.) By theorem part 4, Cgm+m07007]QJ is compactly embedded in ng’h]. Thus,

since {,u;mfn} is ||+ llm4-mo,00,1¢ ,-bounded, it is relatively compact in #p 2,1, -

In cases 1, 2, and 4 we used that my > d,/2, and note that €2; satisfies the cone condition.

In case 3 we used that 2; is convex and mg > 1.
6. Extract a subsequence. Set J = 1. By the previous step, there is a subsequence

(Case 1.) {u;ﬂf;l) 521 and a ¢y In G o0 1, such that

. 1
tim 13/ £ = llmoe,10, = 0.
j—roo
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(Cases 2 and 4.) {ui/Qf;l)}j?’ozl and a ¥ in #jn 214, such that
. 1/2 (1) _
Jim (025~ blmase, =0,
(Case 3.) {usfj(l)}?ozl and a 11 in ‘Km,oo,]lﬂl such that
lim [ pts £ = 1m0, 10, = 0-
el sl m,00,10,

7. Do it for all J. Repeating this argument for all J, we have a bunch of nested subsequences

(Cases 1, 2, and 4.)

{12212} o {2 V) o {u 2Py o -

each with
(Case 1.)
Jm 1121 — s, 1a, = 0.
(Cases 2 and 4.)
Jm 2557 = $slbmasa, =0
(Case 3.)
{sfn} D {usff)} > {usf]@} DR
each with

. J
Jim {7 = slmocin, =0

The reason we have to extract a further subsequence from
(Cases 1, 2, and 4.) {,ui/2 1(1)} is that {ué/Qfl(l)}
(Case 3.) {uaf{"} is that {uof{"}

only converges in the norm with J = 1; it may not converge in the norm with J = 2. So we

extract a further subsequence which does converge in the norm with J = 2, and so on.

8. Define the main subsequence. Set f; = f](j). Then {f;} is a subsequence of {f,}. Our
goal is to show that {f;} is || - ||c-Cauchy. Let € > 0 be given. This is a kind of diagonalization

argument.

9. Split the consistency norm into two pieces.

16



(Cases 1 and 3.) For any weight p. and any set 2, we have

1fllm,00.ne = 0o S V2 f (@) pe() (La(a) + Loe(x))

= Jax sup (IV2 (@) le(@) Lo (@) + [V (@) 1e(2) Loe ()

< max sup |V f Dlo(z) + max  sup |V Lo
70<|)\|§m$€R81| f(@)|pe(x) La(z) 0<|A|§mxeRId)z| f(@)|pe(x) Lge ()

= Hme,omuclln + ”f”m,oo,ucllncv

where ¢ is the complement of €). Hence, for any .J, and for any f; and f; in our main

subsequence {f;} we have

(Case 1.)

Ilfi — fxll /2 <|Ifj — fxll

m,00, M

+11f5 = Tl

1/2 .
m7oovuc/ HQJ m,0c0 /’l’ Q?]

(Case 3.)

1f5 = Fillmoone < 1F5 = fillm.oopera, + 1f; = fllm,ooperqe -

(Cases 2 and 4.) We want to show that

1Fllm2 e < 1 Fllm2pe1a, + 1 llm.2 00106 -

We have
£ = Y [V @Pheo) do
0<|A|<m
- [ / (V@) o), (0) di+ [ 19 @) Prela) o o) do
0<|A<m
= Y /vA Ppe(z) Lo, () do+ /vA () 1qs (z) do
0<IAI<m 0<|AI<m
= Hme,Q,uC]lQJ + Hfuznz,ucﬂ%'
Hence

1Fln e = TR 2, + 1T 2t

< N Fllm2pera, + 1 Fllm.2pe1qe

where the last line follows by va? + b2 < a + b for a,b > 0. Hence, for any J, and for

17



any f; and fj in our main subsequence {f;} we have

I\ fi = fellmaue < IIf5— fk”m,Z,,uc]lQJ +fj — fk||m,2,,uc]19cjv
where recall that Q9 is the complement of €2;.

Now we just need to show that if j, k are sufficiently far out in the sequence, and J is large

enough, that both of these pieces on the right hand side are small.
10. Outside truncation piece is small.

(Case 1.) Since f; € © for all j, || fjllmtmo2u < B for all j. This combined with
assumption [f let us apply lemma [J] to find a large enough J such that

€
13 i1, <
for all j. By the triangle inequality,
e €
15 — fk”moou Lo < 21 =5

(Case 2.) For this case,

1fillm. 2100 < 1 fjllm.2,0,

< ||fme+m0727Ms
< B,

where the last line follows since f; € ©. Next, by assumption

—0 as 2'r — 0.

So we can choose J large enough that

(1) < o

18



for all 2’z > J; i.e., for all z € QF. Next, we have

il = O / IV () P pae(a)

0<[A|<m
x
-y / V) s () Exid
0<|A<m Hs
A
0<\,\|<m
e Z / V(0 s () da
0<[A|<m
2
£
= WHJCJH%L,Q,NJQ%
€ 2
= ep”
2
=5
(Case 4.) For this case,
sty = 3 [ 9@ ele) do
0<|AI<m
x
= 3 [ e
0<|AI<m
<l o, [ 5
’ Q9 Ms(x)
2
SE)

where in the last step we choose J large enough so thatﬂ

fe(2) g2
dzr < .
/Qg w2@) S B

This is possible by our assumption that the integral on the left hand side is finite for

at least some J. That implies, by the monotone convergence theorem for sequences of
pointwise decreasing functions (e.g., |[Folland| (1999)) exercise 15 on page 52), that the

integral converges to zero as J — oo.

"Here we see that we could weaken our assumption on the integral to merely that [,,. pc(z)/ps(x) dz < oo for
J

some J if we switched to using the weight ,ui/ % instead of s in defining the parameter space.
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(Cases 2 and 4). Take the square root of both sides to get

g
||f]||m727/"‘C]lQCJ g Z-

By the triangle inequality,

-
1f5 = Fillm2penqe < 2,=5.

(Case 3.) We have

- c = v ]]. c
||fj||m,OO,MCJIQJ O$?§m§2g| fi(@)|pe(z) QJ(x)

:0$7§mi3p|wfa( )| s(if)uz(x;ﬂﬂf,(x)

()
S( max  sup |V f; ()| s (z ) sup

0<|A|[<m zep |lz|le>J2 ,U,S IE

pie()
= [ fjllm,cous sup
T e g2 s ()

fre(2)
< N fjllm+mo,c0s  SUP
7 llm+mg,00,un ||36H52J2 Ms(ﬂf)

Hz||€>J2 s ()

Bi
4B

The second to last line follows by choosing J large enough, and using assumption [1} By
the triangle inequality,

9 9

If; — fk”m,oo,ucllg«j < 21 =5

11. Inside truncation piece is small. In the previous step we chose a specific value of J,
so here we take J as fixed. {f;}32, = { f;J ) 52 (equality follows by definition of f;) is a

subsequence from { fj } This follows since the subsequences are nested:

(Cases 1, 2, and 4.) {,ul/zfn} D {,ul/Qf(l)} D {,ul/2f](2)} Do
(Case 3.) {usfn} D {:us } 2 {Ns } o

(Case 1.) Since {,ui/zf;‘])} converges in the norm || - [[m,00,1¢, it is also Cauchy in that

norm. Thus there is some K large enough (take K > J) such that

2y, €

Iz — fi)llm,oo,10, <
m,00,1q ; M§/2M}
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for all k,j > K. Here M is the constant from applying lemma |§| to C = Qj. Notice
that this constant is different from M, which comes from applying lemma

Hence
1/2
15 = Fll,, oo 272 1q, M 15 = Fell,p, oo 1724 1,

<M1/2MJHM1/2( — f)llmecta, by lemma[g

1/2 €
2M5 M}
_ ¢
=5

Applying lemma [6] uses assumption [4] The first line follows since

= ma su VA V2(0)1q  (x
1 oo i1, = 2 sup [V F (@)l ()1, (@)

2\ /2
— max swp V@)l (e >(“c( )) o, (2)

0<IA<m yepda pis()

< VA f 120721
0$\?§m18€%81’ f(@)|ps"=(x) M5 "1q, (v)

= M| £l

1/2
m,oo,us/ 1a,’

where we used our assumption [2] that

s ()
for all 2 € R%.
Cases 2 and 4.) Since ,u;/ 2 f ) converges in the norm || - ||;n.2.1, it is also Cauchy in
J 2,1a,

that norm. Thus there is a K large enough (take K > J) such that
€

(65 = Blmasn, <~

M2 M

for all j,k > K. Here M/, is the constant from applying lemma [7|to C = ;. Applying

this lemma uses assumption [4. We need to show that this implies

1f5 = fellm2,peta,
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is small (< e/2) for all j,k > K. We have

1/2
1F 2 e, = (VA f (@) 2 () L, (z) do
2,pelq D<|/\Z<m/D K Q
1/2
= A xXr 2 X Mc(x) X X
—[QQmAWf(HMH%@ﬂm(M
1/2
su Mc(x) A X 2 X X X
= %@wwmQQWLW“”“*”%”d
1/2
< Mg [VAf(2))us(2) 1a, (2) da
’ 0<|/\Z|<m/p ’

1/2
= M| f 21,

where the fourth line follows by assumption [2, which said that

for all x € Ry,. This shows us how to switch from weighting with p. to weighting with
ps. By lemmal[7]
1/2
Hf||m»27us]1§zJ < M3|’MS/ me,?,]lQJ'

Thus we are done since

1/2
1f5 = fullm2pera, < M1 = fillmapsia,

1/2
< M MY = Follmo

1/2 €
< M5/ M} 1/2
oM,
_°
=5
(Case 3.) Since {usf](‘])} converges in the norm || - [l 00,10, it is also Cauchy in that

norm. Thus there is some K large enough (take K > J) such that

e
s (f5 = fi)llmyoo,10, < 2,00,

for all k,j > K. Here M is the constant from applying lemma |§| to C = Qj. Notice

that this constant is different from M, which comes from applying lemma [5]
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Hence

||f] - fk”m,oo,uejlgj < M5||f] - fk”m,oo,,us]IQJ

< Mz MY |\ps(f5 — fk)Hm,oo,]an by lemma@ applied with pu = p?
5
< MsMhy————
P oM M),
£

5"

Applying lemma [6] uses assumption [4 The first line follows since

= vA 1
[1flm,00c10, oﬁi?&iﬁ%’ f(@)|pe(z) Lo, (x)

_ A phe()
= duax sup VA f (@) s () 1a(2) lg,(z)

< v M1
< Jhax sup (VA f ()| ps(x) M5 1, ()

— M5 f oot
where the third line follows by assumption

12. Put previous two steps together. We now have

E:_

9
15— flle< S+ 5=¢

\V]

for all k,5 > K. The constants only depend on the choice of weight functions, not J or any

other variable that changes along the sequence. Thus we have shown that {f;} is ||- || .-Cauchy.

O

Lemma 9. Let p., ps : D — R4 be nonnegative functions. Let m, mg > 0 be integers. Let €25 be
defined as in the proof of either theorem or Suppose assumption holds and || f{|m+mo,2,us < B.
Then there is a function K (J) such that

< K(J)

nal

1/2
m,ooue! Loe

where K(J) — 0 as J — oc.
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Proof of lemma([9 For all 0 < |\ < m,

A _ g 1/2
IV Fllg o2 - —;EHS%IV f(@)lpe " (x)
1

_ A ~1/2

= sup |V*f —
sup [V (@)t (0)

1

< sup V)‘ 12(g sup ——

zch| fe)lae™ )erf, g9(z)

1
= 1422V flloso,10e SUD
sty e 9( )

< 329 flloos sup .
z€eQ J

By the Sobolev embedding theorem (Adams and Fournier| 2003, theorem 4.12, part 1, case A,

equation 1) there is a constant My < oo such that

19ll0,00 < Ma||gllimo,2
for all g in #,, 2 where mg > d,/2. This inequality implies

Hﬂl/zv)\fHO,oo < M2H/~i£/2v)\f“mo,2

< MoM |V fllmg 2,0
= M3Hv)\me0127,us'

The second line follows by using assumption [5]in arguments as in the proof of lemma [5| Hence

1
v 12y < M3V fllmg 2.0 SUP ——
LS Lag IV Fllmo 2. e 9(7)
n 1
< M3 Z IV fllo,2,ms sup )
0<n| <A [+mo zeQs g
1
<Myl 30 Wfllmemaze, | sup o
0<Inl<Al+mo ve0
1
< Ms Z B | sup —
0<|n|<|A[+mo z€QS g(x)
1
s Ms Z B | sup —
o< cmamo ) ©€25 9(2)
=K(J)

The second line uses \/a% + -4+ a2 <a;+---+a, and the definition of the Sobolev Ly norm. The
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third line uses |a;| < \/a? + -+ + a2 for i = 1,...,n. By the definition of ;, and since g(x) — oo
as ||z)le — oo (for D = R%) or as = approaches Bd(D) (for bounded D),

1
sup — — 0.

z€Qg g(l’)
Hence K(J) — 0 as J — oo. Finally,
_ A
1 o1, = o085 9D,
< K(J).

F  Proofs of the compact embedding theorems [5 and

Proof of thearemEJ] (Compact embedding for unbounded domains with product weighting). For cases
1-3, we apply lemma below, which allows us to convert our previous compact embedding and
closedness results for equal weighting to results for product weighting. For case 4, we do not have
such a prior result because it’s not clear how to define equal weighted Holder norms, as discussed in
the main paper. Hence for this case we instead modify the proof of the previous compact embedding

and closedness results.

Cases 1-3: Theorem (3| (case 1: part 1 with the s weight equal to the constant 1 and the ¢
weight equal to fi%) (case 2: part 2 with the s weight equal to 1 and the ¢ weight equal to /i)
(case 3: part 3, with weights chosen as in case 2) implies that (cases 1 and 2: #,1m,2,1) (case
3: Gm+mo,00,1) is compactly embedded in (cases 1 and 3: € 00,i) (case 20 #pno;). Note that
both the constant weight function, fi, and fi? satisfy the local integrability assumption @ as well as
assumption [3]

By proposition [0} (cases 1 and 3: ||+ [|m,c0,1) (case 2: |- [lm,2,a) and (cases 1 and 3: |- [|m o0, arr)
(case 2: || - ||m,2,3,a1r) are equivalent norms. Therefore (cases 1 and 2: #jnymo,2,1 = #ntmo,2,1,a11)
(case 3: Grmtmo,00,1,arr) is compactly embedded in (cases 1 and 3: G o0 i,arr) (Case 20 #pn 2 jiarr)-
Lemma part 1 now implies that (cases 1 and 2: #j,img2,us,a0r) (C8S€ 31 Crpmo,o0,us,arr) 18

compactly embedded in (cases 1 and 3: €y 00, pu,,arr) (Cas€ 20 Wiy 2 o arr)-

Case 4: The proof is similar to the proof of theorem [3| Since we have already given a detailed
proof of that theorem, here we only comment on the nontrivial modifications to that proof. The

numbers here refer to the steps in that proof.

L. 0={fe Cmtmo,coisv HMSf”m—I—mo,OOJLV < B}.

2. Completeness of the function spaces under product weighting follows by completeness of the

unweighted spaces.
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4. This step is not necessary since, by definition of the product weighted norms, f,, € © for all

n implies

{usfn} is || - [lm+mo,00,1,,-bounded. In particular, this implies it is || - [t 00,10, 0

bounded for each .J, where here

VA (z) = VA (y)l
= + max su .
||9||m+m07007119J,V ||9||M+m07007119J Ao x,yeﬁﬁwiy [z — y||v

Generally, in this proof indicators in the weight function placeholder denote the set over

which integration or suprema are taken.

5. Apply theorem [1f part 5. Since {4 fn} is || - lmt-mo 00,10, v-bounded, it is || - [[m 00,10 -
relatively compact.

9. By identical calculations as before, we have

1f5 = Frllmooueave < [1f5 = fellmoo,uera, aue + 115 — kam,oo,,u,C]chJ,ALT-

10. For f; € © we have

13l ot i = e oot
= ”,Us,&fj”m,oo,]lgcj
< Mllusfylhm ot

=M B, 2 IV @l

<M max sup [VA(us(@)f;(@))] sup fe)
0<|ASM L eRrda QS

< M|ps fllmtmo.c0n.0 sup ()
z€Qg
< MB sup fi(z).
z€QG
The third line follows by lemma [8| The last line follows since f; € ©. Now since fi(z) =
(1+2'x)7%, & > 0, converges to zero in the tails, we can choose J large enough such that

sup fi(z) <
u R p—
A 1MB

Hence, by the triangle inequality,

| ™

Hf] - fk”m,oo,ucjlﬂf] <
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11. Since {usf](‘])} converges in the norm | - [|m,c0,1,, it is also Cauchy in that norm. Thus there
is some K large enough (take K > J) such that

3

l[es (f5 — fk‘)”m,OOJQJ < M

for all k,7 > K, where M is a constant given below. Hence

I1f5 = fk‘Hm,ooyucllQJ,ALT = |lpe(f5 = fk)Hm,ooylan
= llpsii(f5 = fi)llmoo 10,
< Mlps(fj = fi)llmoo,ite,
< Mlps(fi = fe)llmooo,1q,

g
< M—

oM
_ &
2

The third line follows by lemma |8 The fourth line follows since ji(z) = (1 + 2/z)™% < 1 for

all x.

O]

Lemma S1. Let (X, |- ||x) and (Y, - ||y) be Banach spaces where || f||x < oo for all f € X and
| flly < oo for all f € Y. Moreover, suppose that for all f € X

1fllx = [1£ls
and for all f €Y
1flly = 11/l
where ||-||s and ||-||. are norms and /i is a weight function. Let (X, ]|- | ¢) and (v,]- ly) be Banach

spaces where || f|| ¢ < oo for all f € X and ||f||s < oo for all f € Y. Moreover, suppose that for all
feXx
1l = 1Fpslls

and for all f €Y
1f1ly = 1f sille

for some weight function pus.

1. (Compact embedding) Suppose (X, || - ||x) is compactly embedded in (Y, ]| - ||y). Then (X, || -
| %) is compactly embedded in (Y, | - [|5-).

2. (Closedness) Suppose
Q={feX:|fllx < B}
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is || - [[y-closed. Then
Q={feX:|flx < B}

is || - ||y-closed.
Proof of lemma g1}

1. Let f € X. By definition, Il fll £ = I fuslls < oo. Define h = fus and notice that h € X. Since
(X, ]| |lx) is compactly embedded in (Y, ||-||y), X C Y and there exists a constant C' such that
|h|ly < Clh| x. First note that h € X implies ||h||y < co and hence ||hfillc = || fprsit]le < oo.
So f e Y and thus X C Y. Next, note that

[Rlly < Cllhllx < [[halle < CllA]s
& [fpstille < CJIfpslls
< flly <Clfllg-

Next let {f,} be a sequence in the | - [|s-closure of
Q={feX:|flg<B}=1{feX:|ful.<B}.
Let h,, = faops. Then by definition of the norms, h,, is a sequence in the || - ||y-closure of
Q={heX:[hlx < B}

Since (X, || [|x) is compactly embedded in (Y, ||-[|y), there exists a subsequence hy; = fy, s,
which is [| - [|y-Cauchy. That is, for any € > 0, there exists an N such that ||k, — hn, |ly <¢
for all j,k > N. But

”hnj - hnkHY = ||(hnj - hnk)ﬂHc = ”(fnj - fnk)MS:a”c = ||fn] - fnka/

Therefore, f,; is a subsequence of f,, which is [ - ||j-Cauchy. Since v, - |ly-) is Banach, f;

converges to a point in Y. Hence (X, || - | ¢) is compactly embedded in (Y, || - || 5)-

2. Let f, be a sequence in Q such that for some f € X, ||f, — flly = 0asn — oco. Since f, € Q
we have || fopslls = || fll ¢ < B. Let hy, = fnops and h = fu,. Since

thHX = th”s = anMSHS = HfHX <B

we have h,, € Q). Moreover,

[ = blly = [[(hn = B)ille = [1fn = flly = 0.
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Since Q = {f € X : ||fllx < B} is || - |[y-closed, h € Q. That is, fus € 2, which implies that

Ifllx = IFusllx < B.

Hence f € Q. So Qs || - ||s-closed.
0

Proof of theorem[j (Compact embedding for weighted norms on bounded domains). The proof is sim-
ilar to the proof of theorem [3| Since we have already given a detailed proof of that theorem, here
we only comment on the nontrivial modifications to that proof. The numbers here refer to the

steps in that proof.
2. For case 1, Q; = --- = Q) = D and Q) = D when applying Rodriguez et al. (2004).

3. We use the following more general domain truncation: Let {€2;} be a sequence of open subsets
of D such that

(a) Q25 € Qyy4q for any J,
(b) UjL, Qs =D, and

(c¢) The closure of 2 does not contain the boundary of the closure of D for any J. That is,
Boundary(D) N Q; = ) for all J.

Roughly speaking, the sets €2; are converging to D from the inside. They do this in such a
way that for any J, the boundary points of D are well separated from .

The rest of the steps go through with very minor modifications. O

G Proofs of closedness theorems

Proof of theorem[d (Closedness for bounded domains). For this proof we let d, =1 to simplify the

notation. All arguments generalize to d, > 1.

1. We want to show that the || - |[s = || - ||m4mo,2-ball © is || - [|c = || - [|m,c0-Closed. (#Zjn4mo,2: || -
|lmtme,2) is compactly embedded in (#, 2, | - |lm,2) by part 2 of theorem (I} which applies
since we assumed D satisfies the cone condition and mgy > d;/2. Lemma A.1 in [Santos (2012)
(reproduced in the main paper’s appendix on page [2| for convenience) then implies that that
the || - ||m+mo,2-ball © is || - || 2-closed, because the Sobolev Ly spaces are separable Hilbert
spaces (theorem 3.6 of Adams and Fournier|2003). Finally, since || - [|m,2 < || - ||m,c0 corollary
implies that © is || - || 00-closed.

2. We want to show that the || - ||s = || - |lm+mg.2-ball © is || - [|c = || - |lm,2-closed. We already
showed this in the proof of part 1.
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3. We want to show that the || - [|s = || - |lm-+mo,00-ball © is not || - [|c = || - || m,c0o-closed. Consider
the case m = 0 and mo = 1, so that © is the set of continuously differentiable functions whose
levels and first derivatives are uniformly bounded by B. We will show that this set is not

closed in the ordinary sup-norm || - ||o,oc-
Suppose D = (—1,1). Define

gr(x) = /a? + 1/k.

for integers k > 1. These are smooth approximations to the absolute value function: For each

x € D, gp(x) — Va2 = |z| as k — co. g is continuous and differentiable, with first derivative

1
gu(@) = 5(@® +1/k)7/2 20

x
Vaz+1/k

So

L(x)] < < =1
|9 ()] 2t 1/k 2
for all k. Also,

gr(@)] = Va2 + 1/k < V1+1/k<VI+1=V2
for all k. Hence g, € © = {f € €1(D) : || fll1.00 < B} for each k, where B = 1+ /2. But,
letting f(x) = ||,

gk = fllo,co = sup |g(z) — f(z)] =0
z€D

as k — oo. Since f is not differentiable at 0, f ¢ ©. This implies that © is not closed under

H ' ||0,00'

4. We want to show that the || - ||s = || - ||m+mo,00-ball © is not || - | = || - ||m,2-closed. The
same counterexample from part 4 applies here as well. Letting m = 0 and mg = 1, we will
show that the || - ||1,00-ball © is not closed in the ordinary Ls norm || - ||g2. From part 4, we

constructed a sequence g in © such that

g = flloo =0

as k — oo, for f ¢ ©. Convergence in || - ||p. oo implies convergence in || - ||o2 and hence

lgx — fllo2 — 0

as k — oo. Therefore © is not closed under || fl|o,2.

5. We want to show that || - ||n4mg,00,1,0-balls are || - || 0o-closed, where mg > 0. Since || [/p,00 <

| - |lm,00, corollary [1] shows that it is sufficient to prove the result for m = 0. That is, it is

30



sufficient to prove that the || - ||g,00,1,,-ball

Om, ={f € Cmoco 1w - Hf”mo,OOJl,l’ < B}

is || - |lo,co-closed, for all mg > 0. We proceed by induction on my.

Step 1 (Base Case): Let mg = 0. We want to show that Og is || - ||o,c0-closed, so we will
show that its complement Of = %y, \ ©p is || - |lo,.0-open. That is, for any f € ©f there

exists an € > 0 such that

{9 € G000 : If — glloco <} C 6.

So take an arbitrary f € ©f. Since f is outside the Holder ball Oy, its Holder norm is larger
than B,

sup|f@)|+  sup @)= f(@2)]

"l B,
€D z1,02€D,T1#£22 ‘xl - x2’

Hence there exist points &, Z1, Z2 in the Euclidean closure of D with 1 # Zo such that

1f(@1) = F(@2)|

)|+ ————= > B.
)+ =S
Define - -
|71 — Za|”
Our goal is find a || - ||p,cc-ball around f with some positive radius € such that all functions g

in that ball are also not in the Holder ball ©g. So we need these functions g to have a large

Holder norm (larger than B). Let’s examine that. For all g € 64 o,

lg(z1) — g(z2)]

”g 0,00,1,»y = Sup |g(.fC)| + sup v
€D 21,02€D,x1#22 |'T1 - $2|
v, l9(@1) — g(z9)]
> |g(x)| + ————T"
R

> 1£@)] - If(3) — g(@)] + 9B Z9(@)]

|Z1 — Za]”
= (@) = (@) — g(2)|
n \f(iil) —f(:fz)l B |f(jil) —f(iz)l N Ig(f}) —g(iz)l
|Z1 — Za|” |Z1 — Za|” |Z1 — Za|”
> f(@)] = [f(Z) — g9(2)|
N 1f(@1) = f(@2)] [ (f(@1) —g(@1)) — (f(@2) — 9(T2)) |
|Z1 — Za|” |Z1 — Za|”

5= (1) - g+ U =000~ U e~ g1

|Z1 — Za]”

The third and fifth lines follow by the reverse triangle inequality. The last line follows by the
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definition of §. If we can make this last piece in parentheses small enough, we’ll be done. For

any € > 0,
9€{9€Co0:If —glloco <e}
implies
_ _ f(@1) —g(71)) — (f(Z2) — g(Z2 2¢
) — gt 1 (G @) —9E) = (o) gl 2
|71 — Zo| |1 — T
by the triangle inequality. So suppose we choose ¢ so that
|.fl — .i'2|’/ -2

Note that this choice of € depends on the particular f € ©f chosen at the beginning, via ¢
and Z; and Zy. Then for all g € 6p o with ||f — g[/o,00 < € we have

5
lgllocers = B+d-5

)
= B —
+ 2
> B.
Hence g € ©f for all such g. Thus ©f is || - ||o,cc-open and hence Oy is || - ||o,00-closed.
Step 2 (Induction Step): Next we suppose that O, is || - |lo,co-closed for some integer

mo > 0. We will show that this implies ©,,,41 is || - ||o,00-closed.

Since Oy, is || - [|o,c0-closed, we have that for all f in ©F, = 6000 \ Om, there exists an ¢ > 0
such that for all g € €p  with

Hf - g||0700 S £,

it holds that g € Oy, . As in the base case, we will show that ©f, .1 is [ - [o,cc-open. So take
an arbitrary f € ©F, ;. We will show that there exists an € > 0 such that for all g € €p
with ||f — gllo,cc < & we have g € O, ;. We have to consider several cases, depending on
the properties of the f we're given. First, ©,,,+1 € O, implies
670710 g @fng—l—l'

So it might be the case that f € ©f, . This is case (a) below. Moreover, it is possible
that f € ©f, , but f ¢ O, . This case could occur for several reasons. It might be that
f € Cmot1,00,1,05 50 || fllmo+1,00,1,0 < D for some constant D < oo, but that this norm, while
finite, is still too big:

||f||mo+1,00,]1,u > B.

This is case (b) below. Another possibility is that f & €ng11,00,1,0- But f ¢ O5, , f € Oy

m

and hence its mg’th derivative exists and is Holder continuous. So there are three reasons
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why f & €mg+1,00,1,0 could occur: Either the (mg + 1)’th derivative does not exist (case (c)
below), the (mg+ 1)’th derivative exists but is not || - ||o,.o-bounded (i.e., the first piece of the
Holder norm || f|mg+1,00,1,» is infinite) (case (d) below), or the (mg + 1)’th derivative exists
and is | - |o,.c-bounded, but is not Holder continuous (i.e., the first piece of the Hélder norm

| fllmo+1,00,1, 1s finite, but the second piece is infinite) (case (e) below).

(a) Suppose f € ©Of, . But we already know from the induction assumption that ©F, is
open. Hence there exists an € > 0 such that for all g € 600 With ||f — gllo,cc < € it
holds that g € ©F, C O, ;.

=

(b) Suppose f ¢ OF, and f € Cmgt1,00,1,» With

mo
B < ”f”mo-i-l,oo,]l,u < D

for some constant D < oo. Since f ¢ ©5, , f € O, and hence

£ llmo00,1,0 < B-

Let g € 60,00 be such that ||f — glo.cc < e. Remember that our goal is to find an € > 0
such that all of these g are in ©f, ;. Regardless of the value of ¢, if g & Cng+1,00,10
(in which case g ¢ Opy+1 and so g € OF, 1) or if ||gllmg+1,00,1,, = C for some finite
constant C' > B, then g € ©F, .. So suppose that g € €41,00,1,» and

HgHmo-H,oo,]l,y < C.

We will show that although this norm is smaller than C, it is still larger than B. For
cach z € D and § > 0 with 2 + 6 € DF]the mean value theorem implies that there exists
an x4 € [z, + 0] such that

g(z +90) —g(x)

9/(359) =

and hence

g'(x) = g'(xg) + (¢'(x) — ¢ (x4))

= SO ZIE) | () g ).

Note that g is differentiable because g € €ny+1,00,1,0- Likewise, there exists an xy €
[,z + J] such that

piay = TEEDIED 10y — gy,

2The cone condition implies that there exists a single § > 0 such that, for all z € D, at least one of z + 6 € D or
x — § € D holds.
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It follows that

17~ Iooe

= sup|f'(z) — ¢'()|

= sup | (HEEOZIE 70y = prag ) = (PEE0ZI0 4 0) - ) )|
—sup ({0020 DI 4 (p0) — ) + (o 0) - o )

S%g—i—Dé”—i—C(S”

The fourth line follows by the triangle inequality. The last line by ||f — gllo,00 < €,
zf € [x,x + 6], vy € [z,x + ¢], and since [’ and ¢’ are both Hélder continuous with
Holder constants D and C, respectively (which follows because || f||mg+1,00,1,, < D and
19]lmo+1,00,1,0 < C).

Let e > 0 be arbitrary. Choose § > 0 such that Dé¥ < e1/3 and C6” < £1/3. After

choosing 9, choose ¢ such that 2¢/§ < e1/3. Thus

1 =g

0,00 <e.

We have shown that if the first derivatives of f and g are Holder continuous, we can
make the derivatives for all g with || f — g||0,co < € arbitrarily close to the derivative of f
by choosing ¢ small enough. An analogous argument shows that if || f' — ¢'[0,c0 < &1 and
if the second derivatives are Holder continuous, then we can make the second derivatives
arbitrarily close. Applying this argument recursively to higher order derivative shows
that for any ey,,4+1 > 0, we can pick an € > 0 such that for all g with ||g||mg+1,00,1,0 < C
and || = glloe < =,

[Vt — 0t gl oo < Emgt1

Our argument from the base case (step 1) now implies that if €,,,4+1 is small enough,
then || gllimg+1,00,1,, > B for all g € 65 o0 With ||f — gllo,cc < &. Hence g € ©f, ;. Note

that we use || f||mg+1,00,1,» > B when applying the base case argument.

Suppose that for some z € D, V™! f(z) does not exist. Then f ¢ %ny+1.001,0- But
since f ¢ O, , we know that the mq’th derivative of f exists and is Holder continuous.
As in case (b), take g € 6y o0 such that || f —g|l0,c0 < € and suppose that g € Gng+1,00,1,0
9llmo+1,00,1,0 < C for C > B (remember from part (b) that otherwise we know g €
65,41 already). Since the mg’th derivative of f exists and is Hélder continuous, we
know that the only way for the derivative V™*1 f(Z) to not exist is if it has a kink—its

right hand side derivative does not exist, its left hand side derivative does not exist, or
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both exist but are not equal. So we consider each of these three cases separately.
i. Suppose the right hand side derivative of V™0 f at & does not exist. That is,

o YOS @4 1) = V™ f(7)
R\0 h

does not exist. Then there exists a § > 0 such that for any n > 0 we can find an h
with 0 < h <n and

V™M@ +h) - VT f(z)
h

— Vmotlg(z)| > 6.

If such a 4 did not exists, then

i YL@+ R) = V™ f()
R\ h

= Vot (z)
by definition of the limit. For such a fixed h, we have

5 < — vmotly(z)

VI f(E + h) — V™ f(2)
h

V™ f(Z +h) —V™g(z+ h) +VTMg(z) — V™ f(Z)

<
- h
mo (7 — V™Mo (7
o | V@A) = VTMg(E + h) + VTg(x) — V™ f(2)
- h

+[Vmotlg(z) — vmetig(z)]
VMo f(@+h) —V™g(x +h) +V™g(x) — V™ f(7)
h

< + Ch".

The second line follows by the triangle inequality. The third line by the mean value
theorem, since V™0g is differentiable, and here Z € [z, Z+ h]. The fourth line follows
since V™o+lg is Holder continuous with constant C, and since & € [z, Z + h] so that
|z — z|| < h. Now choose h small enough such that Ch” < §/2. For this fixed h,

pick € small enough such that
m m oh
[V70f = T™gllgo < .
Then

5 < — vmotlg(z)| <4,

vmof@+h) - V™ f(z)
h

a contraction.
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ii.

iii.

Suppose the left hand side derivative of V™0 f at & does not exist. That is,

i VS (@) = V0 (2~ )
h\0 h

does not exist. This case proceeds analogously to the previous case.

Both the left hand and right hand side derivatives of V' f at T exist, but they are

not equal:

i 0@+ h) VT f(z) £ lim Vmof(z) - V™ fE—h)
r\0 h R\ h

Considering the distance between the right hand side and left hand side secant lines,
for any h > 0 such that [z — h,z + h| C D, we obtain

'(Vmof(ff+ h) — Vmof@”)) B <Vm°f(f) —Vmf(z— h))‘

h h
< 4&mo Vmog(z 4+ h) —V™Mog(z)\  (V™Mg(z) — V™g(z —h)
-  h h h
Em m =~ m -,
= 4=+ |(Vmotg(d) — V™t (i))|
< 45’]’;0 +C(2h)".

For the first line, we used the triangle inequality plus the fact that for any ¢,,, > 0,
there exists an € > 0 not depending on g such that || f — g||o,c0 < € implies

(V™ f — V™ gl0.00 < Emg-

This follows from our argument in part (b), since V™ f and V™0g are Holder
continuous.

In the second line, we used the mean value theorem, since g € €ny+1,00,1,0, Where
Z1 € [z, + h] and T2 € [T — h,Z]. In the third line we used Hélder continuity of
Vmotlg since ||gllmo+1,00.1,0 < C, plus the fact that |71 — o] < 2h.

Since
i Vo f (@4 h) — VT f(z) £ lim vmo f(z) — V™o f(z — h)

h™\0 h h\0 h

there exists a d > 0 such that for an arbitrarily small h

‘ (vaf(a-; +h) - VmOf(@) B (VmOf(f) —V"Of(@ - h>> ' -5

h h

Choose h such that C(2h)” < §/2. Then for this fixed h, pick € small enough such
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that 4ep,,/h < 6/2. Then

5o ’ <vm0f<x + h})L - vm0f<x>> B <vm0f<a:> - ZmOf@c - h)) ’ s

a contraction.

In all three cases where V™0 F!f(%) does not exist, we have derived a contradiction.

implies that for all g € € o With ||f — gllo,c < € it holds that g € ©F, ;.

Hence there does not exist a g € 6p oo With [|g]|mo+1,00,1,, < C and ||f — gl/0,00 < €. This

Suppose V™1 £(z) exists for all € D but

sup [V f ()] = oc.
z€D

For example, this happens with f(x) = v/ when D = (0,1) and my = 0. Then there
exists a £ € D such that
C < |V™ (7)) < oo

for some constant C' > B. Thus, for all ||g||mg+1,00,1,0 < C,

[VHg(@)] 2 [V (@) — [T () - T ()

— |Vm0+1f(i’)| — | lim vmog(i‘ + h) - Vmog(j) — lim vmof(i + h) B Vmof('f)
h—0 h h—0 h
. | V™Mg(Z+h) = VTf(Z4+h)  VT™g(z) - V™ f(Z)
_ mo+1 _ _

The first line follows by the reverse triangle inequality. Since the limit in the last line
exists and is finite, for any § > 0, we can find an h > 0 with [Z,Z + h] C D such that
the difference between the limit and the term we’re taking the limit of evaluated at h is
smaller than é. Hence
VmMg(z+h)— V™ f(z+h) V™g(z)— V™ f(Z)
h - h

V™ f(@+h)  VTg(z) - V™ f(1)

h

-0

T g()] > [V ()] - \

>C—6—

> |

‘Vmog(:f: +h)

As in part (b), for any €,,, > 0, there is an € > 0 such that || f — g||0,c0 < € implies

V™ f = V" gl0,00 < Emg-

Let €y, such that

Vrog(z+h) =V f(z+h) V™) - V™ f(@)| _
h h -
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Then

Votlg(@)| > C - 26
> B

where the last line follows if we choose § > 0 such that C—2§ > B, thatis, 6 < (C—B)/2,
which is possible since C > B. We have shown that the first piece of the Holder norm

19lmo+1,00,1,» is larger than B, and so the entire norm is larger than B and hence
g € 67677,0+1'

Finally, suppose

sup |[V™ T f(2)| < D < o0
z€D

but V0! f is not Holder continuous:

[Vt f () = VO f(a)|
sup = 00
z1,22€D,x1#x2 ‘LUl - x2|y

Again take g € 60 oo such that || f — gllo,.c < € and suppose that ||g||mg+1,00,1,, < C for
C > B. Since V™! f is not Hélder continuous, there exist x1 and x5 in D, x; # 9,
such that

mo+1 _ yymo+1
‘V f(z1) =V f(z2) S B+cC.
|21 — 22
Moreover, by the triangle inequality,
’Vm(’“f(l‘l) — Vot f ()
|71 — @2|”
- ’Vm(’“g(ﬂfl) — Votlg(as) N
B |71 — 22|
mo _ mo _ mo _ mo
b g [ (7700001 1) = V70g(0n)) - (V7 f 1) = V7S ) /m—xzv‘
=0 h
mo _ mo _ mo _ mo
b i (77002 1) = V70gl0n)) = (V7 1) = V7S ) /|x1—x2|”‘.

As in part (b), for any &,,, > 0, there is an € > 0 such that || f — g||o,c0 < ¢ implies

V70 f = V™0 gl0,00 < Emy-

Returning to our previous inequality, we see that since the limits on the right hand side

are finite and since V0*+1g is Hélder continuous, for any 6 > 0 there is an h > 0 which
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does not depend on g such that

Vot f(xy) = VT f ()
‘ |71 — @2|”
Vmotlg(zy) — Vmotlg(ay)
‘ |21 — 22]”

IN

_|_

h
(Vmog(xa + h) — V™og(xs)) - (V™o f(zg 4+ h) — V™ f(22)) /!301 — )

(VMog(zy + h) — V™ g(z1)) - (V™o f(z1 + h) — V™ f(21)) /!961 — )

_|_

4]
3 +

This is the same argument we used in part (d). In the last line we used [|g|/mg+1,00,1,0 <
C, the triangle inequality, and [|[V™0f — V™gl|g » < &py. Choose 6 = B/2. Then

choose &, small enough so that

460 B
< —=.
2

h|331 — SL‘2|V
Combining our results, we have shown

Vot f(wy) — T ()

C+B< <C+ B,
w1 — @al”
a contradiction.
O
Proof of theorem (Closedness under equal weightings).

1. We want to show that the || - ||s = || - [[m+mo,2,u-Pall © is || - [lc = | - Hmm’ui/z—closed. Part 1
of our compact embedding result theorem [3|says that #7,1m,.2,, is compactly embedded in

%m,oo,uin' Now consider the space (#im2,ua, | - [|m2,u.) Where piq is such that

fa ()
/Rdz /Lc(1‘> dl‘ S Cl.
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Then for any f € € 1/2,

m7oo7/’l/c

1= > [ V@) Pua(e) do

0<A|<m

= Y [ @@

o<IAT&m fre()
ol
<CISIE, e [, 28
Mmoo’ Jpdy ()

< CCfl,, 00,072

Hence
4 12 © Wm,Z,,ua-

m,00, e

But we also know that #7,1mg 2, is compactly embedding in (fmooul/g. Therefore, by
lemma {4 %, 4mg,2,u, 18 compactly embedded in %, 2 ,,,. Both of these are separable Hilbert
spaces by arguments as in the proof of theorem 3.6 in |Kufner| (1980), which is analogous to

Adams and Fournier| (2003) theorem 3.6. Hence lemma A.1 of Santos| (2012) implies that ©

iS || - [Jm,2,ue-closed. But now lemmaand the inequality || - ||lm2,u. < (CC1)Y2?| - ||moo,u1/2
imply that © is || - Hm’oo’#é/z—closed.
2. We want to show that the || - [|s = || - [lmtmo,2,u-ball © is || - |lc = || - ||m,2,u.-closed. Part 2

of our compact embedding result theorem [3|says that #7,1m,.2,, is compactly embedded in
Wim.2.u.- Both of these are separable Hilbert spaces, as discussed in the previous part. Hence

lemma A.1. of |Santos| (2012) implies that © is || - ||,2,4.-closed.

3. We want to show that the || - ||s = || - |lm+mo,00,us-Pall © is not || - ||c = || - [|m,00,u.-closed. The
same counterexample from the proof of part 3 of theorem [2] can be adapted here as well, by

smoothly extending its domain definition to D = R.

4. We want to show that the || ||s = || - |lm+mo,00,u.-ball © is not || - ||c = || - [|lm,2,u.-closed. As in

the previous part, this can be shown by extending the same counterexample from theorem
O

Proof of theorem@ (Closedness under product weightings). Cases 1 and 2. This follows exactly
as in the proof of theorem [5], except we apply theorem 4] and then lemma Sl| part 2

Case 3. As in theorem [ we can adapt the counterexample from theorem [2| by smoothly
extending its domain to D = R.

Case 4. Assume d, = 1 for simplicity. This proof is a close modification to the corresponding
proof of theorem [2| for bounded domains. As in that proof, it suffices to prove the result for m = 0.

For any g € Gmg,00,us,v define gs(x) = ps(x)g(x) and g.(x) = pe(r)g(x). We want to prove that

Omo =19 € Cmg,c0,sw * 19llmo,cousr < B}
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is || - ||mo,00,u.-closed, for all mg > 0. We proceed by induction on my.
Step 1 (Base Case): Let mg = 0. We want to show that ©g is || - [|o,00,u.-closed, so we will
show that its complement ©f = 60,004, \ Qo is || -

0,00,u.-0P€N. So take an arbitrary f € ©F. We
will show that there exists an € > 0 such that

{9 € G002 IIf — gllo,ooue < €} € 65

Since f is outside the weighted Holder ball ©g, its weighted Holder norm is larger than B,

|fs($1) — fs($2)|

sup |fs(z)| + sup —— > B.
zeR r1,r2€R ‘331 _':C2|
Hence there exist points Z, Z1, Z2 € R with 1 # o such that
= ’fs('fl) — fs(jQ)‘
T)| + — - > B.
’fs( )‘ ’xl —.I'Q‘V
Define B -
5_|f (i,)’_i_’fs(xl)_fs(x?)‘ ~B>0
= |fs .

|Z1 — Ta|"

Next, for all g € 60,00,u.5

’gs(‘fl) _gs(j2)|
|T1 — Z2|”
> ‘fs(a_:)‘ - ‘f5<3_?) - gs<a_7)’
N [fs(@1) = fs(@2)]  |(fs(Z1) — 95(Z1)) — (fs(T2) — g5(T2))|
|Z1 — Zo|” |T1 — Z2|”

- 5ri= (1) = o)+ LUP = 0P = Ul (o)

|Z1 — Za|”

19ll0,0016,0 = 195(Z)] +

5 |el@) = ge(@) R — (fel@2) - go(@2)) 522
—Bo— L) — gola) D) pel@) ela2)
B+ | fe(®) — ge( )’uc(:z + N

For all g € 60,00,u. With
1f = gllo,coue = Ife = gelloe < €

we have
7 | (el@) = ge(@) o — (fel@) = 0(22) e 5y el 4 uslz)
o) —ge() 2+ i )] ¢ D) | D) Tt
e () |71 — To|” T () |T1 — To

by the triangle inequality. So suppose we choose ¢ small enough that the right hand side is < §/2.
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Then for all g € 6y 00, With |[f — gll0,00,u. < € we have

1)
HgHOvaNs»V > B+ — 5
> B.
Hence g € ©f for all such g. Thus ©F is || - ||o,m,u.-open and hence Og is || - [|o,m,u.-closed.

Step 2 (Induction Step): This step follows the same arguments as those with bounded

support. As in step 1, the main idea is simply to replace g with either g. or gs, as appropriate. [J

Proof of them’em@ (Closedness for weighted norms on bounded domains). This proof is identical
to the proof of theorem [0 except that now we use the compact embedding results of theorem

when necessary. O

H Proofs of propositions from section

Proof of proposition[1l This proof is straightforward and we therefore omit it. O
Proof of proposition [ This proof is straightforward and we therefore omit it. O

Proof of proposition[3. This proof is given in |Gallant and Nychkal (1987) as lemma A.2, and hence

we omit it. O

Proof of proposition[f} This proof is similar to the proof of proposition [3, which was shown in
lemma A.2 of (Gallant and Nychka) (1987). Let C C D be compact. We prove the proposition by
induction on m (letting mo = 0, since it is irrelevant for the present result). For the base case,
m = 0, the result holds trivially by letting K¢ = 1. Next suppose it holds for m — 1. Choose A
such that |A\| = m and let V* = VAV where |a| = 1 and |3| = m — 1. The result holds trivially if
0s =0, so let d5 # 0. Then

V) = 7 e ()|
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In the fourth line we used Leibniz’s formula. Next,

dy
VP (@) <D (0F + 2|wi] +2)
=1

<A4(1+ /:c)
Hence
O I5}
V2@l < S o2 4ot
~<p LY
Zﬂmm () 1+ o]
<B Y

<2|5\Z[ ]KCm 1y (@) - Me
Y<B

= us?(x) | 214 \Z[ ]KC,ml'MC

v<B

Here M¢ = sup,cc |1 + 2’x|, which is finite since C is compact. The second line follows by the

induction hypothesis. O

Proof of proposition[5. Pick g(z) = 1 + a’z. Notice that g(z) — oo as ||z]le — co. We prove the
result by showing that for any 0 < |A| < my,

V) = exp | )| (o) (¥

for some polynomial py(x). Consequently, dividing by u;/ 2 (z) yields

Vi () {56 ~ 3, ]
———— =exp (x'z)| - pa(x).
p () 2
Since 6. < dg,
V)‘Nl/Q(x)
ps' ()

converges to zero as ||z||e — oco. This implies there is a J such that for all = with ||z||e > J, this
ratio is smaller than M;. For all z with ||zl < J, this ratio is a continuous function (the product
of an exponential and a polynomial) on a compact set, and hence achieves a maximum Mj. Let
M = max{Mj, M}. Thus the ratio is bounded by M for all z € R%.
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So it suffices to show equation (). We proceed by induction. For the base case, |A\| =0,

VO *(x) = exp[d(2'x) /2] - g()
= exp[d.(2'z) /2] - (1 + 22).

So the base case holds with pg(z) = g(x) = 1+ 2%, Next, suppose it holds for |A\| = m — 1. Choose
A such that [A| = m and let V* = VAV where |a| = 1 and |3| = m — 1. Then

VA2 (2)] = VOV (2)]
= V% exp[d.(z'x)/2] - ps(z)]
= exp[dc(2'2/2)](6c/2)ps(x)V* (2'z) + exp[dc(a'z) /2] Vps(2)
= exp[dc(2'2) /2] ((6c/2)ps(2)V* (2'z) + Vpg(z)) .

Since the derivative of a polynomial is a polynomial, we’re done. O
Proof of proposition [0,

1. This follows immediately from lemmas [5] and

1152 Fllmp < Millf s < MiM (/2 f

2. This follows immediately from lemmas [6] and

I Proofs of propositions from section

Proof of proposition[7. Suppose such a function p existed. Define g : (0,1) — R by g(x) = log p(x).
Then (1) implies that g(z) — —oo as x — 0. (2) implies that

Hence |¢/(z)| < K for all € (0,1). This is a contradiction to g(z) — —oc0 as z — 0. O

Proof of proposition[§. First consider the polynomial weight case, us(x) = [z(1 — x)]%. The proof
is similar to the proof of propositions [3] We proceed by induction. For the base case m = 0, the
result holds trivially by letting Kz = 1. Next suppose it holds for m — 1. If §; = 0 the result holds
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trivially, so let d5 # 0. We have
V(@) = v (21 - 2))2)
=vmiyl ([:U(l — x)]55/2>

= vt (e a1 - )

:% 3 [m;1 V7 (21 = @)/ D (1 - )]
y<m—1

D> [mf V7 (1/2@) 9 (1 - o))
y<m-—1

Here 6 = 0, — 1/2. V"[x(1 — )] is either # — 2% for n = 0, 1 — 2z for n = 1, —2 for n. = 2, and 0

for n > 2. Hence

Me =sup [V™" 7 [z(1 — z)]|
zeC

< 00

since D is bounded. So for all z € C,

m 58 m—1 m—
V™ [l (2))] < 2' [ V2 @) VT (1 - )]
y<m—1 v 7
) m—1
< 25’ [ ] Kc,m_lﬂi/;( ) - Mc
y<m-1L 7 ’
Os m—1
2w (1213 [ ] Ke i M
y<m-1L 7
s m—1
= [z(1 —z)]>/?? ‘2’ Z [ ] Kem—1Mc
y<m—-1 L 7

1) m—1
<y ()M |2‘ > [ . ]Kam_lMc
y<m-—1

The second line follows by our M bound from above, and by the induction hypothesis with constant
K¢ m—1. The last line follows since C C (0,1) is compact, and hence z is bounded away from zero
and one. So )
M/ = sup ——— < o0.
¢ zeC ‘T(l - :IZ)
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Next consider the exponential weight case, us(x) = exp[dsz (1 — 2)~1]. The proof for this case is
similar to the proofs of propositions [3| and Let C € D be compact. We prove the proposition
by induction on m (letting mg = 0, since it is irrelevant for the present result). For the base case,
m = 0, the result holds trivially by letting K¢ = 1. Next suppose it holds for m — 1. The result
holds trivially if §; = 0, so let 65 # 0. Then

V7 [ ()] = V™ [exp <62(11—x)>]

:vm—1<5;ex (Ml_x> VI( 1—@))

m

Cx

m

In the fourth line we used Leibniz’s formula. Next, for any natural number n,

v (=) =" X e

Hence
S . s
mr, 1/2 5| m—1 v, 1/2 ) (-1
V@) < 5 LIV @ 0D S
y<m—1 L | =0
) [ —1]
< 1 IVl @)] - Mo
y<m—1 L v |
1) (m — 1]
< 28| Kem-pl/?(z) - M
y<m-—1 L v |
) m—1
= /% (x) ’28’ Z [ ]KCm—l Mec
y<m—1 L 7
Here
n J
— !
Me = sup nZ 1_x]+1xn+1 |

which is finite since C C (0,1) is compact, and hence z is bounded away from zero and one. The

third line follows by the induction hypothesis. O

Proof of proposition[9 Let g(x) = x71(1 —x)~!. Then g(z) — o0 as * — 0 or x — 1. Note that
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Bd(D) = {0,1}. The rest of the proof is similar to that of proposition 5| It suffices to show that
for any 0 < |A| < my,
Vi (@) = pe(w) - ma(e) (%)

for some rational function ry. Dividing (%) by u;/ 2(3:) yields

VA ()

,11,1/2 = eXp[((Sc - 55)g(x)] : T,\(x).

(z)

Since . < 5, the absolute value of this expression converges to zero as x — 0 or 1. This proves part
2 of assumption The proof of equation (x) is as in the proof of : The base case holds immediately
with 7o(z) = g(z). The induction step follows since the derivative of a rational function is still

rational. O

J Completeness of Sobolev spaces

When switching from the Sobolev sup-norm to the Sobolev L, norm, a natural first space to consider
is

{f € Cn(D) : | fllmpp < oo}
This space equipped with the norm ||+ ||, ., is unfortunately not |||/ p,,-complete. For unweighted
spaces, p(x) = 1, we can instead consider the completion of this space, denoted by 7, ,1(D). An

important result from functional analysisﬂ known as the ‘H=W theorem’ states that this completion

equals the Sobolev space

Winp(D) ={f € #in(D) : | fllmp1 < oo}

Hence the way to complete the initial space is simply to allow for weakly differentiable functions,
in addition to functions which are classically differentiable.
For weighted spaces, the H=W theorem does not necessarily hold; see |Zhikov (1998)E| For this

reason, we follow the literature by defining the weighted Sobolev space

Winpu(D) ={f € #u(D) : | fllmpu < 00}

As mentioned in section [2} this space is || - || p,-complete.

3See theorem 3.17 in [Adams and Fournier| (2003).
4Similar results sometimes obtain, however. For example, see [Kufner and Opic| (1984) remark 4.8 and also the
discussion in [Zhikov| (1998). Also see remark 4.1 of [Kufner and Opic| (1984)).
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K Discussion of assumption

To get some intuition for assumption [5, consider the one dimensional case d,, = 1. In this case, we

can usually take mo = 1, since mgy > d,/2 is then satisfied (see theorem [3| below). Then

VOa* (@) | VOl (2)g ()]
w@ | @)

< ()"

and
V(@) vw1”<mmw
s () s’ ()
Vl 1/2 T T
[t e
Ve ()] @) \? oy
< o)+ (55) 19w

So when d; = 1 with mg = 1, a sufficient condition for [5|is that there is a function g that diverges

to infinity in the tails, but whose levels diverge slow enough that

o [ret] (9@
mun—o<L%@J ) ad o) =o [ W

and whose first derivative also satisfies

IVig(z)| =0 ([Zzgi;] ‘1/2) .

For further intuition, suppose assumptionheld for 1. Then for all z € R% and any 0 < |A| < my,

(VAul?(2)| < Kpl*(x)

- (i)

and hence /2 12
U]y (1))
w@) (@)
Now suppose assumption [1 holds. Then the right hand side converges to zero as ||z||e — co. Thus,
in this special case, a sufficient condition for assumption [5is that |g(z)| and its derivative |Vig(z)|

do not diverge faster than /p.(x)/us(x) converges to zero.
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L  Closure of differentiable functions

The following lemma shows that the Sobolev sup-norm closure of a Sobolev sup-norm (with more
derivatives) ball is a Holder space with exponent 1. We assume d, = 1 for notational simplicity,
but the result can be extended to d, > 1.

Lemma S2. Let D be a convex open subset of R. Let m,mg > 0 be integers. Define

Op = {f € Cn+mo+1(D) : | fllm+mo+1,00 < B}
and
OrL = {f € Cntmo(D) : | fllm+mo.c011 < B}
Let ©p be the || - ||l;m.co-closure of ©p. Then Op = 6.
Proof. We prove equality by showing that ©p C ©r, and O, C Op.
1. (6p COy). Let f € Op. We will show that f € ©. By the definition of the |- ||m c0-closure,

there exists a sequence f, € ©p such that

Since f, € Op,

= v < B.
”anm-l-mo-i—l,oo 0§|A\£1n?fmo+1 :gg‘ fu(2)| <

Also notice that for all z,y € D,

vm—i—mo nlx) — vm—i-mo n m+m 7 mam
V70 () Il < jgmeemot £, (3)] < sup [0, )
|$ y| x€D

where 7 is between x and y, by the mean value theorem and convexity of D. It follows that

max  sup [V fu(z)|+ max  sup VA fa(@) = VA fu(y)]

< Ifnllmtmot1,00 < B
[A|<m+mo zeD [Al=m-+mo ¢,yeD z£y |$ — y\ H n”m moT 2,00

and therefore f, € ©7. But from part 5 of Theorem 2| we know that O, is || - || c0o-closed
and since || f, — f|lm,c0 = 0 it follows that f € ©p.

2. (0 C ©p) Let f € ©r. We will show that f € ©p. Specifically, we will show how to

|| - |lm,co-approximate f by a sequence of functions fn in ©p. Define

VA f(2) = VA ()]

My = max sup < 00
[N <m4+mo z,yeD, x4y |ZL‘ - y|
e [T (@) — ymEma f(y)]
My = sup < 0.
z,yeD,x#y |z =y
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If D # R, then since V™0 f is Lipschitz, the Kirszbraun theorem (e.g., theorem 6.1.1 on
page 189 of Dudley|2002)) allows us to extend V™0 f to a function “V" ™0 F” on R with the
same Lipschitz constant. Define F to be the m 4 mg times antiderivative of V™0 F. Then
F is (m + my)-times differentiable, V""*™0 F" is Lipschitz with constant My, and F|p = f. In

particular, for this extension F,

[VAF(2) — VAF(y)]

max sup = M,
[A[<m+mg z,yeR,z#y |l‘ - y|
wnd T F(r) — Y R (y)|
sup = Mo.
z,y€R,x#y |z =y

From here on we let f(z) = F(x) denote the value of this extension of f if x ¢ D. The main
issue is that f is only (m-my)-times differentiable, but we want to approximate it by functions
that are just a little bit smoother—functions that are (m + mg + 1)-times differentiable. To

do this, we convolve f with a smoother function:

fule) = [f * ) (x) = /R F( + eny)ily) dy.

Here * denotes convolution. €y, is a sequence with €, — 0 as n — o0o. 1., is an approximation

to the identity: a function ., (u) = ¥ (u/ey)/en where ¢ : R — R is a (m + mg + 1)-times

continuously differentiable function such that ¢(y) > 0 for all y € R, ¢(y) =0 if |y| > 1, and
1

J-,¥(y) dy = 1. For example,

P(y) = Bi(1—y*)F1(ly| < 1).

where k > m + mg + 1 and By is such that the function integrates to 1. Note that f, is
(m + mg + 1)-times differentiable.

For all A < m + my,

(VA ful(x) = [VAf x4, ] (@)

— [Vl =22 <j) @z

1
- / VA )(z — eny)ly) dy.

1
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The last line follows by a change of variables and since v is zero outside [—1, 1]. Hence

1
VA fala) - V@) < [ VA = ) = V@)l ) dy
_1
< / Mcali) dy

1
— e,y /_ Ivloto) dy

On

for all A < m+myg. The first line follows since 1) integrates to 1. Since §,, — 0, it follows that
1fn = fllmtmo,00 = 0.

Moreover,

[V fan) = T faa) | < [ [ (o = ) = 9T o — ) () dy

S M2|561 — .TQ‘.

Since f, is (m + mo + 1)-times continuously differentiable,

m-+mg _ m-—+mo
‘Vm+m0+1fn($)| _ }ILH% ‘V fn(x"i‘h})L \ fn($)| < M,
—>

for each x € R. Recall that

vm—i—mo _ vm—l—mo
My s Y@ el
z,y€D,ay |z —yl

This implies that
| frllmamot1,00 < | fullmamo,co + blelg ’Vm+m0+1fn(a€)\
X

< ||f”m+mo,oo + 1| frn — meero,oo + Sug |vm+m0+1fn(x)’
S

< [ fllm+mo,c0 + 6n + Sug ‘Vm+m0+1fn(x)|
FAS

Vm—i—mo T _vm+m0
< (I flmimpoe+ sup I il | s
z,y€D,x#y ]a: — y’

< B+ 6.

The last line follows since f € ©p. Thus f, is almost in ©p, but not quite. But we can just
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M

Throughout the paper we have focused on functions with open domains D. In practice we may also
be interested in functions with closed domains D. First, note that convergence of a sequence of
functions in a Sobolev L, norm where the integral is taken over the interior of D implies convergence
in the Sobolev L, norm where the integral is taken over the entire D. This follows since D is a
subset of R% and hence its boundary has measure zero. So the value of the integral is not affected
by its values on the boundary. For Sobolev sup-norms, however, convergence over the interior of D
does not automatically imply convergence over all of D. In the following lemma, we illustrate how
to do this extension for sequences from a Hélder ball which are known to converge in the ordinary

sup-norm over the interior. Similar results can be obtained with different parameter spaces and for

rescale f, to put it inside ©p: Let

= B

fa(z) = mfn(af)-

Then || fullmsmot1.00 < B and so f, € ©p. Moreover,

1Ffn = Fllmsoo < Ifn = fllmetmo,co

< an - anermo,OO + an - f”m+m0,00

B
= v W) ) = VA -
s |9 (2] - )| + 1
B
= | gg ~ Wallmmace + 12 = Pl
On

= g, Mnllmmocc +[1fn = Fllmmo.oo-

Since ||anm+mo,00 < an”m+mo+1,oo < B+ dn,

On
B+,

anHm+mo,oo — 0.
We also know that [|f — fllm+mg,cc — 0. It follows that

an - f”m,oo — O‘

f||m+m0700

But remember that fn € ©p. So, by definition of the || - ||, o-closure, f € Op.

Sup-norm convergence over closed domains D

convergence in general Sobolev sup-norms.

Lemma S3. Let D C R% be closed and convex. Let f, : D — R be a sequence of functions in

© ={f€%(D): | flloocu < B}
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Suppose
sup_|fn(z) — f(2)] = 0.

z€intD

for some function f. Suppose f is continuous at each boundary point in D. Then

sup | fu(x) — f(z)] = 0.
z€D

Proof of lemma 93 We want to show that for any £ > 0, there is an N such that

[fu(z) = flx)] < e

for all n > N, for all z € D. For each x € D, choose an element z, € intD such that ||z — z,[|¥ <
¢/(3B) and
[f(2) = f(z2)] <

This is possible since f is continuous on all of D, including at boundary points, and by convexity

of D. By the triangle inequality,

[fn(z) = f(@)] = |fa(2) = f(2) = fo(22) + fa(22) = f(2) + f(2)]
< |fn(l') - fn(zx)’ + |f(l‘) - f(zx)| + |fn(zw) - f(ch)|

By the definition of this parameter space we have

v e
sup | fu (@) — fu(22)| < Bllz — zlld < <.
z€D 3

By uniform convergence of f,, to f on the interior of D, there is an N such that

[fn(ze) = flz2)] <

Wl ™

for all n > N. Thus we'’re done. ]

N Proofs for section

Proof of proposition[10. We omit this proof because it is almost identical to the proof of lemma
A1l in |[Newey and Powell (2003). O

Proof of proposition [11. We verify the conditions of proposition

1. The parameter space is || - ||-compact by part 1 of theorems |3/ and 4l Since the sieve space is

a || - ||c-closed subset of the || - ||.~compact set O, it is also || - ||.-compact.
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2. Define Q(g) = —E((Y — g(X))?). Then for g1, g2 € O,

|Q(g1) — Q(g2)]

= |E(g2(X)* = g1(X)?) + E(2Y (91(X) — g2(X)))]

< E(g2(X)? = 91(X)?)| + [E2Y (91(X) — g2(X)))|

= [E(g2(X) — g1(X))(92(X) + g1(X))[ + 2 [E(Y (91 (X) — g2(X)))|

< VE ((92(X) — 91(X)?) E ((92(X) + 91(X))?) + 2V/E (Y2) E ((91(X) — g2(X))?)
< VE ((92(X) — g1(X))?) E (292(X)? + 291(X)?) + 2VE (Y2) E ((91(X) — g2(X))?).

The fourth line follows from the Cauchy-Schwarz inequality and the last line from (a + b)? <
2a? + 2b? for any a, b, € R. Next,

2
E((g1(X) — g2(X))?) < <21€1§|91(x) — gg(ﬂﬁ)\ﬂc(fﬂ)) E(1e(X)™?) = [lg1 — g2]|? - E(pe(X)72).

Moreover, for all g € O,

E(g(X)?) = E(9(X)?pe(X)*pe(X)7?)
< lgll? - E(pe(X)7?)
< C?||gll3 - B(pue(X)7?)
< C%B%E(pe(X)72)

The third line follows since #1 2 ,,, is embedded in 6 « ., by part 1 of theorem (3l Therefore

Qg1) = Q(92)] < 2 (BOE(ne(X) ™) + VE(V?) E (1(X) 7)) llg1 — galle

Since E(Yz) < o0 and E(u.(X)72) < o0, Q is || - ||-continuous. Similarly, let Qn(g) =
—L50 (Y; — g(X;))?. Identical arguments imply that

TL

@nlg1) — Qnlg2)| <2 (Bcjlzﬂaxz»)? +J (;217) (;Zucm)?)) g1 = galle-
=1 =1

i=1

Hence Q is || - || c-continuous.

3. Suppose Q(g9) = Q(go). Then E((Y — g(X))?) = E((Y — go(X))?), which implies that g(X) =
go(X) almost everywhere. If g(Z) # go(Z) for some z, then g(Z) # go(Z) in a neighborhood
of Z by continuity of go, a contradiction. Hence g(x) = go(x) for all x € R. Thus ||g — gol|c =

supger |9(7) — go(x)|pe(x) = 0. Moreover,

Q(g90) = ~E((Y — go(X))?) > ~E(2Y” + 299(X)?) > —c0.
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4. For any gi € Oy,

ok~ g0lle < sup lgx() — g(x)] sup o) + sup |(gile) — g(a))ps(a)] sup LD
|| <M lz|<M |z|>M o> M s ()

Let € > 0. Since g; and gg are in ©,

sup |(ge(x) — g(@))ps(@)] < lgx — glls < 2B.
|| >M

Thus, since . and pg satisfy assumption |1} we can choose M such that

su ) — g\x xT su C(x)
s [(90(2) = g()i(a)] sup LS

=

<

DN ™

By assumption, for a fixed M, we can pick k large enough to make sup|,<ps [gx(z) — g()]
arbitrarily small. By p2 satisfying the integrability assumption @ and continuity of pu.,

SUP|g|<ps fe(®) < 00. Hence we can pick k large enough so that

| ™

sup |gk(z) — g(@)] sup pe(x) <
|| <M | <M

Thus ||gr — gol|c < €. Hence we have shown that ||gr — gollc — 0 as k£ — 0.

5. For all g € ©f, C O,
(V = g(X))2 < 2Y2 4 g(X)? < 2Y2 4+ 2B2C2p,(X) 2

Since E(Y?2) < 0o and E(u.(X)2) < oo we have

E <Sup Y — g(X))2> < 0.

geo

This domination condition combined with |- ||.-compactness of © allows us to apply Jennrich’s

uniform law of large numbers to get

sup |Qn(g) — Q(g)| & 0
9€BOL,

as n — 0o.
O

Proof of proposition[I2. The proof is similar to the one of proposition[11]and verifies the conditions
of proposition

1. This step is identical to the corresponding step in the proof of proposition
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2. Define Q(g) = —E((Y — g(X))?1c(X)?). Then for g1, g2 € O,

1Q(91) — Q(g2)] = |E ((92(X)? — 91(X)*)pe(X)?) + E (2Y (91(X) — g2(X))e(X)?)|
< VE ((92(X) — g1(X) E

+2VE (Y2pe(X)?

< VE ((92(X) — g1(X)

+2VE (Y2pe(X)?

Next,
E ((91(X) = g2(X))?1e(X)?) < llg1 — goll?-

Moreover, for all g € O,
E (9(X)*u(X)?) < B*M3.

Therefore

Q91 = Q)| < 2 (BMs + VE(VZ0(X)?)) s — g2l

Since E (Y?p.(X)?) < oo, Q is continuous. Similarly, let Qunlg) = -1 n L (Yi—g(X3)) 2 pe(X5)2.

n

Identical arguments imply that

~ ~ 1 &
Qn(g1) — Qnlg2)| <2 | BM5 + J - D YV2uc(Xi)? | lgr — galle-
=1

Hence @ is continuous.

3. As before, B((Y —g(X))%ue(X)2) = E((Y —g0(X))*1e(X)2) implies g(X)pe(X) = go(X)pie(X)
almost everywhere. If g(Z) # go(Z) for some Z, then ¢g(Z) # go(Z) in a neighborhood of z
by continuity of go. Moreover if u.(Z) > 0, then u.(x) > 0 with positive probability in a
neighborhood of Z, which contradicts that g(X)u.(X) = go(X)uc(X) almost everywhere.
Thus, g(Z) # go(Z) implies p.(z) = 0. Therefore ||g — go|lc = 0. Moreover,

Q(g0) = ~E((Y — go(X))?1e(X)?) > ~E(2Ype(X)? + 290(X)pre( X)?) > —oc.

4. This step is identical to the corresponding step in the proof of proposition

5. For all g € ©, C O,
(Y — g(X))2ue(X)? < 2Y?1e(X)? 4 29(X)2pe(X)? < 2Y2uo(X)? + 2B M2,

This combined with E(Y?u.(X)?) < oo let us apply Jennrich’s uniform law of large numbers,
which gives
sup [Gu(8) — Q(O)] % 0.
€Oy,
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O]

Proof of proposition[T3. Let g, € Oy, such that |lgr, — golle = 0. Then [|g, [lc < |lgolle + 1 for n

large enough. Moreover, ||go|lc < C|lgolls < co. From the proof of proposition 12| we know that

1Q(gk,) = Qgo)l = 2 (Ms(lgolle + 1) + vE (V212e(X)%)) llgk,, — g0l

and

~ ~ 1<
|@n(gk,) = @nlgo)l < 2 | Ms(llgolle +1) + |~ D Y2ue(X0)? | gk, — golle-
i=1

Now write

~

Qnl98,) = Qgk) = (@nlgn,) = Qnl90)) + (Qnlg0) ~ Qlow) ) + (QLg0) — Qg )-

@n(go) —Q(go) = O,(1/4/n) by the central limit theorem, which applies since E((Y — go(X))?*) < 0o
and . is uniformly bounded above. Thus,

Qn(gk,) — Qgr,) = Op(llgk, — gollc +1/v/n).

Since max{1/v/n, ||gk, — 9ollc} = O(An), lemma A.3 in (Chen and Pouzo (2012) implies that for
some My > 0 it holds that ||go|ls < Mo and

gw € {g € %72,#3 : ”g”lazyﬂs S MO}

with probability arbitrarily close to 1 for all large n. Hence it suffices to prove that ||gw, — gol|c 50,

where
1

n
gu(r) = argmax — (n D (Vi = g(Xi) P ue(Xi)® + AanHs>
g€, i=1

and 6, = {g € Oy, 1 ||glls < Mo}.

Consistency now follows from proposition [12] under two additional arguments:

1. First, SUp g Mo Anllglls < AnMo — 0 and therefore the sample objective function (including

kn -
the penalty) still converges to @ uniformly over g € @%0.
2. Second, since (:)%0 is finite dimensional, for any g1, g2 € (:)anO there exists D > 0 such that

Nagills = llgz2lls] < Dlllgille — llg2llel < Dllg1 — g2]|lc- Hence the sample objective function

. . . . . =~ M,
(including the penalty) is still continuous on Oy, °.

All other assumptions of proposition hold using the same arguments as those in the proof of
proposition Thus ||gw — gollc = 0 and hence ||Gw — golle = 0. O

Proof of proposition |14 The proof is adapted from the proof of theorem 4.3 in Newey and Powell
(2003)). Again we verify the conditions of proposition [10]
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1. This step is identical to the corresponding step in the proof of proposition

2a. Define Q(g) = —E(E(Y — g(X) | Z)?). For g1,92 € O,

E(Y —g1(X) | 2)* —E(Y — g2(X) | 2)?|
= [EQ2Y | Z)E(g2(X) — g1(X) | Z) + E(g2(X) — 91(X) | Z)E(g2(X) + 91(X) | Z)|
<|EQY + g2(X) + 91(X) | Z)] - [E(92(X) — 91(X) | Z)|

E((290(X) + g2(X) 4+ 91(X)) te(X)pe(X) ™" | Z)] - [E((92(X) — 91 (X)) e(X) e (X) 71 | Z))
< ABM5|E(ue(X) ™" | Z)| - Msllgr — g2l - [E(pe(X) " | 2)]
= ABMZE(pe(X) ™" | Z)?(lg1 — g2lle
<4ABMZE(ue(X) 72 | Z)llg1 — galle-

(
(
The fourth line uses E(U | Z) = 0 and the last uses Jensen’s inequality. Therefore

Q(g1) = Qo2)l SE(E(Y — g1(X) | 2)* —~E(Y — g2(X) | 2)*))
< ABMZE(ue(X)7%)llg1 — glle-

Hence, @ is continuous.

2b. Let
kn

O, =g€0: g—Zb]p] ) for some by,... b, € R
j=1
Define Pz as the n x k, matrix with (¢, j)th element p;(X;). Let Qz = Pz(P,Pz)~ P;, where
(P, P7)~ denotes the Moore-Penrose generalized inverse of (P, Pz). Let Y and g(X) be the
n x 1 vectors with elements Y; and g(X;), respectively. Define @n(g) = —%HQZ(Y —g(X)|?.
Then for g1, g2 € O,

|Qng1) — Qn(g2)|
QY — (XD~ HQa(Y — ga(X))?

< %HQz(gl(X) = g2(X) - [Qz(2Y — g1(X) — g2(X))

%Hgl(x) — g (X)[| - [)2Y = g1(X) — ga( X))

IN

n

- J LS (X ga(X0))? uc<Xi>2uc<Xi>2¢ L3 - u(X0) - ga(X0))?
3 =1

IN

1 n
He(Xi) 72, | = DAY +AB2MZ1e(Xi) 72 | [lg1 = g2
=1 =1
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The second line follows because, by the Cauchy-Schwarz inequality,

[(a’a) — (¥'b)| = |(a = b)/ (a +b)| < V/(a —b)(a —b)/(a+b)(a+D)

for all a,b € R™. The third line follows because @)z is idempotent and thus ||Qzb|| < ||b]| for

all b € R". Hence @n is continuous.

. By completeness, Q(g) = —E(E(Y — g(X) | Z)?) = 0 implies that g(z) = go(x) almost
everywhere. Identical arguments as those in the proof of proposition then imply that
lg — gollc = 0, by continuity of go. Moreover,

Q(g0) = —E(E(U | 2)*) =0 > —cc.
. Assumption 4 of proposition holds using identical arguments as those in the proof of
proposition

. Assumption 5 of proposition requires convergence of @n to @ uniformly over the sieve

spaces. We show this by applying corollary 2.2 in Newey (1991). © is || - ||.-compact, which

is Newey’s assumption 1. @ is || - ||--continuous, which is Newey’s equicontinuity assumption.
Next, define
1 o 1o
_ - 2 2 _
Bu= ||~ Z;uc(Xz‘) 2> 2413 +AB2M2p1o(X;) 2
1= 1=

and recall that
|Qn(91) — Qnl92)] < Bnllgi — 92c-

By Kolmogorov’s strong law of large numbers and the existence of the relevant moments,
B, = Op(1). Hence Newey’s assumption 3A holds. All that remains is to show Newey’s
assumption 2, pointwise convergence: |@(g) — Q(g)] = 0p(1) for all g € O©. First write

Q(9) — Qg)| = %ZE(Y —g(X) | Z=7Z)? —E(B(Y — g(X) | 2)?)
i=1

=1

where E(Y — g(X) | Z = Z;) is the series estimator of the conditional expectation evaluated
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at Z;. For the first part notice that E(Y — g(X) | Z = Z;)? is iid and

E(E(Y - g(X) | 2)*) <E(B((Y - 9(X))*| 2))
< E(2Y?% +29(X)?)
< 2E(Y?) + 2B (ue(X) " )lgll2

< 00.

It follows from Kolmogorov’s strong law of large numbers that
1 n
=Y E(Y —g(X) | 2= 2)" —E(E(Y - g(X) | 2)?) B 0.
i=1

Next, following Newey| (1991), define p as the n x 1 vector containing Y; — g(X;) and h as the
n x 1 vector containing E(Y — ¢(X) | Z = Z;). Then

n

> (B —g(x0)| 2= Z)? —E(Y - g(X) | Z = Z,)?)
=1

1

n

= [1Qzpl* = lI1]?] /n.

Since for all a,b € R™ it holds that a’'a — b'b = (a — b)'(a — b) + 2b/'(a — b),

1Qzpl” = 10l /n < (I1Qzp — hlI* + 2||h]| - |Qzp — hll) /n.

Since

W /n =~ STEY —g(X) | 2 = Zi)%,
=1

the previous arguments imply that ||h[|?/n = O,(1). It therefore suffices to prove that ||Qzp—
h||?/n = o,(1), which by Markov’s inequality is implied by

E (|Qzp — hlI?) /n— 0.

as n — 0. Newey| (1991)) shows

E (||Qzp — h||*) /n < E (trace(Qz var(h | Z))) /n+ o(1).
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Therefore,

n

E(|Qzp—hl?) /n<E (Z(Qz)ii var(Y; — g(X;) | Zi)> /n+o(1)

=1

<E \ZQzu Zvar Xi) | Zi)? | +o(1)

<E 1tmce Zvar (Y —9(Xi) | Zi)? | +0(1)

=E 1tmce (Qz)— Zvar Xi) | Zi)? | +0(1)
"

< %”IE Zvar X)) | 22 | +o(1)

\ﬁ\/Evar Xi) | Zi)?) + o(1).

The second line follows from the Cauchy-Schwarz inequality. The third line from the definition
of the trace. The fourth line because Q7 is idempotent. The fifth line because trace(Qz) < k.
The last line by Jensen’s inequality. Since E ((Var(Yi —g9(X3) | Zi))Q) < oo and kp/n — 0, it
follows that

E (1Qzp — hI2) /n — 0.
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