
On completeness and consistency in

nonparametric instrumental variable models∗

Joachim Freyberger‡

April 14, 2017

Abstract

This paper provides positive testability results for the identification condition in a

nonparametric instrumental variable model, known as completeness, and it links the

outcome of the test to properties of an estimator of the structural function. In

particular, I show that the data can provide empirical evidence in favor of both an

arbitrarily small identified set as well as an arbitrarily small asymptotic bias of the

estimator. This is the case for a large class of complete distributions as well as

certain incomplete distributions. As a byproduct, the results can be used to estimate

an upper bound of the diameter of the identified set and to obtain an easy to report

estimator of the identified set itself.
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1 Introduction

There has been much recent work on nonparametric models with endogeneity, which

relies on a nonparametric analog of the rank condition, known as completeness.

Specifically, consider the nonparametric instrumental variable (NPIV) model

(1) Y = g0(X) + U, E(U | Z) = 0,

where Y , X, and Z are observed scalar random variables, U is an unobserved random

variable, and g0 is a structural function of interest. It is well known that identification

in this model is equivalent to the completeness condition (Newey and Powell, 2003),

which says that E(g(X) | Z) = 0 almost surely implies that g(X) = 0 almost surely

for all g in a certain class of functions.1 Next to this NPIV model, completeness has

also been used in various other settings including measurement error models (Hu and

Schennach, 2008), panel data models (Freyberger, 2012), and nonadditive models with

endogeneity (Chen, Chernozhukov, Lee, and Newey, 2014). Although completeness

has been employed extensively, existing results so far have only established that the

null hypothesis that completeness fails is not testable. In particular, Canay, Santos,

and Shaikh (2013) show that any test that controls size uniformly over a large class

of incomplete distributions, has power no greater than size against any alternative.

Intuitively, the null hypothesis that completeness fails cannot be tested because for

every complete distribution, there exists an incomplete distribution which is arbitrar-

ily close to it. They conclude that “it is therefore not possible to provide empirical

evidence in favor of the completeness condition by means of such a test”.

In an application researchers most likely do not just want to test completeness

by itself, but are instead interested in estimating g0. One might expect that if an

incomplete distribution is arbitrarily close to a complete distribution, a nonparametric

estimator of g0 has similar properties under both distributions. In particular, it turns

out that even if completeness fails, it might be the case that the diameter of the

identified set, denoted by diam(I0(P )), is smaller than a fixed ε > 0.2 It then follows

1The class of functions typically depends on the restrictions imposed on g0, such as being square

integrable (“L2 completeness”) or bounded (“bounded completeness”).
2See Section 2 for a formal definition of the diameter of the identified set. To achieve a bounded

identified set, the function g0 has to satisfy commonly assumed smoothness restrictions; see Section

2.1 for details.
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that for certain estimators ĝ it holds that ‖ĝ − g0‖c ≤ ε + op(1), where ‖ · ‖c is a

consistency norm. In other words, for certain incomplete distributions, namely those

close to complete distributions, ĝ will be close to g0 asymptotically.

In this paper I first show that under certain assumptions H0 : diam(I0(P )) ≥ ε

is a testable hypothesis and that rejecting H0 provides evidence in favor of a small

asymptotic bias of a large class of estimators. Next, I formally link the outcome of

a test to properties of an estimator. That is, I provide a test statistic T̂ , a critical

value cn, and an estimator ĝ, such that uniformly over a large class of distributions

P
(
‖ĝ − g0‖c ≥ ε, nT̂ ≥ cn

)
→ 0

as n → ∞, where n is the sample size. This result holds both for a fixed ε and

when ε → 0 as n → ∞. Moreover, I show that P (nT̂ ≥ cn) → 1 for a large

class of complete distributions and certain sequences of incomplete distributions. An

important implication of these results is that for any sequence of distributions for

which P (nT̂ ≥ cn) ≥ δ > 0,

P
(
‖ĝ − g0‖c ≥ ε | nT̂ ≥ cn

)
→ 0.

Hence, rejecting can provide evidence in favor of an arbitrarily small asymptotic bias

of the estimator. Since the test does not control size uniformly over all incomplete

distributions, the results imply that for certain sequences of incomplete distributions

‖ĝ − g0‖c
p→ 0. Finally, I show how the test can be used to estimate an upper bound

of the diameter of the identified set and to obtain an easy to report estimator of the

identified set itself.

This paper does not address the question of conducting inference. Santos (2012)

and Tao (2016) provide pointwise valid inference methods, which are robust to a

failure of point identification, but they do not discuss properties of estimators of g0

under partial identification, and they do not show that the data can provide evidence

in favor of an arbitrarily small asymptotic bias or an arbitrarily small diameter of the

identified set (see Section 4 for further discussion).

Literature: Most theoretical work in the NPIV literature relies on the complete-

ness assumption, such as Newey and Powell (2003), Hall and Horowitz (2005), Blun-

dell et al. (2007), Darolles et al. (2011), Horowitz (2011), Horowitz and Lee (2012),

Horowitz (2014), and Chen and Christensen (2017). Other settings and applications
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which use completeness include Hu and Schennach (2008), Berry and Haile (2014),

Chen et al. (2014), and Sasaki (2015). There is also a growing literature on general

models with conditional moment restrictions, which include instrumental variable

models as special cases. Several settings assume point identification (for example Ai

and Chen (2003), Chen and Pouzo (2009, 2012, 2015)) while others allow for partial

identification (Tao, 2016). Finally, there are several recent papers (including Mat-

tner (1993), Newey and Powell (2003), Andrews (2011), D’Haultfoeuille (2011), and

Hu and Shiu (2016)) which have provided sufficient conditions for different versions

of completeness, such as bounded completeness or L2 completeness. The results of

Canay et al. (2013) imply that these versions of completeness are not testable, while

the sufficient conditions might be testable if they are strong enough.

Section 2 provides definitions and a derivation of the population test statistic.

Section 3 presents the sample analog and the main results which, among others, link

the outcome of the test to properties of an estimator. All proofs are in the appendix.

Additional material is in a supplementary appendix with section numbers S.1, etc..

2 Definitions and population test statistic

This section starts by introducing function spaces and norms that are used throughout

the paper. It then explains the link between the diameter of the identified set and

properties of estimators and it derives the population test statistic.

2.1 Notation

Let ‖ · ‖ be the Euclidean norm and let ‖ · ‖2 denote the L2-norm. Additionally, let

X be the support of X and let ‖ · ‖c and ‖ · ‖s be two norms for functions from X to

R. Define the parameter space G = {g : ‖g‖s ≤ C}, where C is a positive constant.

Properties of ‖ · ‖c and ‖ · ‖s are discussed below but useful examples to think of are:

‖g‖2
c =

∫
X
g(x)2dx and ‖g‖2

s =

∫
X

(
g(x)2 + g′(x)2

)
dx

or

‖g‖c = sup
x∈X
|g(x)| and ‖g‖s = sup

x∈X
|g(x)|+ sup

x1,x2∈Xx1 6=x2

|g(x1)− g(x2)|/‖x1 − x2‖.
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A standard smoothness assumption in many nonparametric models, which I also

impose in this paper, is that g0 ∈ G (see e.g. Newey and Powell (2003), Santos

(2012), or Horowitz (2014)). This assumption typically restricts function values and

derivatives of g0. Section S.3.2 in the supplement explains how these norm bounds can

be derived in particular examples. Consistency is then usually proved in the weaker

norm ‖ ·‖c. It will also be convenient to define Ḡ(ε) = {g : ‖g‖s ≤ 2C/ε}. With these

restrictions define the identified set I0(P ) = {g ∈ G : E(g(X) | Z) = E(Y | Z)} and

its diameter

diam(I0(P )) = sup
g1,g2∈I0(P )

‖g1 − g2‖c.3

2.2 Derivation of the population test statistic

I first show that if diam(I0(P )) ≤ ε, then the asymptotic bias of a large class of

estimators will be small.4 Specifically, let g̃ be any estimator such that

inf
g∈I0(P )

‖g̃ − g‖c = op(1).

That is, g̃ is close to some function in the identified set as the sample size increases.

Many estimators, such as series or Tikhonov estimators satisfy this property, even if

g0 is not point identified. Then if diam(I0(P )) ≤ ε,

‖g̃ − g0‖c = inf
g∈I0(P )

‖g̃ − g + g − g0‖c

≤ inf
g∈I0(P )

‖g̃ − g‖c + sup
g∈I0(P )

‖g − g0‖c

≤ op(1) + ε.

For a fixed distribution of the data an estimator of g0 is typically not consistent if

g0 is not point identified, but these derivations show that the asymptotic bias can be

arbitrarily small. Moreover, for a sequence of distributions, ĝ is consistent as long as

diam(I0(P ))→ 0 as n→∞.

3For some quantities, such as I0(P ), I make the dependence on the distribution of the data P

explicit, which will be important in Section 3.
4Since the asymptotic bias is guaranteed to be small, this situations can be interpreted as strong

instruments in the NPIV model. Contrarily, instruments are then weak if diam(I0(P )) ≥ ε. Such

a definition of weak instruments is related to the definition of Stock and Yogo (2005) in the linear

model who also think of weak instruments in terms of properties of estimators.
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In this paper I show that, under certain assumptions, the null hypothesis

H0 : diam(I0(P )) ≥ ε

is testable. By the previous arguments rejecting H0 provides evidence for both a small

identified set and a small asymptotic bias of estimators. Notice that either H0 is true

or ‖g̃− g0‖c ≤ ε+ op(1), which allows me to link the test outcome to properties of an

estimator. Specifically, I provide a test statistic, a critical value, and an estimator ĝ

such that uniformly over all distributions satisfying Assumption 1 below

P (‖ĝ − g0‖c ≥ ε, reject H0)→ 0,

even as ε→ 0. I also show that the test rejects with probability approaching 1 for a

large class of complete distributions and certain sequences of incomplete distributions.

To construct a test statistic, notice that if diam(I0(P )) ≥ ε, then there exist

g1 ∈ I0(P ) and g2 ∈ I0(P ) such that ‖g1 − g2‖c ≥ ε. Let g = g1 − g2. Then

E(g(X) | Z = z) = 0 almost surely, ‖g‖s ≤ 2C, and ‖g‖c ≥ ε. Next rewrite

E(g(X) | Z = z) = 0 a.s. ⇔ E(g(X) | Z = z)fZ(z) = 0 a.s.

⇔
∫

(E(g(X) | Z = z)fZ(z))2 dz = 0

⇔
∫ (∫

g(x)fXZ(x, z)dx

)2

dz = 0

and define

S0(g) ≡
∫ (∫

g(x)fXZ(x, z)dx

)2

dz

and

T ≡ inf
g:‖g‖s≤2C,‖g‖c≥ε

S0(g).

If H0 is true, then T = 0. Moreover, under the assumptions below, T > 0 for certain

alternatives, among others all complete distributions (see Theorem 1 for details). Also

notice that with C = ∞, T would be equal to 0 for both complete and incomplete

distributions and thus, imposing smoothness restrictions on g0 is critical.

Finally notice that the infimum will be attained at a function where ‖g‖c = ε,

because otherwise we could simply scale down g. Moreover,

inf
g:‖g‖s≤2C,‖g‖c=ε

S0(g) = inf
g:‖g/ε‖s≤2C/ε,‖g/ε‖c=1

ε2S0(g/ε) = inf
g∈Ḡ(ε):‖g‖c=1

ε2S0(g),
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If ε changes with the sample size, then the function space changes with the sample

size as well. Neglecting ε2 in front of the objective does not change the minimizer, so

I will consider a test statistic based on a scaled sample analog of infg∈Ḡ(ε):‖g‖c=1 S0(g).

3 Estimation and testing

I now present the sample analog of T , the estimator of g0, and the main results which,

among others, link the outcome of the test to properties of the estimator. Throughout

the paper I assume that the data is a random sample of (Y,X,Z), where X and Z

are continuously distributed scalar random variables with compact support and joint

density fXZ . We can then assume without loss of generality that X,Z ∈ [0, 1].5

3.1 Sample analog of test statistic

Let φj be an orthonormal basis for functions in L2[0, 1]. Denote the series approxi-

mation of fXZ by

fJ(x, z) =
J∑
j=1

J∑
k=1

ajkφj(z)φk(x),

where ajk =
∫ ∫

φk(x)φj(z)fXZ(x, z)dxdz. Hence, fJ is the L2 projection onto the

space spanned by the basis functions. We can then estimate fXZ by

f̂XZ(x, z) =
J∑
j=1

J∑
k=1

âjkφj(z)φk(x),

where J →∞ as n→∞ and

âjk =
1

n

n∑
i=1

φj(Zi)φk(Xi).

Denote the series approximation of a function g by

gJ(x) =
J∑
j=1

hjφj(x),

5Section S.4 in the supplement outlines extensions to vectors X and Z and functions on R.
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where hj =
∫
g(x)φj(x)dx ∈ R for all j = 1, . . . , J . Define the sieve space

ḠJ(ε) =

{
g ∈ Ḡ(ε) : g(x) =

J∑
j=1

hjφj(x) for some h ∈ RJ

}
.

We can now define the test statistic which is

T̂ = inf
g∈ḠJ (ε):‖g‖c=1

∫ (∫
g(x)f̂XZ(x, z)dx

)2

dz.

To obtain a simpler representation of the test statistic, let Â be the J × J matrix

with elements âjk and let A be the population analog. Let h be the J × 1 vector

containing the coefficients hj of g ∈ ḠJ(ε). It is easy to show that∫ (∫
g(x)f̂XZ(x, z)dx

)2

dz =
J∑
j=1

(
J∑
k=1

âjkhk

)2

=
∥∥∥Âh∥∥∥2

= h′(Â′Â)h.

Hence

T̂ = inf
g∈ḠJ (ε):‖g‖c=1

h′(Â′Â)h.

T̂ depends on ‖ · ‖c and ‖ · ‖s, but as shown in the next section using specific norms,

it has an intuitive interpretation as a constrained version of a rank test of A′A.

3.2 Interpretation of test statistic with Sobolev spaces

As a particular example let

‖g‖2
c =

∫ 1

0

g(x)2dx and ‖g‖2
s =

∫ 1

0

(
g(x)2 + g′(x)2

)
dx.

Furthermore, define bjk =
∫
φ′j(x)φ′k(x)dx and B as the J × J matrix with element

(j, k) equal to bjk. It is then easy to show that{
g ∈ ḠJ(ε) : ‖g‖c = 1

}
=

{
gJ : h′Bh ≤ (2C/ε)2 − 1, h′h = 1

}
.

It follows that the test statistic is the solution to

min
h∈RJ

h′(Â′Â)h

subject to h′Bh ≤ (2C/ε)2 − 1 and h′h = 1.

Without the first constraint, the solution is the smallest eigenvalue of Â′Â, which

could be used to test the rank of A′A if J was fixed (see for example Robin and

Smith, 2000). Thus, the test in this paper can be interpreted as a constrained version

of a rank test, where the dimension of the matrix increases with the sample size.
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3.3 Estimator

The estimator I use is a series estimator from Horowitz (2012). To describe the

estimator, let m̂ be a J × 1 vector with m̂k = 1
n

∑n
i=1 Yiφk(Zi). Let

ĥ = arg min
h∈RJ :‖gJ‖s≤C

∥∥∥Âh− m̂∥∥∥2

and ĝ(x) =
J∑
j=1

ĥjφj(x).

Without the constraint ‖gJ‖s ≤ C and if Â is invertible, it can be shown that

ĥ = Â−1m̂ = (Φ(Z)′Φ(X))
−1

Φ(Z)′Y,

where Φ(W ) is a n×J matrix containing φj(Wi) and Y is the n×1 vector containing

Yi. Hence, the estimator is a constrained version of the “just identified” two stage

least squares estimator. In Section S.4.1 of the supplement I show that the results can

easily be extended to an “over-identified” setting and non-scalar random variables.

3.4 Assumptions and main results

I will next state and discuss the assumptions and the main results.

Assumption 1. The data {Yi, Xi, Zi}ni=1 is an iid sample from the distribution

of (Y,X,Z), where (Y,X,Z) are continuously distributed, (X,Z) ∈ [0, 1]2, 0 <

fXZ(x, z) ≤ Cd < ∞ almost everywhere, and E(Y 2 | Z) ≤ σ2
Y for some σY > 0.

For some r > 0, ‖fXZ − fJ‖2 ≤ CfJ
−r. The data is generated by model (1) and

‖g0‖s ≤ C for some constant C > 0.

Let P be the class of distributions P satisfying Assumption 1. For a fixed ε > 0,

define P0 and P1 as the distributions in P satisfying H0 and H1 : diam(I0(P )) < ε,

respectively. The remaining assumptions are as follows.

Assumption 2. G is compact under ‖ · ‖c and Co‖g‖2
c ≥ ‖g‖2

2 for some Co > 0.

Assumption 3. The basis functions form an orthornomal basis of L2[0, 1].

Assumption 4. For all g ∈ G and some Cb > 0, ‖g − gJ‖c ≤ CbJ
−s̄ with s̄ ≥ 2.

Assumption 5. For all g ∈ G and for J large enough, gJ ∈ G and ‖g‖c
‖gJ‖c

gJ ∈ G.
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The first assumption restricts the class of distributions. Compactness in Assump-

tion 2 is implied by many standard choices of norms, among other for the norms used

in Section 3.2 (see Appendix S.3.1 for more details). The second part of Assump-

tion 2 implies that S0(g) is continuous in g under ‖ · ‖c. It allows ‖ · ‖c to be the

L2-norm, the sup-norm, and many other norms. Assumptions 3 and 4 are standard

in the literature. Assumption 5 implies that the series approximations of functions

in Ḡ(ε) are in ḠJ(ε) and are therefore contained in the set that is minimized over in

the definition of the test statistic. It is stronger than necessary and it can be relaxed

at the expense of additional notation, but it appears to be reasonable as argued in

Appendix S.3. Finally, to state the main result let

κ(P, ε) = inf
g∈Ḡ(ε):‖g‖c=1

∫ (∫
g(x)fXZ(x, z)dx

)2

dz.

Notice that for any fixed distribution for which there is no g ∈ Ḡ(ε) with ‖g‖c = 1 and

S0(g) = 0 (e.g. any complete distribution), it holds by Assumption 2 that κ(P, ε) > 0.

We now get the following result. All proofs are in Appendix A.

Theorem 1. Suppose Assumptions 1 – 5 hold.

1. If J
cn
→ 0 and nJ−2r

cn
→ 0, then

sup
P∈P0

P
(
nT̂ ≥ cn

)
→ 0.

2. If n
cn
→∞ and J2

n
→ 0, then for all P ∈ P1 with κ(P, ε) > 0,

P
(
nT̂ ≥ cn

)
→ 1.

3. If J
cn
→ 0 and nJ−2s̄

cn
→ 0, then

sup
P∈P

P
(
‖ĝ − g0‖c ≥ ε, nT̂ ≥ cn

)
→ 0.

The first and the second part of Theorem 1 show that H0 : diam(I0(P )) ≥ ε is

a testable hypothesis. Here I focus on a diverging critical value cn under simple as-

sumptions in order to obtain the main result that links the test outcome to properties
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of ĝ. The third part implies that for any sequence of distributions Pn ∈ P for which

Pn(nT̂ ≥ cn) ≥ δ > 0, it holds that

Pn

(
‖ĝ − g0‖c ≥ ε | nT̂ ≥ cn

)
→ 0.

Hence, rejecting H0 provides evidence for a small asymptotic bias and the second part

of Theorem 1 shows that the rejection probability converges to 1 for a certain class

of distributions, which includes all fixed complete distributions. While the results

rely on a particular estimator and test statistic, the main idea extends to alternative

estimator and test pairs.

The rate conditions of parts 1 - 3 of Theorem 1 are satisfied if(
J

cn
,
cn
n

)
→ 0 and

(
n

J2r+1
,

n

J2s̄+1
,
J2

n

)
→ 0.

Hence, both cn and J have to go to ∞ but cannot diverge too fast relative to n. If

r ≥ 2, feasible choices are cn = J ln(n) and J = na, where a ∈ (1/5, 1/2).

Remark 1. Theorem A1 in Appendix S.1 demonstrates that the results in Theorem 1

also hold when ε→ 0 as n→∞. Therefore, the data can provide empirical evidence

for an arbitrary small identified set and an arbitrary small asymptotic bias of the

estimator. Canay et al. (2013) prove that the data cannot provide conclusive evidence

in favor of completeness because for any complete distribution, there is a sequence

of incomplete distributions, which converges to it in the total variation distance.

Hence, any test that controls size over every sequence of incomplete distributions

has power no larger than size against any alternative. For the test discussed here

Pn(nT̂ ≥ cn) → 1 for fixed complete distributions even as ε → 0 and therefore, it

cannot control size uniformly over all incomplete distributions. However, the results

in Theorem A1 show that for certain sequences of incomplete distributions, where

size is not controlled, ‖ĝ − g0‖c
p→ 0. Thus, for n large enough either the test does

not reject or ĝ is arbitrarily close to g0 with probability arbitrarily close to 1.

3.5 Estimating the diameter of the identified set

Let cn be a sequence of critical values that does not depend on ε and let

T̂ (ε) = inf
g∈ḠJ (ε):‖g‖c=1

∫ (∫
g(x)f̂XZ(x, z)dx

)2

dz
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for all ε > 0 and T̂ (0) = 0. Notice that T̂ (ε) is increasing in ε. Define

ε̂ = sup
{
ε ∈ [0, C̃] : nT̂ (ε) ≤ cn

}
,

where C̃ is the largest ε such that {g : ‖g‖s ≤ 2C, ‖g‖c ≥ ε} 6= ∅. Let ε0 =

diam(I0(P )) and let ε̃0 = sup{ε ∈ [0, C̃] : infg:‖g‖s≤2C,‖g‖c=ε S0(g) = 0}. By construc-

tion, ε0 ≤ ε̃0 and for any fixed complete distribution ε0 = ε̃0 = 0. We now get the

following result.6

Theorem 2. Suppose Assumptions 1 - 5 hold.

1. If J
cn
→ 0 and nJ−2r

cn
→ 0, then supP∈P |P (ε̂ ≥ ε0 − γ)− 1| → 0 for any γ > 0.

2. If n
cn
→∞ and J2

n
→ 0, then P (ε̂ ≤ ε̃0 + γ)→ 1 for any γ > 0.

Hence, ε̂ is a uniformly consistent estimated upper bound of ε0. The second

result does not hold uniformly over all distributions in P . The reason is that there

are sequences of complete distributions, with ε̃0 = ε0 = 0, which are arbitrarily

close to incomplete distributions with ε̃0 > ε0 > 0. For such sequences, the data

cannot distinguish between the complete and the incomplete distributions and thus

ε̂ can be large even if ε̃0 = ε0 = 0. For such sequences also ĝ would not be a

consistent estimator of g0 and therefore, the test described above would not reject

H0 : diam(I0(P )) ≥ ε for small ε > 0. However, a consequence of the theorem is that

for any fixed complete distribution it holds that ε̂
p→ 0.

For incomplete distributions, ε̂ generally does not converge in probability to ε0,

but is contained in [ε0− γ, ε̃0 + γ] for any γ > 0 with probability approaching 1. The

discrepancy between the lower bound and the upper bound comes from the fact that

the test is based on a certain implication of H0, as explained in Section 2.2.

Remark 2. Suppose ‖ · ‖c is the sup norm. Let g̃ be any estimator of g0 such that

inf
g∈I0(P )

‖g̃ − g‖c = op(1).

and let g̃l(x) = g̃(x) − ε̂ and g̃u(x) = g̃(x) + ε̂. It is easy show that under the

assumptions of Theorem 2 for any γ > 0

P (g̃l(x)− γ ≤ g(x) ≤ g̃u(x) + γ for all x ∈ [0, 1] and all g ∈ I0(P )) → 1.

6I thank an anonymous referee for a suggestion that led to this result.
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Thus, [g̃l(x), g̃u(x)] is a set estimator of the identified set, which is easy to report and

arbitrarily close to g0 for complete distributions if n is large enough. For incomplete

distributions it is generally a conservative estimator of the identified set. Section

S.2 in the supplement briefly describes how a diverging cn can be chosen using an

increasing quantile of a bootstrap distribution. Hence, just like other estimators of

identified sets (e.g. Chernozhukov et al. (2007) and Santos (2012)), it requires a

tuning parameter, and the one presented here has a clear interpretation for a given

choice.

4 Discussion and conclusion

This paper shows that even though the data cannot provide evidence in favor of

completeness, it can provide evidence in favor of both an arbitrarily small identified

set and an arbitrarily small asymptotic bias of an estimator in the NPIV model. The

results can be used to estimate an upper bound of the diameter of the identified set

and to obtain an easy to report estimator of the identified set itself.

Santos (2012) provides pointwise valid confidence sets for functionals of g0, which

are robust to partial identification. These sets are obtained by test inversion, which

means that a hypothesis test has to be performed for each possible value of the

functional and the bootstrap critical value depends on the hypothesized value of the

functional. Hence, such a confidence set is computationally expensive to obtain. The

results in this paper could potentially also be used to obtain a simple confidence

set for the entire function g0, rather than a functional, which is robust to partial

identification and easy to report. In particular, the estimator of Chen and Pouzo

(2012) is consistent for the function in the identified set with the minimal norm

(which is identified), denoted by gm. Now suppose there exists an estimated upper

bound function g̃u and a lower bound function g̃l such that

P (g̃l(x) ≤ gm(x) ≤ g̃u(x) for all x ∈ [0, 1])→ 1− α.

Similar as in Remark 2, it is then easy to show that under certain assumptions

lim inf
n→∞

P (g̃l(x)− ε̂ ≤ g(x) ≤ g̃u(x) + ε̂ for all x ∈ [0, 1] and all g ∈ I0(P )) ≥ 1− α.

13



That is, a uniform confidence band for the identified function gm could easily be

transformed to a confidence set for the identified set using the results in this paper.

A Proofs of Theorems 1 and 2

A.1 Proof of Theorem 1

For all P ∈ P0, there exists a function g with S0(g) = 0, ‖g‖c = 1 and ‖g‖s ≤ (2C/ε).

Let gJ be the series approximation of such a function. Assumption 5 implies that

gJ/‖gJ‖c ∈ ḠJ(ε). Let h ∈ RJ be the vector containing the coefficients of this

normalized series approximation. Then

n‖Âh‖2 = n‖(Â− A)h+ Ah‖2 ≤ 2‖
√
n(Â− A)h‖2 + 2n‖Ah‖2.

Notice that

‖Ah‖2 =
1

‖gJ‖2
c

∫ (∫
fJ(x, z)gJ(x)dx

)2

dz

=
1

‖gJ‖2
c

∫ (∫
fJ(x, z)g(x)dx

)2

dz

=
1

‖gJ‖2
c

∫ (∫
(fJ(x, z)− fXZ(x, z))g(x)dx

)2

dz

≤ 1

‖gJ‖2
c

(∫ ∫
(fJ(x, z)− fXZ(x, z))2dxdz

)(∫
g(x)2dx

)
≤ 1

‖gJ‖2
c

C2
fCoJ

−2r.

Also notice that by Assumption 4, |‖gJ‖c − 1| ≤ 2CbJ
−s̄/ε. Next write

‖
√
n(Â− A)h‖2 =

J∑
j=1

(
J∑
k=1

√
n(âjk − ajk)hk

)2

and notice that

J∑
k=1

√
n(âjk − ajk)hk =

1√
n

n∑
i=1

J∑
k=1

(φk(Xi)φj(Zi)− E(φk(Xi)φj(Zi)))hk

and

V ar

(
J∑
k=1

(φk(Xi)φj(Zi)− E(φk(Xi)φj(Zi)))hk

)
≤ max

k=1,...,J
E(φk(Xi)

2φj(Zi)
2)

(
J∑
k=1

|hk|

)2

.
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Assumptions 2 and 4 imply that for some constant C̄, |hk| ≤ C̄
k2ε

(see Appendix S.3

for a derivation). Moreover, by Assumptions 1 and 3, E(φk(Xi)
2φj(Zi)

2) ≤ Cd. It

follows that

V ar

(
J∑
k=1

(φk(Xi)φj(Zi)− E(φk(Xi)φj(Zi)))hk

)
≤ σ2/ε2,

where σ2 = CdC̄
2 (
∑∞

k=1 k
−2)

2
< ∞. By Markov’s inequality and for all n large

enough

sup
P∈P0

P
(
nT̂ ≥ cn

)
≤ sup

P∈P0

P
(

2‖
√
n(Â− A)h‖2 + 4C2

fConJ
−2r ≥ cn

)
≤ sup

P∈P0

P

(
‖
√
n(Â− A)h‖2 ≥ 1

4
cn

)
≤ 4Jσ2

ε2cn
→ 0.

For the second part, for any g ∈ ḠJ(ε) with ‖g‖c = 1, let h ∈ RJ be the coefficients

of the series expansion and notice that ‖Âh‖2 ≥ 3
4
‖Ah‖2 − 3‖(Â−A)h‖2.7 Moreover

‖Ah‖2 =

∫ (∫
fJ(x, z)g(x)dx

)2

dz

=

∫ (∫
fXZ(x, z)g(x)dx+

∫
(fJ(x, z)− fXZ(x, z))g(x)dx

)2

dz

=

∫ (∫
fXZ(x, z)g(x)dx

)2

dz +

∫ (∫
(fJ(x, z)− fXZ(x, z))g(x)dx

)2

dz

+2

∫ (∫
(fJ(x, z)− fXZ(x, z))g(x)dx

)(∫
fXZ(x, z)g(x)dx

)
dz

and therefore, by the Cauchy-Schwarz inequality, for all g ∈ ḠJ(ε) with ‖g‖c = 1∣∣∣∣∣‖Ah‖2 −
∫ (∫

fXZ(x, z)g(x)dx

)2

dz

∣∣∣∣∣ ≤ C2
fCoJ

−2r + 2CdCfCoJ
−r.

It follow that

inf
g∈ḠJ (ε):‖g‖c=1

‖Ah‖2 = inf
g∈ḠJ (ε):‖g‖c=1

S0(g) + o(1) ≥ κ(P, ε) + o(1).

7For a = Âh and b = Ah it holds that 0 ≤ ‖2a− 3
2b‖

2 = 3‖a− b‖2 − 3
4‖b‖

2 + ‖a‖2.
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For κ(P, ε) > 0 and n large enough n‖Ah‖2 ≥ 1
3
nκ(P, ε) and cn ≤ 1

8
nκ(P, ε). Also

‖(Â− A)h‖2 =
J∑
j=1

(
J∑
k=1

(âjk − ajk)hk

)2

≤ Co

J∑
j=1

J∑
k=1

(âjk − ajk)2

for all h with ‖h‖2 ≤ Co. Finally, notice that

√
n(âjk − ajk) =

1√
n

n∑
i=1

(φk(Xi)φj(Zi)− E(φk(Xi)φj(Zi)))

and V ar (φk(Xi)φj(Zi)− E(φk(Xi)φj(Zi))) ≤ Cd. Now for all n large enough

P
(
nT̂ ≥ cn

)
≥ P

(
1

4
nκ(P, ε)− 3Co

J∑
j=1

J∑
k=1

(
√
n(âjk − ajk))2 ≥ cn

)

≥ P

(
1

8
nκ(P, ε) ≥ 3Co

J∑
j=1

J∑
k=1

(
√
n(âjk − ajk))2

)

= 1− P

(
24Co

J∑
j=1

J∑
k=1

(
√
n(âjk − ajk))2 ≤ nκ(P, ε)

)

≥ 1− 24J2CoCd
nκ(P, ε)

.

Hence P (nT̂ ≥ cn)→ 1.

For the last claim let h0 ∈ RJ contain the first J coefficients of the series expansion

of g0. By Assumption 5, the definition of ĥ and the triangle inequality∥∥∥Âh0 − m̂
∥∥∥ ≥ ∥∥∥Âĥ− m̂∥∥∥ =

∥∥∥Âh0 − m̂+ Â(ĥ− h0)
∥∥∥ ≥ ∥∥∥Â(ĥ− h0)

∥∥∥− ∥∥∥Âh0 − m̂
∥∥∥

and thus

4
∥∥∥Âh0 − m̂

∥∥∥2

≥
∥∥∥Â(ĥ− h0)

∥∥∥2

.

Now suppose that nT̂ ≥ cn and ‖ĝ − g0‖c ≥ ε and notice that ‖ĝ − g0‖s ≤ 2C.

Let g̃ = ĝ − g0. From Assumption 5 it follows that g̃J
‖g̃‖c
ε‖g̃J‖c

∈ ḠJ(ε). Therefore,

n

ε2

‖g̃‖2
c

‖g̃J‖2
c

∥∥∥Â(ĥ− h0)
∥∥∥2

≥ nT̂ ≥ cn.

By Assumption 4 and ‖g̃‖c ≥ ε, we have
∣∣∣‖g̃J‖c‖g̃‖c − 1

∣∣∣ ≤ 2CbJ
−s̄/ε and thus

8
n

ε2

∥∥∥Âh0 − m̂
∥∥∥2

≥ cn
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for n large enough. In other words, for n large enough

sup
P∈P

P
(
‖ĝ − g0‖c ≥ ε, nT̂ > cn

)
≤ sup

P∈P
P

(
8n
∥∥∥Âh0 − m̂

∥∥∥2

≥ cnε
2

)
.

Next let m be a J × 1 vector with mk = E(m̂k) and notice that since∥∥∥Âh0 − m̂
∥∥∥ ≤ ‖(Â− A)h0‖+ ‖Ah0 −m‖+ ‖m− m̂‖

we have ∥∥∥Âh0 − m̂
∥∥∥2

≤ 4‖(Â− A)h0‖2 + 4 ‖Ah0 −m‖2 + 4 ‖m− m̂‖2

and thus for n large enough

P

(
8n
∥∥∥Âh0 − m̂

∥∥∥2

≥ cnε
2

)
≤ P

(
32n‖(Â− A)h0‖2 + 32n ‖Ah0 −m‖2 + 32n ‖m− m̂‖2 ≥ cnε

2
)

≤ P
(

96n‖(Â− A)h0‖2 ≥ cnε
2
)

+ P
(
96n ‖Ah0 −m‖2 ≥ cnε

2
)

+P
(
96n ‖m− m̂‖2 ≥ cnε

2
)
.

It now suffices to prove that all three terms on the right hand side converge to 0

uniformly over P ∈ P .

The first term converges to 0 using arguments identical to the ones in the proof

of the first part. Similarly, for the third term

‖
√
n(m− m̂)‖2 =

J∑
k=1

(√
n(m̂k −mk)

)2
=

J∑
k=1

(
1√
n

n∑
i=1

(Yiφk(Zi)− E(Yiφk(Zi)))

)2

and by Assumptions 1 and 3

E

( 1√
n

n∑
i=1

(Yiφk(Zi)− E(Yiφk(Zi)))

)2
 ≤ 1

n

n∑
i=1

E
(
Y 2
i φk(Zi)

2
)
≤ σ2

YCd.

It follows from Markov’s inequality that

sup
P∈P

P
(
96n‖m− m̂‖2 ≥ cnε

2
)
≤ 96Jσ2

YCd
cnε2

→ 0.

Finally write

‖Ah0 −m‖2 =
J∑
j=1

(
J∑
k=1

ajkh0,k −mj

)2

.
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Since
∑∞

j=1 (
∑∞

k=1 ajkh0,k −mj)
2

= 0 it holds that mj =
∑∞

k=1 ajkh0,k. Therefore

‖Ah0 −m‖2 =
J∑
j=1

(
J∑
k=1

ajkh0,k −mj

)2

≤
∞∑
j=1

(
∞∑

k=J+1

ajkh0,k

)2

=

∫ (∫
fXZ(x, z) (g0(x)− g0,J(x)) dx

)2

dz

≤
∫ ∫

fXZ(x, z)2dxdz

∫
(g0(x)− g0,J(x))2 dx

≤ C2
dC

2
bCoJ

−2s̄,

where the last inequality follows from Assumptions 2 and 4. Thus,

sup
P∈P

P
(
96n ‖Ah0 −m‖2 ≥ cnε

2
)
≤ sup

P∈P
P
(
96C2

dC
2
bCoJ

−2s̄n ≥ cnε
2
)
→ 0.

We can conclude that supP∈P P (‖ĝ − g0‖c ≥ ε, nT̂ > cn)→ 0.

A.2 Proof of Theorem 2

I show that supP∈P P (ε̂ < ε0 − γ)→ 0 and P (ε̃0 + γ < ε̂)→ 0 for any γ > 0.

If ε̂ < ε0 − γ < ε0, by definition it holds that nT̂ (ε0) ≥ cn and ε0 ≥ γ. Since

diam(I0) = ε0, there exists a function g with ‖g‖s ≤ 2C/ε0, ‖g‖c = 1, and S0(g) = 0.

Thus, the arguments of the proof of the first part of Theorem 1 imply that

sup
P∈P

P (ε̂ < ε0 − γ) ≤ sup
P∈P

P (nT̂ (ε0) ≥ cn)→ 0.

For the second claim suppose that ε̃0+γ < ε̂ ≤ C̃. Then, by definition nT̂ (ε̃0+γ) ≤
cn. Similar as in the proof of the second part of Theorem 1

nT̂ (ε̃0 + γ) ≥ inf
g∈ḠJ (ε̃0+γ):‖g‖c=1

3

4
n‖Ah‖2 − 3Co

J∑
j=1

J∑
k=1

(
√
n(âjk − ajk))2

and

inf
g∈ḠJ (ε̃0+γ):‖g‖c=1

‖Ah‖2 ≥ inf
g∈Ḡ(ε̃0+γ):‖g‖c=1

S0(g) + o(1).

18



But by the definition of ε̃0, it holds that infg∈Ḡ(ε̃0+γ):‖g‖c=1 S0(g) > 0. Hence, using

arguments analogous to those in the proof of the second part of Theorem 1, it follows

that

P (ε̃0 + γ < ε̂) ≤ P (nT̂ (ε̃0 + γ) ≤ cn)→ 0.
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