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ON COMPLETENESS AND CONSISTENCY IN NONPARAMETRIC
INSTRUMENTAL VARIABLE MODELS

JOACHIM FREYBERGER
Department of Economics, University of Wisconsin–Madison

This paper provides positive testability results for the identification condition in a
nonparametric instrumental variable model, known as completeness, and it links the
outcome of the test to properties of an estimator of the structural function. In particu-
lar, I show that the data can provide empirical evidence in favor of both an arbitrarily
small identified set as well as an arbitrarily small asymptotic bias of the estimator. This
is the case for a large class of complete distributions as well as certain incomplete dis-
tributions. As a byproduct, the results can be used to estimate an upper bound of the
diameter of the identified set and to obtain an easy to report estimator of the identified
set itself.

KEYWORDS: Completeness, testing, consistency, instrumental variables, nonpara-
metric estimation.

1. INTRODUCTION

THERE HAS BEEN MUCH RECENT WORK ON NONPARAMETRIC MODELS with endogeneity,
which relies on a nonparametric analog of the rank condition, known as completeness.
Specifically, consider the nonparametric instrumental variable (NPIV) model

Y = g0(X)+U� E(U |Z) = 0� (1)

where Y , X , and Z are observed scalar random variables, U is an unobserved random
variable, and g0 is a structural function of interest. It is well known that identification in
this model is equivalent to the completeness condition (Newey and Powell (2003)), which
says that E(g(X) | Z) = 0 almost surely implies that g(X) = 0 almost surely for all g in a
certain class of functions.1 Next to this NPIV model, completeness has also been used in
various other settings including measurement error models (Hu and Schennach (2008)),
panel data models (Freyberger (2012)), and nonadditive models with endogeneity (Chen,
Chernozhukov, Lee, and Newey (2014)). Although completeness has been employed ex-
tensively, existing results so far have only established that the null hypothesis that com-
pleteness fails is not testable. In particular, Canay, Santos, and Shaikh (2013) showed
that any test that controls size uniformly over a large class of incomplete distributions has
power no greater than size against any alternative. Intuitively, the null hypothesis that
completeness fails cannot be tested because for every complete distribution, there exists
an incomplete distribution which is arbitrarily close to it. They concluded that “it is there-
fore not possible to provide empirical evidence in favor of the completeness condition by
means of such a test.”
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1The class of functions typically depends on the restrictions imposed on g0, such as being square integrable
(“L2 completeness”) or bounded (“bounded completeness”).
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In an application, researchers most likely do not just want to test completeness by it-
self, but are instead interested in estimating g0. One might expect that if an incomplete
distribution is arbitrarily close to a complete distribution, a nonparametric estimator of
g0 has similar properties under both distributions. In particular, it turns out that even if
completeness fails, it might be the case that the diameter of the identified set, denoted by
diam(I0(P)), is smaller than a fixed ε > 0.2 It then follows that for certain estimators ĝ, it
holds that ‖ĝ − g0‖c ≤ ε + op(1), where ‖ · ‖c is a consistency norm. In other words, for
certain incomplete distributions, namely those close to complete distributions, ĝ will be
close to g0 asymptotically.

In this paper, I first show that, under certain assumptions, H0 : diam(I0(P)) ≥ ε is a
testable hypothesis and that rejecting H0 provides evidence in favor of a small asymptotic
bias of a large class of estimators. Next, I formally link the outcome of a test to properties
of an estimator. That is, I provide a test statistic T̂ , a critical value cn, and an estimator ĝ,
such that uniformly over a large class of distributions,

P
(‖ĝ − g0‖c ≥ ε�nT̂ ≥ cn

) → 0

as n → ∞, where n is the sample size. This result holds both for a fixed ε and when
ε → 0 as n → ∞. Moreover, I show that P(nT̂ ≥ cn) → 1 for a large class of complete
distributions and certain sequences of incomplete distributions. An important implication
of these results is that for any sequence of distributions for which P(nT̂ ≥ cn)≥ δ > 0,

P
(‖ĝ − g0‖c ≥ ε | nT̂ ≥ cn

) → 0�

Hence, rejecting can provide evidence in favor of an arbitrarily small asymptotic bias
of the estimator. Since the test does not control size uniformly over all incomplete
distributions, the results imply that for certain sequences of incomplete distributions,
‖ĝ−g0‖c

p→ 0. Finally, I show how the test can be used to estimate an upper bound of the
diameter of the identified set and to obtain an easy to report estimator of the identified
set itself.

This paper does not address the question of conducting inference. Santos (2012) and
Tao (2016) provided pointwise valid inference methods, which are robust to a failure of
point identification, but they did not discuss properties of estimators of g0 under partial
identification, and they did not show that the data can provide evidence in favor of an
arbitrarily small asymptotic bias or an arbitrarily small diameter of the identified set (see
Section 4 for further discussion).

Literature. Most theoretical work in the NPIV literature relies on the completeness as-
sumption, such as Newey and Powell (2003), Hall and Horowitz (2005), Blundell, Chen,
and Kristensen (2007), Darolles, Fan, Florens, and Renault (2011), Horowitz (2011),
Horowitz and Lee (2012), Horowitz (2014), and Chen and Christensen (2017). Other set-
tings and applications which use completeness include Hu and Schennach (2008), Berry
and Haile (2014), Chen et al. (2014), and Sasaki (2015). There is also a growing litera-
ture on general models with conditional moment restrictions, which include instrumental
variable models as special cases. Several settings assume point identification (e.g., Ai and
Chen (2003), Chen and Pouzo (2009, 2012, 2015)), while others allow for partial identi-
fication (Tao (2016)). Finally, there are several recent papers (including Mattner (1993),

2See Section 2 for a formal definition of the diameter of the identified set. To achieve a bounded identified
set, the function g0 has to satisfy commonly assumed smoothness restrictions; see Section 2.1 for details.
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Newey and Powell (2003), Andrews (2011), D’Haultfoeuille (2011), and Hu and Shiu
(2016)) which have provided sufficient conditions for different versions of completeness,
such as bounded completeness or L2 completeness. The results of Canay, Santos, and
Shaikh (2013) imply that these versions of completeness are not testable, while the suffi-
cient conditions might be testable if they are strong enough.

Section 2 provides definitions and a derivation of the population test statistic. Section 3
presents the sample analog and the main results which, among others, link the outcome of
the test to properties of an estimator. All proofs are in the Appendix. Additional material
is in the Supplemental Material (Freyberger (2017)), with section numbers S.1, etc.

2. DEFINITIONS AND POPULATION TEST STATISTIC

This section starts by introducing function spaces and norms that are used through-
out the paper. It then explains the link between the diameter of the identified set and
properties of estimators and it derives the population test statistic.

2.1. Notation

Let ‖ ·‖ be the Euclidean norm and let ‖ ·‖2 denote the L2-norm. Additionally, let X be
the support of X and let ‖ · ‖c and ‖ · ‖s be two norms for functions from X to R. Define
the parameter space G = {g : ‖g‖s ≤ C}, where C is a positive constant. Properties of ‖ · ‖c

and ‖ · ‖s are discussed below, but useful examples to think of are

‖g‖2
c =

∫
X
g(x)2 dx and ‖g‖2

s =
∫
X

(
g(x)2 + g′(x)2

)
dx

or

‖g‖c = sup
x∈X

∣∣g(x)∣∣ and ‖g‖s = sup
x∈X

∣∣g(x)∣∣ + sup
x1�x2∈Xx1 	=x2

∣∣g(x1)− g(x2)
∣∣/‖x1 − x2‖�

A standard smoothness assumption in many nonparametric models, which I also im-
pose in this paper, is that g0 ∈ G (see, e.g., Newey and Powell (2003), Santos (2012),
or Horowitz (2014)). This assumption typically restricts function values and derivatives
of g0. Section S.3.2 in the Supplemental Material explains how these norm bounds can
be derived in particular examples. Consistency is then usually proved in the weaker norm
‖ ·‖c . It will also be convenient to define Ḡ(ε)= {g : ‖g‖s ≤ 2C/ε}. With these restrictions,
define the identified set I0(P) = {g ∈ G :E(g(X) |Z) =E(Y | Z)} and its diameter

diam
(
I0(P)

) = sup
g1�g2∈I0(P)

‖g1 − g2‖c�
3

3For some quantities, such as I0(P), I make the dependence on the distribution of the data P explicit, which
will be important in Section 3.
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2.2. Derivation of the Population Test Statistic

I first show that if diam(I0(P)) ≤ ε, then the asymptotic bias of a large class of estima-
tors will be small.4 Specifically, let g̃ be any estimator such that

inf
g∈I0(P)

‖g̃ − g‖c = op(1)�

That is, g̃ is close to some function in the identified set as the sample size increases. Many
estimators, such as series or Tikhonov estimators, satisfy this property, even if g0 is not
point identified. Then if diam(I0(P)) ≤ ε,

‖g̃ − g0‖c = inf
g∈I0(P)

‖g̃ − g + g − g0‖c

≤ inf
g∈I0(P)

‖g̃ − g‖c + sup
g∈I0(P)

‖g − g0‖c

≤ op(1)+ ε�

For a fixed distribution of the data, an estimator of g0 is typically not consistent if g0 is
not point identified, but these derivations show that the asymptotic bias can be arbitrarily
small. Moreover, for a sequence of distributions, ĝ is consistent as long as diam(I0(P)) →
0 as n → ∞.

In this paper, I show that, under certain assumptions, the null hypothesis

H0 : diam
(
I0(P)

) ≥ ε

is testable. By the previous arguments, rejecting H0 provides evidence for both a small
identified set and a small asymptotic bias of estimators. Notice that either H0 is true
or ‖g̃ − g0‖c ≤ ε + op(1), which allows me to link the test outcome to properties of an
estimator. Specifically, I provide a test statistic, a critical value, and an estimator ĝ such
that, uniformly over all distributions satisfying Assumption 1 below,

P
(‖ĝ − g0‖c ≥ ε� reject H0

) → 0�

even as ε → 0. I also show that the test rejects with probability approaching 1 for a large
class of complete distributions and certain sequences of incomplete distributions.

To construct a test statistic, notice that if diam(I0(P)) ≥ ε, then there exist g1 ∈ I0(P)
and g2 ∈ I0(P) such that ‖g1 −g2‖c ≥ ε. Let g = g1 −g2. Then E(g(X) | Z = z) = 0 almost
surely, ‖g‖s ≤ 2C, and ‖g‖c ≥ ε. Next rewrite

E
(
g(X) | Z = z

) = 0 a.s. ⇔ E
(
g(X) | Z = z

)
fZ(z) = 0 a.s.

⇔
∫ (

E
(
g(X) | Z = z

)
fZ(z)

)2
dz = 0

⇔
∫ (∫

g(x)fXZ(x� z)dx

)2

dz = 0

4Since the asymptotic bias is guaranteed to be small, these situations can be interpreted as strong instru-
ments in the NPIV model. Contrarily, instruments are then weak if diam(I0(P))≥ ε. Such a definition of weak
instruments is related to the definition of Stock and Yogo (2005) in the linear model, who also thought of weak
instruments in terms of properties of estimators.
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and define

S0(g) ≡
∫ (∫

g(x)fXZ(x� z)dx

)2

dz

and

T ≡ inf
g:‖g‖s≤2C�‖g‖c≥ε

S0(g)�

If H0 is true, then T = 0. Moreover, under the assumptions below, T > 0 for certain alter-
natives, among others all complete distributions (see Theorem 1 for details). Also notice
that with C = ∞, T would be equal to 0 for both complete and incomplete distributions
and thus, imposing smoothness restrictions on g0 is critical.

Finally, notice that the infimum will be attained at a function where ‖g‖c = ε, because
otherwise we could simply scale down g. Moreover,

inf
g:‖g‖s≤2C�‖g‖c=ε

S0(g) = inf
g:‖g/ε‖s≤2C/ε�‖g/ε‖c=1

ε2S0(g/ε)= inf
g∈Ḡ(ε):‖g‖c=1

ε2S0(g)�

If ε changes with the sample size, then the function space changes with the sample size
as well. Neglecting ε2 in front of the objective does not change the minimizer, so I will
consider a test statistic based on a scaled sample analog of infg∈Ḡ(ε):‖g‖c=1 S0(g).

3. ESTIMATION AND TESTING

I now present the sample analog of T , the estimator of g0, and the main results which,
among others, link the outcome of the test to properties of the estimator. Throughout
the paper, I assume that the data are a random sample of (Y�X�Z), where X and Z are
continuously distributed scalar random variables with compact support and joint density
fXZ . We can then assume without loss of generality that X�Z ∈ [0�1].5

3.1. Sample Analog of Test Statistic

Let φj be an orthonormal basis for functions in L2[0�1]. Denote the series approxima-
tion of fXZ by

fJ(x� z)=
J∑

j=1

J∑
k=1

ajkφj(z)φk(x)�

where ajk = ∫ ∫
φk(x)φj(z)fXZ(x� z)dxdz. Hence, fJ is the L2 projection onto the space

spanned by the basis functions. We can then estimate fXZ by

f̂XZ(x� z)=
J∑

j=1

J∑
k=1

âjkφj(z)φk(x)�

where J → ∞ as n→ ∞ and

âjk = 1
n

n∑
i=1

φj(Zi)φk(Xi)�

5Section S.4 in the Supplemental Material outlines extensions to vectors X and Z and functions on R.
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Denote the series approximation of a function g by

gJ(x)=
J∑

j=1

hjφj(x)�

where hj = ∫
g(x)φj(x)dx ∈R for all j = 1� � � � � J. Define the sieve space

ḠJ(ε)=
{
g ∈ Ḡ(ε) : g(x) =

J∑
j=1

hjφj(x) for some h ∈ R
J

}
�

We can now define the test statistic which is

T̂ = inf
g∈ḠJ (ε):‖g‖c=1

∫ (∫
g(x)f̂XZ(x� z)dx

)2

dz�

To obtain a simpler representation of the test statistic, let Â be the J × J matrix with
elements âjk and let A be the population analog. Let h be the J × 1 vector containing the
coefficients hj of g ∈ ḠJ(ε). It is easy to show that

∫ (∫
g(x)f̂XZ(x� z)dx

)2

dz =
J∑

j=1

(
J∑

k=1

âjkhk

)2

= ‖Âh‖2 = h′(Â′Â
)
h�

Hence

T̂ = inf
g∈ḠJ (ε):‖g‖c=1

h′(Â′Â
)
h�

T̂ depends on ‖ · ‖c and ‖ · ‖s, but as shown in the next section using specific norms, it has
an intuitive interpretation as a constrained version of a rank test of A′A.

3.2. Interpretation of Test Statistic With Sobolev Spaces

As a particular example, let

‖g‖2
c =

∫ 1

0
g(x)2 dx and ‖g‖2

s =
∫ 1

0

(
g(x)2 + g′(x)2

)
dx�

Furthermore, define bjk = ∫
φ′

j(x)φ
′
k(x)dx and B as the J × J matrix with element (j�k)

equal to bjk. It is then easy to show that{
g ∈ ḠJ(ε) : ‖g‖c = 1

} = {
gJ : h′Bh≤ (2C/ε)2 − 1�h′h= 1

}
�

It follows that the test statistic is the solution to

min
h∈RJ

h′(Â′Â
)
h

subject to h′Bh≤ (2C/ε)2 − 1 and h′h= 1�

Without the first constraint, the solution is the smallest eigenvalue of Â′Â, which could
be used to test the rank of A′A if J was fixed (see, e.g., Robin and Smith (2000)). Thus,
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the test in this paper can be interpreted as a constrained version of a rank test, where the
dimension of the matrix increases with the sample size.

3.3. Estimator

The estimator I use is a series estimator from Horowitz (2012). To describe the estima-
tor, let m̂ be a J × 1 vector with m̂k = 1

n

∑n

i=1 Yiφk(Zi). Let

ĥ= arg min
h∈RJ :‖gJ‖s≤C

‖Âh− m̂‖2 and ĝ(x)=
J∑

j=1

ĥjφj(x)�

Without the constraint, ‖gJ‖s ≤ C, and if Â is invertible, it can be shown that

ĥ= Â−1m̂= (
Φ(Z)′Φ(X)

)−1
Φ(Z)′Y�

where Φ(W ) is an n × J matrix containing φj(Wi) and Y is the n × 1 vector containing
Yi. Hence, the estimator is a constrained version of the “just identified” two stage least
squares estimator. In Section S.4.1 of the Supplemental Material, I show that the results
can easily be extended to an “over-identified” setting and non-scalar random variables.

3.4. Assumptions and Main Results

I will next state and discuss the assumptions and the main results.

ASSUMPTION 1: The data {Yi�Xi�Zi}ni=1 are an i.i.d. sample from the distribution of
(Y�X�Z), where (Y�X�Z) are continuously distributed, (X�Z) ∈ [0�1]2, 0 < fXZ(x� z) ≤
Cd < ∞ almost everywhere, and E(Y 2 | Z) ≤ σ2

Y for some σY > 0. For some r > 0,
‖fXZ − fJ‖2 ≤ CfJ

−r . The data are generated by model (1) and ‖g0‖s ≤ C for some constant
C > 0.

Let P be the class of distributions P satisfying Assumption 1. For a fixed ε > 0, define
P0 and P1 as the distributions in P satisfying H0 and H1 : diam(I0(P)) < ε, respectively.
The remaining assumptions are as follows.

ASSUMPTION 2: G is compact under ‖ · ‖c and Co‖g‖2
c ≥ ‖g‖2

2 for some Co > 0.

ASSUMPTION 3: The basis functions form an orthonormal basis of L2[0�1].
ASSUMPTION 4: For all g ∈ G and some Cb > 0, ‖g − gJ‖c ≤ CbJ

−s̄ with s̄ ≥ 2.

ASSUMPTION 5: For all g ∈ G and for J large enough, gJ ∈ G and ‖g‖c
‖gJ‖c gJ ∈ G.

The first assumption restricts the class of distributions. Compactness in Assumption 2
is implied by many standard choices of norms, among other for the norms used in Sec-
tion 3.2 (see Section S.3.1 of the Supplemental Material for more details). The second
part of Assumption 2 implies that S0(g) is continuous in g under ‖ · ‖c . It allows ‖ · ‖c

to be the L2-norm, the sup-norm, and many other norms. Assumptions 3 and 4 are stan-
dard in the literature. Assumption 5 implies that the series approximations of functions
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in Ḡ(ε) are in ḠJ(ε) and are therefore contained in the set that is minimized over in the
definition of the test statistic. It is stronger than necessary and it can be relaxed at the
expense of additional notation, but it appears to be reasonable as argued in Section S.3
of the Supplemental Material. Finally, to state the main result, let

κ(P�ε)= inf
g∈Ḡ(ε):‖g‖c=1

∫ (∫
g(x)fXZ(x� z)dx

)2

dz�

Notice that for any fixed distribution for which there is no g ∈ Ḡ(ε) with ‖g‖c = 1 and
S0(g)= 0 (e.g., any complete distribution), it holds by Assumption 2 that κ(P�ε) > 0. We
now get the following result. All proofs are in the Appendix.

THEOREM 1: Suppose Assumptions 1–5 hold.
1. If J

cn
→ 0 and nJ−2r

cn
→ 0, then

sup
P∈P0

P(nT̂ ≥ cn)→ 0�

2. If n
cn

→ ∞ and J2

n
→ 0, then for all P ∈P1 with κ(P�ε) > 0,

P(nT̂ ≥ cn)→ 1�

3. If J
cn

→ 0 and nJ−2s̄

cn
→ 0, then

sup
P∈P

P
(‖ĝ − g0‖c ≥ ε�nT̂ ≥ cn

) → 0�

The first and the second parts of Theorem 1 show that H0 : diam(I0(P)) ≥ ε is a testable
hypothesis. Here I focus on a diverging critical value cn under simple assumptions in order
to obtain the main result that links the test outcome to properties of ĝ. The third part
implies that for any sequence of distributions Pn ∈ P for which Pn(nT̂ ≥ cn) ≥ δ > 0, it
holds that

Pn

(‖ĝ − g0‖c ≥ ε | nT̂ ≥ cn
) → 0�

Hence, rejecting H0 provides evidence for a small asymptotic bias and the second part
of Theorem 1 shows that the rejection probability converges to 1 for a certain class of
distributions, which includes all fixed complete distributions. While the results rely on a
particular estimator and test statistic, the main idea extends to alternative estimator and
test pairs.

The rate conditions of parts 1–3 of Theorem 1 are satisfied if(
J

cn
�
cn

n

)
→ 0 and

(
n

J2r+1 �
n

J2s̄+1 �
J2

n

)
→ 0�

Hence, both cn and J have to go to ∞ but cannot diverge too fast relative to n. If r ≥ 2,
feasible choices are cn = J ln(n) and J = na, where a ∈ (1/5�1/2).

REMARK 1: Theorem A1 in Section S.1 of the Supplemental Material demonstrates
that the results in Theorem 1 also hold when ε → 0 as n → ∞. Therefore, the data can
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provide empirical evidence for an arbitrary small identified set and an arbitrary small
asymptotic bias of the estimator. Canay, Santos, and Shaikh (2013) proved that the data
cannot provide conclusive evidence in favor of completeness because for any complete
distribution, there is a sequence of incomplete distributions, which converges to it in
the total variation distance. Hence, any test that controls size over every sequence of
incomplete distributions has power no larger than size against any alternative. For the
test discussed here, Pn(nT̂ ≥ cn) → 1 for fixed complete distributions even as ε → 0 and
therefore, it cannot control size uniformly over all incomplete distributions. However, the
results in Theorem A1 show that for certain sequences of incomplete distributions, where
size is not controlled, ‖ĝ − g0‖c

p→ 0. Thus, for n large enough, either the test does not
reject or ĝ is arbitrarily close to g0 with probability arbitrarily close to 1.

3.5. Estimating the Diameter of the Identified Set

Let cn be a sequence of critical values that does not depend on ε and let

T̂ (ε)= inf
g∈ḠJ (ε):‖g‖c=1

∫ (∫
g(x)f̂XZ(x� z)dx

)2

dz

for all ε > 0 and T̂ (0)= 0. Notice that T̂ (ε) is increasing in ε. Define

ε̂ = sup
{
ε ∈ [0� C̃] : nT̂ (ε)≤ cn

}
�

where C̃ is the largest ε such that {g : ‖g‖s ≤ 2C�‖g‖c ≥ ε} 	= ∅. Let ε0 = diam(I0(P)) and
let ε̃0 = sup{ε ∈ [0� C̃] : infg:‖g‖s≤2C�‖g‖c=ε S0(g) = 0}. By construction, ε0 ≤ ε̃0 and for any
fixed complete distribution ε0 = ε̃0 = 0. We now get the following result.6

THEOREM 2: Suppose Assumptions 1–5 hold.
1. If J

cn
→ 0 and nJ−2r

cn
→ 0, then supP∈P |P(ε̂ ≥ ε0 − γ)− 1| → 0 for any γ > 0.

2. If n
cn

→ ∞ and J2

n
→ 0, then P(ε̂ ≤ ε̃0 + γ)→ 1 for any γ > 0.

Hence, ε̂ is a uniformly consistent estimated upper bound of ε0. The second result does
not hold uniformly over all distributions in P . The reason is that there are sequences of
complete distributions, with ε̃0 = ε0 = 0, which are arbitrarily close to incomplete distri-
butions with ε̃0 > ε0 > 0. For such sequences, the data cannot distinguish between the
complete and the incomplete distributions and thus ε̂ can be large even if ε̃0 = ε0 = 0.
For such sequences also ĝ would not be a consistent estimator of g0 and therefore, the
test described above would not reject H0 : diam(I0(P)) ≥ ε for small ε > 0. However,
a consequence of the theorem is that, for any fixed complete distribution, it holds that
ε̂

p→ 0.
For incomplete distributions, ε̂ generally does not converge in probability to ε0, but is

contained in [ε0 −γ� ε̃0 +γ] for any γ > 0 with probability approaching 1. The discrepancy
between the lower bound and the upper bound comes from the fact that the test is based
on a certain implication of H0, as explained in Section 2.2.

6I thank an anonymous referee for a suggestion that led to this result.
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REMARK 2: Suppose ‖ · ‖c is the sup-norm. Let g̃ be any estimator of g0 such that

inf
g∈I0(P)

‖g̃ − g‖c = op(1)�

and let g̃l(x)= g̃(x)− ε̂ and g̃u(x)= g̃(x)+ ε̂. It is easy show that under the assumptions
of Theorem 2 for any γ > 0,

P
(
g̃l(x)− γ ≤ g(x) ≤ g̃u(x)+ γ for all x ∈ [0�1] and all g ∈ I0(P)

) → 1�

Thus, [g̃l(x)� g̃u(x)] is a set estimator of the identified set, which is easy to report and
arbitrarily close to g0 for complete distributions if n is large enough. For incomplete dis-
tributions, it is generally a conservative estimator of the identified set. Section S.2 in the
Supplemental Material briefly describes how a diverging cn can be chosen using an in-
creasing quantile of a bootstrap distribution. Hence, just like other estimators of iden-
tified sets (e.g., Chernozhukov, Hong, and Tamer (2007) and Santos (2012)), it requires
a tuning parameter, and the one presented here has a clear interpretation for a given
choice.

4. DISCUSSION AND CONCLUSION

This paper shows that even though the data cannot provide evidence in favor of com-
pleteness, it can provide evidence in favor of both an arbitrarily small identified set and
an arbitrarily small asymptotic bias of an estimator in the NPIV model. The results can
be used to estimate an upper bound of the diameter of the identified set and to obtain an
easy to report estimator of the identified set itself.

Santos (2012) provided pointwise valid confidence sets for functionals of g0, which are
robust to partial identification. These sets are obtained by test inversion, which means
that a hypothesis test has to be performed for each possible value of the functional and
the bootstrap critical value depends on the hypothesized value of the functional. Hence,
such a confidence set is computationally expensive to obtain. The results in this paper
could potentially also be used to obtain a simple confidence set for the entire function
g0, rather than a functional, which is robust to partial identification and easy to report. In
particular, the estimator of Chen and Pouzo (2012) is consistent for the function in the
identified set with the minimal norm (which is identified), denoted by gm. Now suppose
there exists an estimated upper bound function g̃u and a lower bound function g̃l such
that

P
(
g̃l(x)≤ gm(x)≤ g̃u(x) for all x ∈ [0�1]) → 1 − α�

Similarly as in Remark 2, it is then easy to show that, under certain assumptions,

lim inf
n→∞

P
(
g̃l(x)− ε̂ ≤ g(x) ≤ g̃u(x)+ ε̂ for all x ∈ [0�1] and all g ∈ I0(P)

) ≥ 1 − α�

That is, a uniform confidence band for the identified function gm could easily be trans-
formed to a confidence set for the identified set using the results in this paper.

APPENDIX: PROOFS OF THEOREMS 1 AND 2

A.1. Proof of Theorem 1

For all P ∈P0, there exists a function g with S0(g) = 0, ‖g‖c = 1, and ‖g‖s ≤ (2C/ε). Let
gJ be the series approximation of such a function. Assumption 5 implies that gJ/‖gJ‖c ∈
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ḠJ(ε). Let h ∈ R
J be the vector containing the coefficients of this normalized series ap-

proximation. Then

n‖Âh‖2 = n
∥∥(Â−A)h+Ah

∥∥2 ≤ 2
∥∥√

n(Â−A)h
∥∥2 + 2n‖Ah‖2�

Notice that

‖Ah‖2 = 1
‖gJ‖2

c

∫ (∫
fJ(x� z)gJ(x)dx

)2

dz

= 1
‖gJ‖2

c

∫ (∫
fJ(x� z)g(x)dx

)2

dz

= 1
‖gJ‖2

c

∫ (∫ (
fJ(x� z)− fXZ(x� z)

)
g(x)dx

)2

dz

≤ 1
‖gJ‖2

c

(∫ ∫ (
fJ(x� z)− fXZ(x� z)

)2
dxdz

)(∫
g(x)2 dx

)

≤ 1
‖gJ‖2

c

C2
fCoJ

−2r �

Also notice that by Assumption 4, |‖gJ‖c − 1| ≤ 2CbJ
−s̄/ε. Next write

∥∥√
n(Â−A)h

∥∥2 =
J∑

j=1

(
J∑

k=1

√
n(âjk − ajk)hk

)2

and notice that

J∑
k=1

√
n(âjk − ajk)hk = 1√

n

n∑
i=1

J∑
k=1

(
φk(Xi)φj(Zi)−E

(
φk(Xi)φj(Zi)

))
hk

and

Var

(
J∑

k=1

(
φk(Xi)φj(Zi)−E

(
φk(Xi)φj(Zi)

))
hk

)
≤ max

k=1�����J
E

(
φk(Xi)

2φj(Zi)
2
)( J∑

k=1

|hk|
)2

�

Assumptions 2 and 4 imply that for some constant C̄ , |hk| ≤ C̄
k2ε

(see Section S.3
of the Supplemental Material for a derivation). Moreover, by Assumptions 1 and 3,
E(φk(Xi)

2φj(Zi)
2)≤ Cd . It follows that

Var

(
J∑

k=1

(
φk(Xi)φj(Zi)−E

(
φk(Xi)φj(Zi)

))
hk

)
≤ σ2/ε2�
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where σ2 = CdC̄
2(

∑∞
k=1 k

−2)2 < ∞. By Markov’s inequality and for all n large enough,

sup
P∈P0

P(nT̂ ≥ cn)≤ sup
P∈P0

P
(
2
∥∥√

n(Â−A)h
∥∥2 + 4C2

fConJ
−2r ≥ cn

)

≤ sup
P∈P0

P

(∥∥√
n(Â−A)h

∥∥2 ≥ 1
4
cn

)

≤ 4Jσ2

ε2cn

→ 0�

For the second part, for any g ∈ ḠJ(ε) with ‖g‖c = 1, let h ∈ R
J be the coefficients of

the series expansion and notice that ‖Âh‖2 ≥ 3
4‖Ah‖2 − 3‖(Â−A)h‖2.7 Moreover,

‖Ah‖2 =
∫ (∫

fJ(x� z)g(x)dx

)2

dz

=
∫ (∫

fXZ(x� z)g(x)dx+
∫ (

fJ(x� z)− fXZ(x� z)
)
g(x)dx

)2

dz

=
∫ (∫

fXZ(x� z)g(x)dx

)2

dz +
∫ (∫ (

fJ(x� z)− fXZ(x� z)
)
g(x)dx

)2

dz

+ 2
∫ (∫ (

fJ(x� z)− fXZ(x� z)
)
g(x)dx

)(∫
fXZ(x� z)g(x)dx

)
dz�

and therefore, by the Cauchy–Schwarz inequality, for all g ∈ ḠJ(ε) with ‖g‖c = 1,
∣∣∣∣‖Ah‖2 −

∫ (∫
fXZ(x� z)g(x)dx

)2

dz

∣∣∣∣ ≤ C2
fCoJ

−2r + 2CdCfCoJ
−r �

It follow that

inf
g∈ḠJ (ε):‖g‖c=1

‖Ah‖2 = inf
g∈ḠJ (ε):‖g‖c=1

S0(g)+ o(1)≥ κ(P�ε)+ o(1)�

For κ(P�ε) > 0 and n large enough, n‖Ah‖2 ≥ 1
3nκ(P�ε) and cn ≤ 1

8nκ(P�ε). Also

∥∥(Â−A)h
∥∥2 =

J∑
j=1

(
J∑

k=1

(âjk − ajk)hk

)2

≤ Co

J∑
j=1

J∑
k=1

(âjk − ajk)
2

for all h with ‖h‖2 ≤ Co. Finally, notice that

√
n(âjk − ajk)= 1√

n

n∑
i=1

(
φk(Xi)φj(Zi)−E

(
φk(Xi)φj(Zi)

))

7For a= Âh and b =Ah, it holds that 0 ≤ ‖2a− 3
2b‖2 = 3‖a− b‖2 − 3

4 ‖b‖2 + ‖a‖2.
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and Var(φk(Xi)φj(Zi)−E(φk(Xi)φj(Zi)))≤ Cd . Now, for all n large enough,

P(nT̂ ≥ cn) ≥ P

(
1
4
nκ(P�ε)− 3Co

J∑
j=1

J∑
k=1

(√
n(âjk − ajk)

)2 ≥ cn

)

≥ P

(
1
8
nκ(P�ε)≥ 3Co

J∑
j=1

J∑
k=1

(√
n(âjk − ajk)

)2

)

= 1 − P

(
24Co

J∑
j=1

J∑
k=1

(√
n(âjk − ajk)

)2 ≤ nκ(P�ε)

)

≥ 1 − 24J2CoCd

nκ(P�ε)
�

Hence P(nT̂ ≥ cn)→ 1.
For the last claim, let h0 ∈ R

J contain the first J coefficients of the series expansion of
g0. By Assumption 5, the definition of ĥ, and the triangle inequality,

‖Âh0 − m̂‖ ≥ ‖Âĥ− m̂‖ = ∥∥Âh0 − m̂+ Â(ĥ− h0)
∥∥ ≥ ∥∥Â(ĥ− h0)

∥∥ − ‖Âh0 − m̂‖
and thus

4‖Âh0 − m̂‖2 ≥ ∥∥Â(ĥ− h0)
∥∥2
�

Now suppose that nT̂ ≥ cn and ‖ĝ − g0‖c ≥ ε and notice that ‖ĝ − g0‖s ≤ 2C. Let g̃ =
ĝ − g0. From Assumption 5, it follows that g̃J

‖g̃‖c
ε‖g̃J‖c ∈ ḠJ(ε). Therefore,

n

ε2

‖g̃‖2
c

‖g̃J‖2
c

∥∥Â(ĥ− h0)
∥∥2 ≥ nT̂ ≥ cn�

By Assumption 4 and ‖g̃‖c ≥ ε, we have | ‖g̃J‖c
‖g̃‖c − 1| ≤ 2CbJ

−s̄/ε and thus

8
n

ε2 ‖Âh0 − m̂‖2 ≥ cn

for n large enough. In other words, for n large enough,

sup
P∈P

P
(‖ĝ − g0‖c ≥ ε�nT̂ > cn

) ≤ sup
P∈P

P
(
8n‖Âh0 − m̂‖2 ≥ cnε

2
)
�

Next, let m be a J × 1 vector with mk =E(m̂k) and notice that since

‖Âh0 − m̂‖ ≤ ∥∥(Â−A)h0

∥∥ + ‖Ah0 −m‖ + ‖m− m̂‖�
we have

‖Âh0 − m̂‖2 ≤ 4
∥∥(Â−A)h0

∥∥2 + 4‖Ah0 −m‖2 + 4‖m− m̂‖2�
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and thus, for n large enough,

P
(
8n‖Âh0 − m̂‖2 ≥ cnε

2
)

≤ P
(
32n

∥∥(Â−A)h0

∥∥2 + 32n‖Ah0 −m‖2 + 32n‖m− m̂‖2 ≥ cnε
2
)

≤ P
(
96n

∥∥(Â−A)h0

∥∥2 ≥ cnε
2
) + P

(
96n‖Ah0 −m‖2 ≥ cnε

2
)

+ P
(
96n‖m− m̂‖2 ≥ cnε

2
)
�

It now suffices to prove that all three terms on the right-hand side converge to 0 uniformly
over P ∈P .

The first term converges to 0 using arguments identical to the ones in the proof of the
first part. Similarly, for the third term,

∥∥√
n(m− m̂)

∥∥2 =
J∑

k=1

(√
n(m̂k −mk)

)2 =
J∑

k=1

(
1√
n

n∑
i=1

(
Yiφk(Zi)−E

(
Yiφk(Zi)

)))2

�

and by Assumptions 1 and 3

E

((
1√
n

n∑
i=1

(
Yiφk(Zi)−E

(
Yiφk(Zi)

)))2)
≤ 1

n

n∑
i=1

E
(
Y 2

i φk(Zi)
2
) ≤ σ2

YCd�

It follows from Markov’s inequality that

sup
P∈P

P
(
96n‖m− m̂‖2 ≥ cnε

2
) ≤ 96Jσ2

YCd

cnε
2 → 0�

Finally, write

‖Ah0 −m‖2 =
J∑

j=1

(
J∑

k=1

ajkh0�k −mj

)2

�

Since
∑∞

j=1(
∑∞

k=1 ajkh0�k −mj)
2 = 0, it holds that mj = ∑∞

k=1 ajkh0�k. Therefore,

‖Ah0 −m‖2 =
J∑

j=1

(
J∑

k=1

ajkh0�k −mj

)2

≤
∞∑
j=1

( ∞∑
k=J+1

ajkh0�k

)2

=
∫ (∫

fXZ(x� z)
(
g0(x)− g0�J(x)

)
dx

)2

dz

≤
∫ ∫

fXZ(x� z)
2dxdz

∫ (
g0(x)− g0�J(x)

)2
dx

≤ C2
dC

2
bCoJ

−2s̄�
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where the last inequality follows from Assumptions 2 and 4. Thus,

sup
P∈P

P
(
96n‖Ah0 −m‖2 ≥ cnε

2
) ≤ sup

P∈P
P

(
96C2

dC
2
bCoJ

−2s̄n≥ cnε
2
) → 0�

We can conclude that supP∈P P(‖ĝ − g0‖c ≥ ε�nT̂ > cn)→ 0.

A.2. Proof of Theorem 2

I show that supP∈P P(ε̂ < ε0 − γ)→ 0 and P(ε̃0 + γ < ε̂)→ 0 for any γ > 0.
If ε̂ < ε0 − γ < ε0, by definition it holds that nT̂ (ε0) ≥ cn and ε0 ≥ γ. Since diam(I0) =

ε0, there exists a function g with ‖g‖s ≤ 2C/ε0, ‖g‖c = 1, and S0(g) = 0. Thus, the argu-
ments of the proof of the first part of Theorem 1 imply that

sup
P∈P

P(ε̂ < ε0 − γ)≤ sup
P∈P

P
(
nT̂ (ε0)≥ cn

) → 0�

For the second claim, suppose that ε̃0 +γ < ε̂ ≤ C̃ . Then, by definition nT̂ (ε̃0 +γ)≤ cn.
Similarly as in the proof of the second part of Theorem 1,

nT̂ (ε̃0 + γ) ≥ inf
g∈ḠJ (ε̃0+γ):‖g‖c=1

3
4
n‖Ah‖2 − 3Co

J∑
j=1

J∑
k=1

(√
n(âjk − ajk)

)2

and

inf
g∈ḠJ (ε̃0+γ):‖g‖c=1

‖Ah‖2 ≥ inf
g∈Ḡ(ε̃0+γ):‖g‖c=1

S0(g)+ o(1)�

But by the definition of ε̃0, it holds that infg∈Ḡ(ε̃0+γ):‖g‖c=1 S0(g) > 0. Hence, using arguments
analogous to those in the proof of the second part of Theorem 1, it follows that

P(ε̃0 + γ < ε̂)≤ P
(
nT̂ (ε̃0 + γ)≤ cn

) → 0�
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